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Abstract 

Localized necking is often considered as precursor to failure in metal components. In modern 

technologies, functional components (e.g., in flexible electronic devices) may be affected by this 

necking phenomenon, and to avoid the occurrence of strain localization, elastomer substrates are 

bonded to the metal layers. This paper proposes an investigation of the development of localized 

necking in both freestanding metal layers and elastomer/metal bilayers. Finite strain versions of both 

rigid-plastic flow theory and deformation theory of plasticity are employed to model the mechanical 

response of the metal layer. For the elastomer, a neo-Hookean constitutive law is considered. 

Localized necking is predicted using both bifurcation (whenever possible) and Marciniak–Kuczynski 

analyses. A variety of numerical results are presented, which pertain to the prediction of localized 

necking in freestanding metal layers and metal/substrate bilayers. The effects of the constitutive 

framework and the presence of an elastomer substrate on strain localization predictions have been 

specifically highlighted. It is demonstrated that the addition of an elastomer layer can retard 

significantly the occurrence of localized necking. It is also demonstrated that the results of the 

Marciniak–Kuczynski analysis tend towards the bifurcation predictions in the limit of a vanishing size 

for the geometric imperfection. 

Keywords: substrate-supported metals, localized necking, deformation theory, flow theory, neo-

Hookean model, bifurcation and imperfection analyses 
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1. Introduction

Nowadays, necking limit prediction of metal sheets or thin plates represents an ambitious challenge 

both for the sheet metal forming industry and for the design of functional components in electronic 

devices. In the well-known experiment of a tensile test on a metal specimen, the deformation develops 

mainly through three successive stages: (i) a homogeneous deformation; (ii) a progressively 

concentrating strain under a constant or smoothly decreasing load (diffuse necking), and (iii) an abrupt 

strain localization (localized necking) under a rapid load decrease. The onset of localized necking 

represents the ultimate deformation that a stretched metal sheet can undergo, since this phenomenon is 

often precursor to material failure. Probably, the most common representation of this limit is through 

the concept of forming limit diagram (FLD). Note that this concept was initially introduced in the 

beginning of the sixties by Keeler and Backofen (1963), in the range of positive minor principal 

strains (i.e. 2 0ε > ), and Goodwin (1968) (extending Keeler's work to negative minor principal strains,

i.e. 2 0ε < ). In the literature, a large amount of studies have been devoted to the experimental and 

numerical determination of FLDs for sheet metals with different material properties (Smith and Lee, 

1998; Narayanasamy and Sathiya Narayanan, 2005; Strano and Colosimo, 2006; Khan and Baig, 

2011; Zhang and Wang, 2012; Li et al., 2013). In the vast majority of these studies, attention was 

restricted to freestanding metal sheets. However, the need for increasing the ductility of metal 

components has induced an impetus to develop alternative and more complex materials such as 

substrate-metal bilayers. Indeed, supporting a metal layer by an elastomer substrate has proven to 

significantly improve its ductility (Chiu et al., 1994; Hommel and Kraft, 2001; Alaca et al., 2002) and 

to enhance its energy absorption (Xue and Hutchinson, 2007, 2008). In an industrial context, substrate-

supported metal layers are being used in a variety of flexible electronic devices such as conductors and 

interconnects (Lacour et al., 2005; Cotton et al., 2009; Cordill et al., 2010; Graudejus et al., 2012). 

Despite the increasing industrial interest in elastomer/metal bilayers, there is still a need for further 

studies for an in-depth understanding of the corresponding strain localization conditions. In this paper, 

an attempt is made to investigate the impact of an elastomer layer, bonded to a metal sheet or plate, on 

the shape and location of the associated FLD in the in-plane principal strain space. Note that the 

concept of FLD and associated terminology, more commonly adopted in the literature for a 

freestanding metal layer, is extended here to a metal/substrate bilayer. In the related literature (Xue 

and Hutchinson, 2007; Jia and Li, 2013), a similar terminology, namely “necking limit diagram”, is 

preferred instead. 

Due to the complexity of the experimental determination of the FLD and its relatively high cost, a 

number of theoretical and/or numerical models have been set up. These alternative approaches require 

the use of a criterion, to predict the occurrence of strain localization, along with a constitutive law to 

describe the evolution of the mechanical state of the studied material. The onset of plastic flow 

localization may occur as a bifurcation from a homogeneous deformation state or it may be triggered 

by some assumed initial imperfection. Accordingly, two main classes of strain localization criteria, 

which will also be used in this paper, can be found in the literature: 
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• Imperfection approach:

This approach postulates the existence of an initial imperfection in the form of a narrow band

across the studied metal layer. This imperfection may be assumed as local variations in

thickness (geometric imperfection) or in plastic properties (material imperfection), which will

affect the plastic flow and therefore influence the strain localization occurrence. This approach

was initially introduced by Marciniak and Kuczynski (1967), which will be referred to hereafter

as the M–K analysis. In this pioneering work, the authors introduced an initial geometric

imperfection in the sheet plane in the form of a groove or band. During in-plane biaxial

stretching, the plastic deformation concentrates in the band more than in the rest of the sheet,

leading thus to localized thinning in the band. In its initial version, the M–K analysis was

restricted to a groove perpendicular to the major strain direction, thus limiting the prediction of

FLD to the right-hand side of the FLD ( 2 0ε > ). To overcome this limitation, Hutchinson and

Neale (1978b) proposed an extension of this approach. This extension covers the full range of

the FLD by considering all possible initial orientations of the groove and selecting the lowest

value of the major strain at the onset of localized necking as the limit strain. The accuracy in the

prediction of the FLD has increased over the years by improvement of the constitutive modeling

(see, e.g., Barlat, 1989; Eyckens et al., 2009). In spite of the over-sensitivity of its predictions to

the initial imperfection value (see, e.g., Baudelet, 1984), the M–K analysis has attracted a great

deal of attention, due to its pragmatic character.

• Bifurcation analysis:

In many ductile materials, zones of localized deformation are commonly observed prior to

failure, which are considered as a result of instability in the constitutive description of

homogeneous deformation. These localization bands induce a macroscopic discontinuity in the

velocity gradient of the deforming material and often signal the inception of failure. In addition

to its sound mathematical background, the bifurcation theory does not require any fitting

parameter, such as the initial imperfection needed in the M–K analysis. The bifurcation analysis

was initially proposed by Hill (1952) in the case of flow theory of plasticity (rigid-plastic

material) within the framework of generalized plane stress. His theory predicts that localized

necking occurs along a line of zero extension and is therefore restricted to negative minor strain

values (i.e., the left-hand side of the FLD). For elasto-plastic material models with smooth yield

surface and associative plasticity, it has been shown (see, e.g., Rice, 1976) that the bifurcation

approach does not predict localized necking at a realistic stress level under positive in-plane

biaxial stretching (i.e., in the right-hand side of the FLD). In order to overcome this limitation,

the introduction of some destabilizing effects is required to promote material instability. To this

end, a number of authors suggested that the subsequent yield surfaces of the material would

develop a vertex-like structure during continued deformation. The development of such a

destabilizing vertex may be due to the application of the deformation theory of plasticity (Stören

and Rice, 1975; Hutchinson and Neale, 1978b, 1981), or to the use of the Schmid law within the

framework of crystal plasticity (Franz et al., 2009, 2013). Material instability may also be due to
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some softening behavior introduced in the constitutive modeling through coupling with damage 

(see, e.g., Rudnicki and Rice, 1975; Saje et al., 1982, for pressure-sensitive void containing 

materials, or Haddag et al., 2009, within the framework of continuum damage mechanics).  

The main objective of this paper is to extend the earlier contributions of Hutchinson and Neale 

(1978b), Xue and Hutchinson (2007) and Jia and Li (2013). In the first of this series of works, 

Hutchinson and Neale (1978b) extensively studied the necking limit of freestanding metal sheets (or 

layers) using the bifurcation and the imperfection approaches. For each of these two localization 

approaches, a rigid-plastic finite strain version of the J2 flow theory (designated shortly in what 

follows as “flow theory”) and of the J2 deformation theory of plasticity (called shortly hereafter 

“deformation theory”) were used to model the mechanical behavior of the metal sheet. Our current 

study extends Hutchinson and Neale's (1978b) work to the case of substrate-metal bilayers. The 

constitutive models of the metal layer are taken the same as those used in Hutchinson and Neale 

(1978b). However, the behavior of the substrate is modeled by a neo-Hookean constitutive law. In Xue 

and Hutchinson (2007), the necking limit of elastomer-supported metal layers was investigated using 

only the bifurcation theory, with the metal layer modeled only by the deformation theory of plasticity. 

The predictions of the latter study were confined to the range of positive minor strain. Jia and Li 

(2013) extended the analysis of Xue and Hutchinson (2007) to the range of negative minor strain. In 

our current contribution, we enlarge the above two earlier works by adding another localization 

criterion (the imperfection approach) and another constitutive framework for the metal layer (the flow 

theory). The developed approaches and associated numerical tools can be used in a wide range of 

applications. They can be applied to evaluate the immunity of very thin bilayers (for example in 

micro-electronic applications) as well as thicker bilayers (used for example in mechanical 

components). The main result of our paper is that the addition of an elastomer layer can retard 

significantly the occurrence of localized necking. It is also demonstrated that the results of the 

Marciniak–Kuczynski analysis tend towards the bifurcation predictions in the limit of a vanishing size 

for the geometric imperfection, both for an all-metal single layer and for a metal/substrate bilayer. 

The remainder of the paper is organized as follows: 

- Section 2 outlines the constitutive equations used to model the metal and elastomer layers. 

- Section 3 details the localization criteria employed to predict localized necking in the bilayer. 

- Section 4 deals with the numerical and algorithmic developments used to couple the constitutive 

equations with the localization criteria. 

- The various numerical predictions are presented in Section 5. These results are discussed in 

details and compared with some reference results taken from the literature. 

Notations, conventions and abbreviations 

The derivations presented in this paper are carried out using classic conventions. Note that the assorted 

notations can be combined, while additional notations will be clarified as needed following related 

equations. 
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2. Constitutive equations

Consider a quasi-static deformation of a thin metal/substrate bilayer under in-plane biaxial stretching. 

We define an orthogonal Cartesian coordinate system 1 2 3( , , )x x x , which is fixed to the bilayer (Fig. 1), 

with axes 1 2( , )x x  lying in the bilayer plane, and axis 3x  normal to this plane.  

Fig. 1. Geometry of the bilayer and Cartesian coordinates. 

• scalar 

•
r

vector 

• second-order tensor 

• fourth-order tensor 

•& time derivative of •

T• transpose of tensor •

det( )•  determinant of tensor •

Einstein’s convention of summation over repeated indices will be adopted 

•⊗•
r r

tensor product of two vectors ( )
i j

= • •  

:• • double contraction of two second-order tensors ( )
ij ij

= • •

•I value of quantity •  at the initial time 

•t value of quantity •  at time t  (for convenience, the dependence on time is most often 

omitted when the variable is expressed in the current instant) 

( )• ∗  quantity •  associated with behavior in layer ∗  

•B
quantity •  associated with behavior inside the band (M–K analysis)

0• quantity •  associated with behavior outside the band (M–K analysis) 

FT, DT and NH stand for abbreviations of flow theory, deformation theory and neo-Hookean 

model, respectively 
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The following choices and assumptions are considered in the modeling of the bilayer behavior: 

• Two different constitutive models are employed in this study to describe the mechanical

behavior of the metal layer: rigid-plastic flow theory and deformation theory of plasticity.

• Strain localization occurs at relatively large strains so that the elasticity of the metal layer can be

neglected (i.e., the mechanical behavior is assumed to be rigid-plastic).

• The mechanical response of the elastomer substrate is defined by a neo-Hookean behavior

model.

• The metal and the elastomer layers are assumed to be isotropic, incompressible and strain-rate

independent.

• The materials composing the bilayer remain bonded and are such that material damage does not

occur prior to necking.

• The constitutive framework adopted here is of phenomenological nature and thus unaffected by

microstructural size effects.

Firstly, the constitutive equations are established in the general three-dimensional case. Secondly, the 

incompressibility condition and plane-stress assumption are employed to adapt the constitutive 

equations to a two-dimensional formulation (i.e., in the plane of the bilayer). For convenience, a rate-

type formulation is used to express the constitutive equations of the flow theory (with the rate of 

Eulerian strain measure). However, a “total” formulation is used in the development of the constitutive 

equations of both the deformation theory and the neo-Hookean model (with Lagrangian strain 

measures). 

2.1. Flow theory of plasticity 

Associative plasticity is assumed and, accordingly, the Eulerian strain rate tensor ε&  (the symmetric 

part of the velocity gradient G ) is given by the normality flow rule: 

eq∂σ
ε = λ

∂ σ
&& (1) 

Here, σ  is the Cauchy stress tensor, eq
σ  is the equivalent stress (in the sense of von Mises), equal to 

3 2( / ) :S S  ( S  being the deviatoric part of σ ), and λ& is the plastic multiplier (equal to the 

equivalent strain rate eq
ε&  for associative rigid-plasticity). 

The rigid-plastic constitutive law can then be derived from Eq. (1) as: 

3 2

2 3

eq eq

eq eq

S S
ε σ

ε = ⇔ = ε
σ ε

&
& &

&
(2) 
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2.2. Deformation theory of plasticity 

2.2.1. Some preliminary concepts 

The deformation gradient F  is polarly decomposed into the left Cauchy–Green stretch tensor V  and 

the proper orthogonal rotation tensor R : 

2TF VR FF V= ⇒ = (3) 

V  can itself be decomposed in the following form: 

TV M M= λ (4) 

where λ  is a diagonal tensor whose diagonal terms 1 2 3( , , )λ λ λ  define the principal stretches (the 

principal values of tensor V ), while M  is an orthogonal tensor defining the orientation of the 

principal strain directions relative to the Cartesian coordinate system 1 2 3( , , )x x x . 

2.2.2. Formulation of the deformation theory in the frame of principal strain directions 

The deformation theory was initially developed in Hill (1950) for isotropic materials under small 

strain assumptions. It was then extended to the case of finite strains in Hutchinson and Neale (1978b, 

1981). In these different works, the constitutive equations are expressed in the frame of the principal 

strain directions, which coincides with the frame of principal stresses (as a consequence of isotropy). 

In this frame, the deformation gradient F  is reduced to the tensor λ . Accordingly, the most 

appropriate strain measure appears to be the logarithmic strain iε  defined by the following relation: 

1 2 3ln ; , ,i i iε = λ =  (5) 

The basic equations of the finite strain deformation theory provide relations between the logarithmic 

strains iε  and the principal deviatoric stresses iS  as follows: 

2
1 2 3

3
; , ,

eq

i i

eq

S i
σ

= ε =
ε

 (6) 

where 3 2/eq i iS Sσ =  and 2 3/eq i iε = ε ε  are, respectively, the equivalent stress and the equivalent 

strain. 

The deformation theory provides the same stress–strain response as the flow theory for a proportional 

and monotonic loading history. In this case, Eqs. (2) and (6) become equivalent. In situations 

involving a proportional or nearly proportional monotonic loading history, deformation theory may be 

considered as an acceptable plasticity theory. In other loading conditions (strongly non-proportional 

loading, unloading), several objections were raised concerning the use of the deformation theory. In 

contrast, the applicability of flow theory does not require such restrictions. 

As elasticity in neglected, eqσ  (resp. eqε ) is always equal to the effective stress eσ  (resp. effective 

strain eε ). Therefore, Eq. (6) is equivalent to: 

2 2
1 2 3

3 3
; , ,e

i i S i

e

S E i
σ

= ε = ε =
ε

(7) 
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where SE  is the secant modulus. 

2.2.3. Extension of the deformation theory to general Cartesian coordinates 

Expression (7) is sufficient to carry out the bifurcation analysis, especially when the principal strain 

directions coincide with the Cartesian coordinate axes 
1 2 3( , , )x x x . However when the two frames do 

not coincide, Eq. (7) must be generalized. To this end, let us introduce the scalar strain energy 

function: 

3 2( / ) :e e eW d S S d= σ ε = ε∫ ∫ (8) 

which is equivalent (after straightforward calculation) to: 

1

3
( )SW E d= ∫ Π Π (9) 

where the scalar Π  is defined as a function of lnV  (the natural logarithmic of tensor V ): 

2 2 2 2

1 2 3 3 2ln( ) : ln( ) ln ( ) ln ( ) ln ( ) ( / ) eV V= = λ + λ + λ = εΠ (10) 

and ( )SE Π  is defined by: 

3

2

:
( )S

S S
E =Π

Π
(11) 

From Eq. (11), we obtain: 

2

3
lnSS E V= (12) 

Eq. (12) is regarded as a tensorial generalization of constitutive equation (7), the former being 

applicable in any arbitrary coordinate system. It is considered to be the hyperelastic version of the 

deformation theory. However, a hypoelastic (path dependent) version of the deformation theory was 

developed by Stören and Rice (1975). In this hypoelastic version, the constitutive equation, which is 

the counterpart of Eq. (12), is given by: 

2

3
;SS E dt= ε ε = ε∫ & (13) 

When the principal axes of strain do not rotate with the material, both versions coincide. 

2.3. Neo-Hookean model 

The neo-Hookean model adopted in this paper to describe the mechanical behavior of the elastomer 

substrate is defined by the following constitutive equation (Hunter, 1979; Rajagopal, 1998): 

2
S V= µ (14) 

where µ  is the shear modulus. 

This constitutive law is selected among other models (Baghani et al., 2012; Bouvard et al., 2013; 

Uchida and Tada, 2013; Ayoub et al., 2014), because it furnishes a valid description for the finite 
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elastic behavior of many real rubber-like materials, provided that the deformations are not too 

extreme. 

2.4. Plane-stress formulation 

The constitutive equations (2), (12) and (14), previously derived in terms of the deviatoric stress tensor 

S , can be rewritten in terms of the Cauchy stress tensor σ  using the relation: 

σ = +S p Id (15) 

where Id  is the second-order identity tensor and p  is the hydrostatic pressure. 

Consistent with several literature works and because the bilayer is assumed to be thin, the assumption 

of generalized plane stress will be adopted in both the bifurcation and the M–K analyses. Hutchinson 

et al. (1978a) have proven the validity of such an assumption in the case of thin media. Under this 

condition, the stress components normal to the bilayer 3 1 2 3; , ,i iσ =  are always zero. Thus, the 

hydrostatic pressure p  can be eliminated from Eq. (15) by means of relation 33 0σ = , which gives 

after straightforward calculation: 11 22= +p S S . 

The constitutive equations associated with the flow theory, the deformation theory, and the neo-

Hookean model can be rewritten as: 

11 22( )S S S Idσ = + + (16) 

where the expression of the deviatoric stress tensor S  has to be substituted, respectively, by: 

22 2

3 3

σ
= ε = = µ

ε
&

&
 ;  ln  ;  

eq

S

eq

S S E V S V (17) 

Equation (16) in addition to Eqs. (17) summarize the constitutive equations for the different material 

models (i.e., flow theory, deformation theory, and neo-Hookean model) in the case of plane-stress 

conditions. These equations will be coupled with the localization criteria in order to predict the FLDs 

of substrate-metal bilayers. 

3. Localized necking criteria

3.1. Bifurcation theory 

In order to establish the governing equations for the Rice bifurcation criterion, it is first necessary to 

derive the instantaneous modulus L  for the different behavior models considered. This modulus 

relates the Jaumann co-rotational rate of the Cauchy stress tensor 
Jσ  to the strain rate tensor ε&

(symmetric part of the velocity gradient G ): 

:J
Lσ = ε& (18) 

In the bifurcation analysis, we assume without loss of generality that the direction of the principal 

stress 11σ  (resp. 22σ ) is coaxial with the reference axis 1x  (resp. 2x ) of the fixed Cartesian frame. In 
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this case, the state of uniform stress considered prior to bifurcation is such that the only non-vanishing 

stress components are 11σ  and 22σ . 

Taking into account the plane-stress condition and the coaxiality of the Cartesian base vectors 1 2( , )x x  

with the principal stress axes 11 22σ σ( , ) , Eq. (18) can be reduced to: 

 

11 11 11 12 22

22 12 11 22 22

12 122

J

J

J

S

L L

L L

L

σ = ε + ε

σ = ε + ε

σ = ε

& &

& &

&

 (19) 

The aim of the following subsections is to explicitly derive the expressions of components 

11 22 12,  ,  L L L  and SL  of the instantaneous modulus L  corresponding to the different constitutive 

models considered. 

3.1.1. Instantaneous modulus for the flow theory 

Hutchinson and Neale (1978b) provided the expression of the instantaneous modulus in the case of 

incompressible and isotropic elasto-plastic flow theory: 

 

2 2

11 22
11 22

11 22
12 2

4 4

3 3

2

3 3

( ) ; ( )

( ) ;

T T

e e

T S

e

L E E E L E E E

E
L E E E L

    σ σ
= − − = − −    

σ σ    


 σ σ
= − − =  σ 

 (20) 

where E  and TE  are respectively the Young modulus and the scalar tangent modulus equal to 

/e ed dσ ε . 

The rigid-plastic behavior can be considered as a limiting case of the elasto-plastic behavior, when 

E→ +∞ .  

3.1.2. Instantaneous modulus for the deformation theory  

The instantaneous modulus used for the deformation theory was derived by Hutchinson and Neale 

(1978b, 1981). This derivation is based on the "principal axes technique" introduced by Hill (1970): 

 

2 2

11 22
11 22

11 22
12 2

4 4

3 3

2

3 3

( ) ; ( )

( ) ;
( )

S S T S S T

e e

S
S S T S

e

L E E E L E E E

E
L E E E L Q

    σ σ
= − − = − −    

σ σ    
σ σ = − − = + σ

 (21) 

where the component Q  is defined by the following relation: 

 11 22 11 22

1
1

3
= ε − ε ε − ε −[( )coth( ) ]SQ E  (22) 

in which coth denotes the hyperbolic cotangent.  
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It is worth noting that this form of the instantaneous modulus is different from that developed by 

Stören and Rice (1975); in the latter, the component Q  vanishes. This difference is the result of the 

difference between the two constitutive equations (12) and (13).  

3.1.3. Instantaneous modulus for the neo-Hookean model 

The instantaneous modulus in the case of the neo-Hookean model was given by Jia and Li (2013):  

 

11 11 22 22 11 22

11 22 11 22

2 2 2 2

11 22

2 2 2

12

2 2

2
2

( ) ( )

( )

[ ] ; [ ]

; [ ]S

L e e L e e

L e L e e

ε − ε +ε ε − ε +ε

− ε +ε ε ε

 = µ + = µ +

 µ

= µ = +

 (23) 

3.1.4. Rice's bifurcation criterion  

This criterion applies to a continuous medium undergoing a homogeneous strain state. Here, we 

consider a bilayer, as sketched in Fig. 2a, comprised of an upper metal layer U  and a lower elastomer 

layer L . This layer organization will be respected here and in the following. The initial thickness of 

the upper (resp. lower) layer is denoted by Ih  (resp. IH ). The strain localization is searched for as a 

bifurcation phenomenon, meaning that a non-homogeneous straining mode becomes possible (i.e., the 

uniqueness of the solution of the rate equations is lost). This non-homogeneity is considered as a 

planar localization band in the thickness (i.e., localized necking), defined by its normal 

= θ θ
r
(cos ,sin )N  (see Fig. 2b). The velocity gradient inside and outside the band is denoted as 

+G  and 

−G , respectively, while the corresponding nominal stresses are denoted as +N  and −N . 

 

 (a) (b) 

Fig. 2. Development of localized necking: (a) Schematic representation of the substrate-supported 

metal layer; (b) Orientation and shape of the localization band. 

The two layers U  and L  are assumed to be perfectly adhered. Furthermore, they are submitted to a 

uniform pre-localization strain state with in-plane strains 11ε , 22ε  and 12 0ε = .  

With this adherence assumption and this specific loading, the velocity gradients ( )G U  and ( )G L  are 

equal to the overall velocity gradient G , as indicated by the following equation: 

 = =( ) ( )G U G L G  (24) 
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For each layer, the nominal stress rate N&  is related to the velocity gradient G  by: 

= =& &( ) ( ) : ; ( ) ( ) :N U U G N L L GL L (25) 

where L  is an analytical tangent modulus, which is related to the instantaneous modulus L  by:

1 2 3= + − −L L L LL (26) 

Tensors 1L , 2L  and 3L  are given in the general three-dimensional case by the following expressions: 

1 2 3

1 1
1 2 3

2 2
= σ δ = δ σ + δ σ = σ δ − σ δ =; [ ] ; [ ] ; , , , , ,ijkl ij kl ijkl ik lj il kj ijkl ik lj il jkL L L i j k l  (27) 

where δ  is the Kronecker delta. In the present case of plane-stress conditions, these tensors 1L , 2L

and 3L  will be adapted as usual, with the classical transformation into plane-stress formulation. In 

addition, tensor 1L  vanishes due to the incompressibility condition. More details on the determination 

of these tensors can be found in Abed-Meraim (2009), Haddag et al. (2009). 

The continuity of the stress vector through the band of normal 
r
N  is written as: 

0+ =
rr

� �& &
� �. ( ) ( )hN U HN LN  (28) 

where � �
+ −= −A A A  designates the jump in a tensor quantity A  across the chosen plane. 

Maxwell’s compatibility condition, for the velocity field, states that there exists a vector β
r

 such that 

the jump in G  reads: 

� �= β⊗
r r

G N (29) 

Combining Eqs. (25), (28) and (29), one obtains: 

0 + β = 
r rr r

.( ( ) ( )). .h U H LL LN N (30) 

This is a typical eigenvalue problem and the existence of a non-trivial solution for β
r

 (i.e., bifurcation 

condition 0β ≠
r r

) requires that the following determinant vanishes: 

0 + = 
r r

det .( ( ) ( )).h U H LL LN N (31) 

This latter equation gives a necessary condition for a localization band to appear. This condition of 

singularity for the acoustic tensor, denoted C  and equal to +
r r
.( ( ) ( )).h U H LL LN N , has also been

shown to correspond to the loss of ellipticity of the rate equations that govern the associated boundary 

value problem. Equation (31) represents the extension to a bilayer of the bifurcation criterion 

introduced by Rice and coworkers in the case of a freestanding metal layer (see, e.g., Stören and Rice, 

1975; Rice, 1976). 
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3.2. Imperfection approach 

In order to apply the M–K approach, we add to the bilayer a groove in the form of a band on the upper 

metal layer (Fig. 3). To be consistent with various experimental observations, the band is assumed to 

initiate always in the upper metal layer. 

 

Fig. 3. M–K analysis of a bilayer (initial geometry and band orientation). 

The following various thicknesses are introduced in order to establish the equations of the M–K 

analysis: 

• 
B

Ih : initial thickness of layer U  inside the band (referred to as the defect zone). 

• 
0

Ih : initial thickness of layer U  outside the band (referred to as the uniform zone). 

• 

B

IH : initial thickness of layer L  inside the band. 

• 
0

IH : initial thickness of layer L  outside the band (equal to B

IH ). 

On the basis of these notations, the initial size for the geometric imperfection (corresponding to the 

metal layer only), ξI , can be specified by: 

 
0

1ξ = −
B

I
I

I

h

h
 (32) 

As the adherence is perfect between layers U  and L , it is legitimate to assume the following 

equalities for the deformation gradients: 

 
0 0 0= = = =( ) ( ) ; ( ) ( )B B BF U F L F F U F L F  (33) 

In an Eulerian formulation, the perfect adherence is interpreted by the following equations: 

 
0 0 0( ) ( ) ; ( ) ( )B B BG U G L G G U G L G= = = =  (34) 

The M–K analysis is based on three main equations: 

• The kinematic compatibility condition between the band and the uniform zone (i.e., outside the 

band): this condition requires the displacement increments to be continuous across the band 

(Rice, 1976) and it is mathematically expressed (in a total Lagrangian form) by: 

 
0= + ⊗

r r
B

IF F C N  (35) 
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The compatibility condition can also be expressed in a rate-type Eulerian formulation 

(equivalent to the Lagrangian form of Eq. (35)):  

 
0= + β⊗

r r
BG G N  (36) 

where I

r
N  and 

r
N  refer to the initial and the current normal to the localization band, 

respectively. 

• The equilibrium balance across the band interface: this balance is written in a total Lagrangian 

form as: 

 
0 0 0 0+ = +

r r
( ( ) ( )). ( ( ) ( )).B B B B

I I I I I I
h B U H B L h B U H B LN N  (37) 

where B  is the first Piola–Kirchhoff stress tensor related to the Cauchy stress tensor by: 

 
TB J F −= σ  (38) 

where J  is the Jacobian of the deformation gradient (equal to det( )F ). As the different 

materials used in this paper are assumed to be incompressible, J  is always equal to 1. 

Using the Eulerian formulation, the equilibrium equation becomes: 

 
0 0 0 0σ + σ = σ + σ

r r
( ( ) ( )). ( ( ) ( )).B B B Bh U H L h U H LN N  (39) 

• The constitutive equations (16) and (17). 

4. Numerical implementation and algorithmic aspects 

4.1. Bifurcation analysis 

In order to predict the FLD, proportional strain paths are imposed to the bilayer: 

 
22

11

ε
= ρ

ε

&

&
 (40) 

The strain ratio ρ  is varied in the range 1 2 1/− ≤ ρ ≤  to span the complete FLD. 

Taking Eq. (40) into account, it is possible to recast Eq. (24) (only the in-plane components pertaining 

to the pre-localization state are considered, the remaining components are deduced by the conditions 

of incompressibility and plane stress): 

 
11

11

0

0
( ) ( )G U G L G

ε 
= = =  ρε 

&

&
 (41) 

With this proportional straining, and considering that the metal layer is isotropic and follows the von 

Mises criterion, ratios 11 / eσ σ  and 22 / eσ σ  used in Eqs. (20) (for the flow theory) and (21) (for the 

deformation theory) are constant and given by: 

 11 22

2 1 2 2 1 2

2 1 2

3 1 3 1/ /
;

[ ( )] [ ( )]e e

σ + ρ σ + ρ
= =

σ + ρ + ρ σ + ρ + ρ
 (42) 
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In this paper, the effective stress eσ  is related to the effective strain eε  by the Hollomon law 

(Hollomon, 1945):  

 
N

e eKσ = ε  (43) 

where K  and N  are two material hardening parameters. 

With this hardening law, the tangent and secant moduli 
TE  and 

SE , respectively, are given by: 

 1 1;N N

T e S eE N K E K− −= ε = ε  (44) 

where: 

 
2 1 2

11

2 1

3

/( )
e

+ ρ + ρ
ε = ε  (45) 

Making use of Eqs. (40)–(45), the instantaneous moduli (20), (21) and (23) for the different materials 

can be expressed as functions that only depend on the material parameters, the strain ratio ρ  and 
11ε . 

Consequently, for a given bilayer (when the materiel parameters of the different layers and the initial 

thicknesses Ih  and IH  are fixed), the acoustic tensor C  becomes a function of ρ , the band 

orientation θ  and 11ε . 

The prediction of the entire FLD of the bilayer is based on two nested loops: 

• For 1 2/ρ = −  to 1ρ =  at user-defined intervals (here, we take intervals of 0 1. ) 

o For 0θ = °  to 90θ = °  at user-defined intervals (here, we take intervals of 1° ) 

- Solve the highly non-linear Eq. (31) with respect to the unique unknown 
11ε . The 

solution of Eq. (31) is called the critical strain 11

*ε  corresponding to ρ  and θ . 

The smallest critical strain 11

*ε  over all angles θ  and the corresponding angle define, 

respectively, the localization limit strain 11

Lε  and the necking band orientation for the current 

strain ratio ρ . 

4.2. M–K analysis 

Unlike the bifurcation analysis, the solution method for the M–K analysis depends on whether flow 

theory or deformation theory is applied to model the mechanical behavior of the metal layer. In the 

case of Metal (flow theory)/Elastomer (neo-Hookean) combination, an incremental solution is 

required. However, in the case of Metal (deformation theory)/Elastomer (neo-Hookean) combination, 

a direct solution can be given without using an incremental procedure. To be clear, in the following 

developments, the two cases will be treated separately. 

4.2.1. Metal (deformation theory)/Elastomer (neo-Hookean) 

The in-plane normal components of the deformation gradient outside the band are prescribed as 

follows:  

 
00 0
1111 220 0

11 22;F e F e eρ εε ε= = =  (46) 
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with the remaining in-plane components set to be:  

 0 0

12 21 0F F= =  (47) 

Substituting the components of 
0F  (Eqs. (46) and (47)) into Eq. (35) gives the in-plane components of 

the deformation gradient in the band 
BF :  

 

0
11

0
11

1 1 1 2

2 1 2 2

ε

ρε

 +
 =
 + 

I IB

I I

e
F

e

C N CN

C N C N

 (48) 

In view of Eq. (48), we can easily conclude that 
BF  depends on ρ , 

0

11ε , 
r
C  and 

r

IN  (or equivalently 

the initial orientation Iθ ). 

The first Piola–Kirchhoff stress tensors ( )BB U , ( )BB L , 
0( )B U , 

0( )B L  can be expressed through Eq. 

(38): 

 
0 0 0 0 0 0

( ) ( )[ ] ; ( ) ( )[ ]

( ) ( )[ ] ; ( ) ( )[ ]

B B B T B B B T

T T

B U U F B L L F

B U U F B L L F

− −

− −

= σ = σ

= σ = σ
 (49) 

( )B Uσ  and ( )B Lσ  (resp., 
0( )Uσ , 

0( )Lσ ) are expressed through Eqs. (16), (17)2 and (17)3 as functions 

of BV  (resp., 0V ), which in turn are functions of BF  (resp., 0F ). Therefore, ( )BB U , ( )BB L , 0( )B U , 

0( )B L  are functions of ρ , 
0

11ε , 
r
C  and 

r

IN . 

Knowing the material parameters and the initial thicknesses of the two layers U  and L  inside and 

outside the band, the M–K problem is reduced to the solution of the equilibrium balance (37) (two 

scalar equations). This equilibrium balance is function of ρ , 
0

11ε , 
r
C  and 

r

IN . For a given value of the 

strain-path parameter ρ  and initial band orientation Iθ  (i.e., 
r

IN ), Eq. (37) becomes function of the 

only independent unknowns 
0

11ε  and 
r
C . Therefore, we have two scalar equations for three unknowns 

(
0

11ε  and the two components of 
r
C ). In order to solve completely this problem, it is necessary to add a 

supplementary or a “matching” equation or numerical constraint.  

As will be demonstrated later, plastic strain localization is said to occur when the straining stops 

outside the band (unloading), while the band continues to undergo plastic loading. Accordingly, the 

strain component 
0

11ε  and the equivalent deformation 
0

eqε  outside the band reach their maximum at the 

onset of unloading. We therefore refer to this limiting value as the critical strain for localized necking, 

as it represents the state where the deformation becomes concentrated in the band while the reminder 

of the sheet begins to unload. This criterion, which in general is equivalent to 
0

11 11 0/ Bd dε ε =  or 

0 0/ B

eq eqd dε ε = , is used here as indicator of critical strain. 

Consequently, when the material parameters and initial layer thicknesses are known and when the 

strain ratio ρ  and initial orientation Iθ  are fixed, the M–K problem can be posed as a maximization 
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problem with constraint: maximize 0

11ε  subject to the two scalar equilibrium equations (37). This 

maximization problem admits always a unique solution, which allows us to determine 0

11ε  and 
r
C , and 

hence to solve completely the M–K problem. 

Similarly to the case of bifurcation analysis, the prediction of the entire FLD of the bilayer is based on 

two nested loops:  

• For 1 2/ρ = −  to 1ρ =  at user-defined intervals (here, we take intervals of 0 1. ) 

o For 0θ = °I  to 90θ = °I  at user-defined intervals (here, we take intervals of 1° ) 

- Search for the critical strain 11

*ε  as a solution of the following maximization problem 

with constraint: 

 0 0 0 0 0

11 0 ε + − + = 
rr

( ( ) ( )) ( ( ) ( )) .B B B B

I I I I IMaximize subject to h B U H B L h B U H B L N  (50) 

The smallest critical strain 11

*ε , solution of the above optimization problem, over all initial 

angles θI  and the corresponding current angle define, respectively, the localization limit 

strain 11

Lε  and the necking band orientation for the current strain ratio ρ . 

4.2.2. Metal (flow theory)/Elastomer (neo-Hookean) 

In these conditions and due to the rate-type formulation of the flow theory, the Eulerian form 

(summarized by Eqs. (36), (39) and the constitutive equations of the metal (17)1 and of the elastomer 

(17)3) of the M–K equations is more suitable than the Lagrangian form. These equations shall be 

verified at each time increment. In practice, the M–K problem must be solved in an incremental 

manner. Before defining the incremental algorithm used, and for the sake of clarity, it is necessary to 

define the prescribed quantity used in each increment. 

4.2.2.1. Choice of the prescribed quantity 

In the majority of works carried out for incrementally solving the M–K problem, the equivalent strain 

rate 0

eqε&  or a component of the strain rate (generally 
0

11ε& ) outside the band is imposed as the prescribed 

quantity. However, the corresponding strain quantities ( 0

eqε , 
0

11ε ) increase monotonically before strain 

localization, while they remain constant (in the case of rigid-plasticity, which is the case in this 

subsection) or decrease (in the case of elasto-plastic flow theory or deformation theory) after strain 

localization. On the contrary, strain quantities inside the band ( B

eqε , 11

Bε , 33

Bε …) increase monotonically 

both before and after strain localization. Hence, it is more suitable to use one of these strain rates 

inside the band as prescribed quantity instead of strain rates outside the band. This choice permits to 

carry out stable computations and avoid several numerical difficulties. In our case, 33

Bε&  is used as the 

prescribed quantity. Because the constitutive framework is assumed to be strain-rate insensitive, 33

Bε&  

may be chosen quite freely. For convenience, it is assumed to be constant and equal to –1, from which 

it follows that 33

Bε  is numerically equal to time t . Combining this choice with the incompressibility 
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condition 11 22 33 0B B BG G G+ + = , we can obtain the following form for the velocity gradient in the band 

B
G  (in-plane components only due to plane-stress conditions): 

 
11 12

21 111

B B

B

B B

G
G

G

 ε
=  

− ε 

&

&
 (51) 

On the other hand, the deformation in the uniform zone is assumed to be such that: 

 

0 0

22 22

0 0

11 11

G

G

ε
= = ρ

ε

&

&
 (52) 

It is further assumed that the 1x  and 2x -directions are the in-plane principal strain directions in the 

uniform zone, by which it is understood that: 

 
0 0

12 21 0G G= =  (53) 

Making use of the compatibility condition (36) together with Eqs. (51), (52) and (53), we can obtain 

that: 

 

0

11 11 1 1

12 1 2

21 2 1

0

22 11 11 2 21

ε = ε + β


= β


= β
ε = − ε = ρε +β

& &

& & &

B

B

B

B B

G

G

N

N

N

N

 (54) 

By combining Eqs. (54)1 and (54)4, 
0

11ε&  can be obtained: 

 
0 1 1 2 2
11

1

1

−β −β
ε =

+ ρ
&

N N
 (55) 

The current normal to the band 
r
N  is equal to (cos ,sin )θ θ  and its orientation θ  is related, under the 

condition of Eq. (53), to the initial band orientation Iθ  by the expression: 

 0

111tan exp[( ) ]tan Iθ = −ρ ε θ  (56) 

Analyzing Eqs. (51)–(56), it is clear that it is sufficient to know the scalars 1β  and 2β  to determine 

completely 
0G  and 

BG . Indeed, if 1β  and 2β  are known, Eq. (55) combined with Eq. (56) becomes a 

non-linear first-order differential equation for the unknown 0

11ε . Solving this equation permits to 

determine 0

11ε , 0

11ε&  and then the other components of the velocity gradients 0
G  and B

G  through Eq. 

(54). 

4.2.2.2. Incremental algorithm 

When the input parameters are known, an implicit incremental algorithm is constructed to determine 

the major strain 
0

11ε  for each strain ratio ρ  and each initial orientation Iθ . This algorithm is detailed in 

Appendix A.  

The general algorithm used to predict the FLD of the bilayer is based on three nested loops: 
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• For 1 2/ρ = −  to 1ρ =  at user-defined intervals (here, we take intervals of 0 1. ) 

o For 0θ = °I  to 90θ = °I  at user-defined intervals (here, we take intervals of 1° ) 

- Apply the implicit incremental algorithm (as described in Appendix A) to calculate the 

major strain 
0

11ε . The computation is stopped when the necking criterion (A.3) is satisfied 

and the corresponding strain 0

11ε  is considered to be the critical strain 
11

*ε .  

The smallest critical strain 11

*ε  solution of the previous problem over all initial angles θI  and 

the corresponding current angle define, respectively, the localization limit strain 11

Lε  and the 

necking band orientation for the current strain ratio ρ . 

5. Results and discussions 

This section is divided into two main subsections: the freestanding metal layer results, where we 

revisit some well-known results from the literature (Hutchinson and Neale, 1978b; Jia and Li, 2013), 

and the bilayer results, which represent the main novelty of this paper. 

5.1. Freestanding metal layer 

In this subsection, two values for the hardening exponent are used: 0.22=N  (typical of steels and 

aluminum alloys) and 0.5=N  (more representative of brass materials). Both bifurcation results and 

M–K predictions are insensitive to the value of the hardening parameter K . For this reason, its 

numerical value is not mentioned in this subsection. 

5.1.1. Bifurcation analysis predictions 

Comparisons between our numerical predictions and the reference results reported in Hutchinson and 

Neale (1978b) are shown in Fig. 4. The solid and dashed lines represent the results given by our 

numerical tool, while the dotted graphs with symbols (∆, ▲, �) correspond to those published in 

Hutchinson and Neale (1978b). It is clear that both sets of FLD results match perfectly, which 

provides at least a partial validation of our algorithm and of the accuracy of the developed model. 

Here, the two versions of the deformation theory are used: the hyperelastic version developed by 

Hutchinson and Neale (1978b), referred to as H–N, and the hypoelastic version developed by Stören 

and Rice (1975), referred to as S–R. In the positive biaxial stretching range, it is found that the 

principal axes of strain do not rotate with the associated bifurcation mode and, accordingly, the 

component 
SL  that enters the expression of the instantaneous modulus L  (see Eqs. (19) and (21)) 

does not affect the bifurcation governing equations (30). This implies that this component SL  does not 

play any role in the expression of the bifurcation criterion (31) neither (in the range of positive biaxial 

stretching) and, accordingly, the results of Hutchinson and Neale (1978b) and Stören and Rice (1975) 

are identical as expected (see the right-hand sides of Fig. 4a and b). As demonstrated in Hill (1952), 

bifurcation cannot occur in the range of positive minor strain ( 2 0ε > ) when the rigid-plastic flow 

theory is used; therefore, only the available left-hand side of the FLD is presented in Fig. 4a and b. 
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For 0ρ < , various band orientations θ  were considered to determine the angle that corresponds to the 

minimum limit strain. In the biaxial tension range ( 0ρ ≥ ), 0θ =  is the minimizing band orientation. 

For this reason the localization band angle θ  is presented only in the negative ρ  range. Unlike the 

FLD predictions, some discrepancies are observed when we compare the localization band orientations 

predicted by our tool (see Fig. 4c and d) with the predictions reported in Hutchinson and Neale 

(1978b), especially for the case of rigid-plastic flow theory. Because in the case of rigid-plastic flow 

theory the localization band orientation is given by the following analytical formula (see Hill’s (1952) 

analysis): 

 ( )arctanθ = −ρ , (57) 

it is then easy to verify that our results follow exactly this analytical formula, which validates our 

numerical predictions. 

In the case of the deformation theory, where the observed discrepancies are smaller and correspond 

especially to the band orientations associated with small values of ρ , we also verified the validity of 

our predictions by comparison with the recent results reported in Jia and Li (2013). 
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Fig. 4. FLDs and localization band orientations for a freestanding metal layer, as predicted by the 

bifurcation theory; comparison of flow theory with two versions of deformation theory: (a) FLDs 
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( 0.22=N ); (b) FLDs ( 0.5=N ); (c) Localization band orientation θ  ( 0.22=N ); (d) Localization 

band orientation θ  ( 0.5=N ). 

5.1.2. M–K analysis predictions 

In order to emphasize the effects of geometric imperfections on localized necking, we plot in Fig. 5 the 

evolution of the opposite of the thickness strain outside the band 
0

33−ε  as a function of its counterpart 

inside the band 33

B−ε . This evolution can be used as a reliable indicator for the onset of localized 

necking. Indeed, the current size ξ  for the geometric imperfection can be expressed as a function of 

Iξ , 33

Bε  and 
0

33ε  by: 

 
0

33 331 1ξ = − − ξ ε − ε( )exp( )B

I  (58) 

The hardening exponent N  is taken equal to 0.22 . The evolution of 
0

33−ε  is plotted for four strain 

ratios: 0 5ρ = − .  (uniaxial tension), 0ρ =  (plane strain tension), 0 5ρ = .  (biaxial tension), and 1ρ =  

(equibiaxial tension). 

The initial band orientation is taken to be equal to 0.2  rad for the first strain ratio and 0  rad for the 

other strain ratios. The dot reported on each curve indicates the onset of strain localization. As 

demonstrated in Fig. 5, the critical strain 11

*ε  is equal to the maximum value of the major principal 

strain attained outside the band (which is considered previously as a definition of critical strain). It 

should be clarified that the localization strains given by Fig. 5, for different values of strain ratio ρ  

and different values of initial band orientation θI , do not all correspond to localization limit strains. 

This is only the case for the strain ratios 0ρ = , 0 5ρ = .  and 1ρ = , for which the initial band 

orientation taken (i.e., 0θ =I ) is that minimizing the critical strains 11

*ε . For 0 5.ρ = − , the localization 

limit strain will be obtained by minimizing the critical strains 11

*ε  over all initial band orientations θI . 

Another observation from Fig. 5 is that the two plasticity theories exhibit quite different trends in the 

post-localization domain. In the case of deformation theory, after the onset of localization the material 

inside the band continues to deform plastically in a monotonous manner ( 33−εB  increases), while the 

material outside the band undergoes unloading (
0

33−ε  decreases). In fact, as the deformation theory is 

not an acceptable plasticity theory in the case of unloading, it cannot be used for post-localization 

analysis. Accordingly, the post-localization regime in the case of deformation theory is represented in 

Fig. 5 by dashed lines for indication purposes only. Indeed, these dashed curves, which are 

extrapolated beyond their appropriate limit, should only be regarded as schematic, and do not have a 

sound theoretical basis. In the case of flow theory, however, because elasticity is not considered, the 

strain 0

33−ε  remains constant in the post-localization domain, while 33

B−ε  increases monotonically as 

previously.  

Fig. 5 also reveals that the flow theory is more sensitive to the initial imperfection than the 

deformation theory, especially in the biaxial loading range. In both plasticity theories, the imperfection 
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has a destabilizing role that precipitates the occurrence of strain localization and, certainly, when the 

problem is analyzed on the basis of flow theory, localization cannot be predicted for positive strain 

ratios without the introduction of imperfection.  

The ratio 
0

33 33/Bε ε  at the localization point decreases with decreasing initial imperfection. Namely, 

when an imperfection is small, intensive strain localization starts suddenly, although the strain inside 

the band is comparable in magnitude to that outside the band.  

Another noteworthy observation is that in the pre-localization regime and until the onset of 

localization, the two plasticity models behave identically when the strain ratio is equal to 0 (plane 

strain tension), regardless of the value of the initial imperfection Iξ . For the other values of ρ , the 

deformation theory always predicts earlier strain localization when compared to flow theory. These 

observations are also confirmed by the FLDs reported in Fig. 6. 
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Fig. 5. Evolution of 0

33−ε  as a function of 33

B−ε  for a freestanding metal layer, as predicted by the M–

K approach; comparison of flow theory with deformation theory ( 0 22.N = ): (a) 0 5ρ = − .  and 

0 2 rad.Iθ = ; (b) 0ρ =  and 0 radIθ = ; (c) 0 5ρ = .  and 0 radIθ = ; (d) 1ρ =  and 0 radIθ = . 

The effect of the initial geometric imperfection Iξ  on the shape and the location of the FLDs is 

investigated in Fig. 6. The analysis compares the predictions of both plasticity theories for two values 
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of strain hardening exponent ( 0 22.N =  and 0 5.N =  ). In view of these results, some conclusions can 

be drawn: 

• For both plasticity theories, the limit strains given by the bifurcation analysis set an upper bound 

to those yielded by the M–K approach. Indeed, Fig. 6 demonstrates that the FLDs predicted by 

the M–K analysis tend towards the FLD predicted by bifurcation analysis when 
Iξ  tends to 

zero. In other words, the effect of an initial imperfection is essentially to shift the FLD 

downwards. This observation is natural considering the similarity of the mathematical 

formulations of the two approaches (M–K and bifurcation): if the amount of initial imperfection 

is set equal to 0 in the imperfection model, the problem is reduced to the bifurcation analysis. 

• The limit strains given by the deformation theory coincide with those predicted by the flow 

theory for plane strain tension ( 0ρ = ). This result is always true for both localization 

approaches (bifurcation theory and M–K analysis) and is consistent with Fig. 5 and with the 

results reported in Hutchinson and Neale (1978b). 

• For all of the other strain paths ( 0ρ ≠ ), the limit strains predicted by the deformation theory are 

found to locate at realistic strain levels, and are always lower than their counterparts predicted 

by the flow theory. This result is also true for both localization approaches (bifurcation theory 

and M–K analysis) and is consistent with Fig. 5. 

• Despite the sound fundamental basis of the flow theory, its predictions seem to be overly 

sensitive to initial imperfections and are also relatively high, especially in the biaxial stretching 

range ( 0ρ > ). This observation is attributable to the infinite limit strains given by bifurcation 

analysis coupled with flow theory for 0ρ > .  
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Fig. 6. Effect of Iξ  on the shape and the location of the FLDs for a freestanding metal layer; 

comparison of flow theory with deformation theory: (a) Flow theory ( 0.22=N ); (b) Deformation 

theory ( 0.22=N ); (c) Flow theory ( 0.5=N ); (d) Deformation theory ( 0.5=N ). 

As reflected by Figs. 5 and 6, the introduction of an initial geometric imperfection leads to an 

important reduction of the critical strains (especially when flow theory is used). To further illustrate 

this feature, Fig. 7 shows the evolution of the limit strain 
11

Lε  as a function of 
Iξ  for a hardening 

exponent 0.22=N  and four strain paths: 0 5ρ = − . , 0ρ = , 0 5ρ = .  and 1ρ = . As revealed, the limit 

strain 11

Lε  depends strongly on the initial imperfection Iξ , especially for the case of positive strain 

ratios ( 0 5ρ = .  and 1ρ = ) and when the flow theory is used. In this specific case, localization may be 

expected to occur at reasonable values of 11

Lε  only when the amount of initial imperfection is 

sufficiently large. Note also that Fig. 7 confirms once again that the two plasticity theories predict the 

same limit strains in the case of plane strain tension ( 0ρ = ), irrespective of whether imperfections are 

included or not.  
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Fig. 7. Evolution of the limit strain 11εL  with the initial imperfection Iξ  for a freestanding metal layer 

and for four different strain paths; comparison of flow theory with deformation theory ( 0.22=N ): (a) 

Flow theory; (b) Deformation theory. 



  

 

25 

 

The dependence of the critical strain 11

*ε  on both the initial band orientation Iθ  and the current band 

orientation θ  is illustrated by the curves in Fig. 8. The strain ratio ρ  is taken here equal to –0.5 and 

the hardening exponent N  is taken equal to 0.22. In these figures, both plasticity theories are 

investigated in which the bifurcation results are compared with the predictions of the M–K analysis for 

three values of 
Iξ  (10-3, 10-2, 5 x 10-2). The minimum critical strain 

11

*ε  over all orientations gives the 

limit strain 11

Lε  at which the inception of localization is first possible.  
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Fig. 8. Evolution of the critical strain 11

*ε  as a function of necking band orientation for a freestanding 

metal layer; comparison of flow theory with deformation theory ( 0 5ρ = − . , 0.22=N ): (a) Initial 

orientation with flow theory; (b) Initial orientation with deformation theory; (c) Current orientation 

with flow theory; (d) Current orientation with deformation theory. 

5.2. Metal/Elastomer bilayer 

In this subsection, two bilayer combinations are considered; namely, a metal layer (modeled with flow 

theory) supported by an elastomer substrate and a metal layer (modeled with deformation theory) 

supported by an elastomer substrate. In what follows, a shorthand notation for the first (resp. second) 

combination will be designated as FT/NH (resp. DT/NH). In all of the calculations reported in this 

subsection, the hardening parameters of the metal layer are taken as 1000=K  MPa and 0.22=N . 
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The shear modulus of the elastomer layer is fixed to 22 MPa. This latter choice is based on data for 

polyurea (Amirkhizi et al., 2006). 

5.2.1. Bifurcation analysis results 

Fig. 9 reflects the effect of the elastomer layer and its initial thickness IH , relative to that of the metal 

layer Ih , on the limit strains (Fig. 9a and b) and on the necking band orientations (Fig. 9c and d) when 

the bifurcation analysis is used. When the initial thickness 
IH  of the elastomer layer is equal to 0, the 

bifurcation results of a freestanding metal layer (Fig. 4) are naturally recovered. For both adopted 

plasticity theories (flow theory and deformation theory), the effect of the elastomer layer is to shift the 

FLD monotonically upwards, and thus to enhance the ductility of the bilayer. The larger the relative 

thickness /I IH h , the more significant the retardation of necking occurrence. This result demonstrates 

the practical interest in the use of elastomer substrates to increase the necking limit of metal 

components. It must be noted that the plots of Fig. 9b are very similar to those reported in Jia and Li 

(2013). In Fig. 9c, the necking band orientation θ  is plotted versus the strain path ρ  when the 

mechanical behavior of the metal layer is modeled by the flow theory. In this case, the presence of an 

elastomer layer, under the condition of perfect adherence, does not affect the necking band orientation, 

which follows the evolution rule given by Eq. (57). For this reason, the different plots in Fig. 9c are 

indistinguishable. This result of necking band orientation is also consistent with that of a freestanding 

metal layer, because for rigid-plastic flow theory, the band orientation is determined by a line of zero 

extension rate (Hill, 1952), whose orientation is found only to depend on the strain path ρ  and not on 

the material parameters (e.g., hardening). Another remarkable difference with the deformation theory 

is that the band orientation starts to incline (to deviate from zero), in the case of flow theory, as soon 

as the strain path ρ  becomes negative (see Fig. 9c). On the other hand, when deformation theory is 

used, the localization band remains perpendicular to the major strain direction when the strain path 

ratio ρ  is between 0 (plane strain tension) and a negative threshold value ρc . This threshold value 

depends on the elastomer relative thickness (e.g., 0 07ρ = − .c , –0.08, –0.1 and –0.12 when 0=/I IH h , 

1, 2 and 3, respectively). Then, this band orientation starts to increase when ρ  is inferior to ρc . Note 

also that this band orientation, predicted with the deformation theory, depends on the elastomer 

relative thickness /I IH h , as revealed by Fig. 9d, and also on the strain hardening parameter N . This 

latter dependence on the hardening parameter has already been shown for a freestanding metal layer 

(see Fig. 4c and d). 
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Fig. 9. Effect of the elastomer relative thickness on the FLDs and on the necking band orientations, as 

predicted by the bifurcation theory, for a metal/elastomer bilayer; comparison between FT/NH and 

DT/NH bilayers ( 0.22=N , 22 MPaµ = ): (a) FLDs for FT/NH bilayer; (b) FLDs for DT/NH bilayer; 

(c) Necking band orientations for FT/NH bilayer; (d) Necking band orientations for DT/NH bilayer.  

In order to further understand the effect of the elastomer relative thickness on the necking retardation, 

Fig. 10 depicts the evolution of the limit strain 11

Lε  as a function of the initial thickness ratio /I IH h  

for the two material combinations and for different strain paths. From this figure, it is clear that the 

limit strain 11

Lε  increases almost linearly and slowly with the initial thickness ratio /I IH h , for the 

different strain paths reported, except in the case 0 5ρ = − . . In this latter case and for both material 

combinations, the limit strain increases rapidly, a trend that is sensibly more pronounced for the flow 

theory modeling. Furthermore, the two plasticity theories provide the same predictions for the limit 

strain and its evolution in the case of plane strain tension ( 0ρ = ). This result has also been observed in 

the case of a freestanding metal layer (see Section 5.1).  
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Fig. 10. Evolution of the limit strain as a function of the initial thickness ratio for different strain 

paths, as predicted by the bifurcation theory, for a metal/elastomer bilayer; comparison between 

FT/NH and DT/NH bilayers ( 0.22=N , 22 MPaµ = ): (a) FT/NH bilayer; (b) DT/NH bilayer. 

It is well-known from the literature (Xue and Hutchinson, 2007; Jia and Li, 2013) that the neck 

retardation is tied to the fact that under biaxial loading, the tangent modulus of the elastomer remains 

unchanged, or increases, while the tangent modulus of the metal layer steadily decreases. When the 

band orientation is assumed to be equal to 0 (hence the normal 
r
N  to the band is equal to {1,0}), the 

acoustic tensor C  (associated with a single material) can be expressed as a function of the 

components of the corresponding analytical tangent modulus L  (which is itself function of the 

instantaneous modulus L  and some stress components, see Eqs. (25)–(27)) by the following 

expression: 
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 (59) 

With this specific form for the acoustic tensor, the bifurcation occurs as soon as one of the components 

11C  or 22C  becomes equal to zero for the first time. Under this condition, the major strain would 

represent the critical strain.  

In order to check the dependence of the neck retardation on the evolution of the tangent modulus, the 

above components 11C  and 22C  of the acoustic tensor are plotted in Fig. 11 versus the major strain 

component 11ε  for the different materials, in the case of uniaxial tension ( 0 5ρ = − . ) and plane strain 

tension ( 0ρ = ), and when the band orientation θ  is fixed to 0. To clearly show the difference between 

the different models, the components 11C  and 22C  are normalized by 210 GPa in the case of flow 

theory and deformation theory (this value corresponds to the Young modulus of usual steels) and by 

66 MPa in the case of neo-Hookean model (this value corresponds to the Young modulus of the 

elastomer used here). In view of these results, some conclusions can be drawn: 

• When the neo-Hookean model is used, the component 22C  increases (Fig. 11b and d). However, 

the component 11C  decreases slowly at the beginning of the loading and then increases (Fig. 11a 
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and c). Considering the evolution of these components and the expression (23) for the 

instantaneous modulus of the neo-Hookean model, we can conclude that necking can never 

occur in the elastomer layer alone. 

• The components 11C  and 22C  decrease rather quickly when the deformation theory is used for 

the different strain paths (Fig. 11a, b, c and d). Furthermore, 11C  becomes equal to 0 when the 

major strain 
11ε  is equal to 0.55 (resp. 0.22) for the uniaxial tension path (resp. plane strain 

tension), (see Fig. 11a and c). In the latter case of plane strain tension, the predicted critical 

strain 11 0 22ε =* .  corresponds to the localization limit strain that is associated with the onset of 

necking for an all-metal single layer modeled with the deformation theory. 

• The component 11C  has the same evolution for both the deformation theory and flow theory in 

the case of plane strain tension (Fig. 11c). This means that the localization limit strains 

predicted by both plasticity theories are identical, in plane strain tension, a feature that has been 

already discussed previously. 

• The components 11C  and 22C , associated with flow theory, remain strictly positive during the 

uniaxial tensile loading (Fig. 11a and b), at least in the strain range considered ( 110 0 6< ε < . ). 

Therefore, bifurcation cannot occur at realistic strain values for this band orientation ( 0θ = ). 

Obviously, for other values of the band orientation, it is possible to reach bifurcation at realistic 

strain values (see Fig. 8c). 

• For all of the above-mentioned reasons, we can observe easily that the components 11C  and 22C  

associated with the metal/elastomer bilayer decrease with the loading, but at a rate lower than 

that for a freestanding metal layer alone. Accordingly, the choice of bonding an elastomer 

substrate to a metal layer in order to retard the necking occurrence and thus to enhance its 

ductility becomes understandable.  
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Fig. 11. Evolution of the normalized components of the acoustic tensor (associated with different 

materials taken separately) versus the major strain for a band orientation 0θ = ; comparison between 

flow theory, deformation theory and neo-Hookean model ( 0.22=N , 22 MPaµ = ): (a) 11C  for 

0 5ρ = − . ; (b) 22C  for 0 5ρ = − . ; (c) 11C  for 0ρ = ; (d) 22C  for 0ρ = . 

 

5.2.2. M–K analysis results 

The effect of an initial geometric imperfection Iξ  (in the metal layer) on the necking limit strain of the 

bilayer is investigated in Fig. 12. Two different values for the initial geometric imperfection are 

considered, which are given by Iξ =10
-2

 and 2 x 10
-2

. As can be seen, and similarly to the bifurcation 

analysis, the presence of an elastomer layer allows an enhancement of the necking limit strain for both 

initial imperfection values. Interestingly, the comparison between Fig. 12a and Fig. 12c or between 

Fig. 12b and Fig. 12d reveals that the ductility lost due to the presence of an initial imperfection can be 

caught up by bonding an elastomer layer. The comparison between Fig. 9 and Fig. 12 indicates that the 

necking limit strains determined from the bifurcation analysis set an upper bound to the FLDs given 

by the M–K approach. 
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Fig. 12. Effect of the thickness ratio on the FLDs predicted by the M–K approach, for a 

metal/elastomer bilayer; comparison between FT/NH and DT/NH bilayers ( 0.22=N , 22 MPaµ = ): 

(a) FT/NH bilayer (
210I

−ξ = ); (b) DT/NH bilayer (
210I

−ξ = ); (c) FT/NH bilayer (
22 x 10−ξ =I ); (d) 

DT/NH bilayer (
22 x 10−ξ =I ). 

The effect of the initial geometric imperfection 
Iξ  on the shape and the location of the FLDs of the 

elastomer/metal bilayer is depicted in Fig. 13. The initial thickness ratio /I IH h  is taken equal to 1. 

The same trends observed in Fig. 6, when an all-metal single layer has been studied, are observed for 

the bilayer: an increase of the initial geometric imperfection Iξ  reduces considerably the critical 

strains for localization of the bilayer. Also, in a similar way, the M–K predictions tend towards the 

bifurcation results in the limit of a vanishing size for the initial imperfection. 
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Fig. 13. Effect of Iξ  on the shape and the location of the FLDs for a metal/elastomer bilayer; 

comparison between FT/NH and DT/NH bilayers ( 1/I IH h = , 0.22=N , 22 MPaµ = ): (a) FT/NH 

bilayer; (b) DT/NH bilayer. 

Fig. 14 gives the evolution of the critical strain 11

*ε  with both the initial and current band orientation of 

the bilayer in the case of uniaxial tension ( 0 5ρ = − . ). The initial thickness ratio /I IH h  is taken equal 
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to 1. These results are very similar to those of Fig. 8: the critical strains are sensitive to variations of 

the band orientation, especially when the combination FT/NH bilayer is considered. 
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Fig. 14. Critical strain as a function of necking band orientation for a metal/elastomer bilayer; 

comparison between FT/NH and DT/NH bilayers ( 0 5ρ = − . , 1/I IH h = , 0.22=N , 22 MPaµ = ): (a) 

Initial orientation for FT/NH bilayer; (b) Initial orientation for DT/NH bilayer; (c) Current orientation 

for FT/NH bilayer; (d) Current orientation for DT/NH bilayer. 

6. Conclusions 

In this paper, several numerical schemes and tools have been developed to predict the onset of 

localized necking in substrate-supported metal layers. The mechanical behavior of the metal is defined 

by the rigid-plastic flow theory or the deformation theory of plasticity. However, a neo-Hookean law 

is used to model the elastomer behavior. The metal and the elastomer layers are assumed to be 

isotropic, incompressible and strain-rate independent. The materials composing the bilayer remain 

bonded and are such that material damage does not occur prior to necking. Hence, other failure 

phenomena different from necking (such as damage, interfacial delamination) are not considered in 

this work. The numerical development is general enough to be used for other behavior models (for the 

metal or the elastomer) and to be extended to the study of multilayers. The onset of necking is 

predicted by using both the bifurcation and the M–K analyses.  



  

 

33 

 

From the simulation results, key findings can be summarized below: 

• The general trend for freestanding metal layers and bilayers remains that the largest limit strains 

are predicted when the mechanical behavior of the metal layer is modeled by the flow theory. 

This conclusion holds whatever the localization approach: bifurcation theory or M–K analysis. 

• The presence of an elastomer layer enhances substantially the necking limit of the 

metal/elastomer bilayer. This observation is common to bilayers with or without geometric 

imperfection. This neck retardation is due to the mechanical constraint of the substrate to the 

metal deformation. For the bifurcation analysis, this conclusion is easily understandable 

considering the form and the evolution of the acoustic tensor components of each layer. 

• Similar to the case of an all-metal single layer, the necking band of the bilayer for positive strain 

paths (ρ≥0) is found to be perpendicular to the direction of major strain. This result is true for 

both plasticity theories and both localization approaches: the bifurcation theory (when 

applicable) and the M–K analysis. 

• For negative strain paths (ρ≤0) and when the combination of FT/NH bilayer is considered, the 

necking band orientation is found to be independent of the elastomer relative thickness and of 

strain hardening parameters; it only depends on the strain path parameter ρ in the same way as 

for a freestanding metal layer modeled by the flow theory.  

• For both plasticity theories, the limit strains predicted by the bifurcation analysis set an upper 

bound to those given by the imperfection approach. Indeed, the FLDs determined by the M–K 

analysis tend towards those predicted by the bifurcation analysis in the limit of a vanishing size 

for the initial imperfection. This observation is natural considering the similarity of the 

mathematical formulations of the two approaches (M–K and bifurcation): if the amount of 

initial imperfection is set equal to 0 in the imperfection model, the problem is reduced to the 

bifurcation analysis. This conclusion is valid for a freestanding metal layer as well as for an 

elastomer-supported metal layer. 

To summarize, the proposed numerical schemes represent a powerful tool that could be used to help 

design and select elastomer-supported metal layers that provide optimal mechanical properties (good 

ductility, reduced mass...). 
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Appendix A. Algorithm for the computation of the critical strains 

This algorithm is based on the time integration of the evolution problem composed of Eqs. (16), (17), 

(36) and (39). This time integration proceeds by discretizing the deformation history in time and 

numerically integrating these equations over each typical time step τ[ , ]t . For this purpose, we assume 

that the following quantities are known at τ : 
0 0 0

0τ τ τ τ τσ σ σ σ, , ( ), ( ), ( ), ( )B B BF F U L U L     . The aim of this 

algorithm is to compute these same quantities at t  and then to determine 0

11ε . We will show that the 

solution of the evolution problem can be reduced to the determination of 1β  and 2β . In order to 

simplify the notations, subscript t  indicating the time dependence will be omitted in the following, 

with the understanding that all variables are evaluated at t , unless otherwise indicated. 

For each time increment τ[ , ]t , the following steps are carried out: 

• Step 1: Assuming that
r
N  is equal to τ

r
N , determine 0

G  and B
G  as functions of 1β  and 2β , as 

demonstrated in subsection 4.2.2.1. This assumption permits to avoid solving the non-linear 

differential equation obtained by the combination of Eqs. (55) and (56), without loss of accuracy 

for the final result.  

• Step 2: Express 0
F  and B

F  as functions of 1β  and 2β : 

0 0 0exp(( ) ) ; exp(( ) )B B BF t G F F t G Fτ τ= − τ = − τ (A.1) 

• Step 3: By using K  and N , and 0
G  and B

G , use Eqs. (16) and (17)1 to express the final 

values of ( )B Uσ  and 
0( )Uσ  in the metal layer as functions of 1β  and 2β . 

• Step 4: By using µ  and 0
F  and B

F , as determined above, use Eqs. (16) and (17)3 to express 

the final values of ( )B Lσ  and 
0( )Lσ  in the elastomer layer as functions of 1β  and 2β . 

• Step 5: Update the layer thicknesses inside and outside the band by the following relations:

0 0 0 0 0 0

11 111 1τ τ

τ τ

= − + ρ − τ ε = − + ρ − τ ε

= − − τ = − − τ

& &exp( ( )( ) ) ; exp( ( )( ) )

exp( ( )) ; exp( ( ))B B B B

h h t H H t

h h t H H t
(A.2) 

where the only unknown in Eq. (A.2) is 0

11ε& , which is function of 1β  and 2β . 

• Step 6: Analyzing the different quantities computed in Steps 1 to 5, it is clear that the

equilibrium equation (39) becomes function only of 1β  and 2β . This equation is then solved to

determine the values of 1β  and 2β  and then to determine 0

11ε . 

Localized necking in the groove is said to occur when the necking criterion: 

0

33 3310Bε > ε& & (A.3) 

is satisfied. Therefore, the implicit incremental algorithm (defined by Steps 1 to 6) is repeated up to 

the point at which the necking criterion (A.3) is satisfied. The factor 10  in (A.3) is rather arbitrary and 

any other relatively large positive number can be used. It is demonstrated that the effect of this factor 
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on the predicted necking strains is minimal, since the ratio 0

33 33/Bε ε& &  increases very steeply towards 

infinity at incipient necking. 
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Research highlights 

• Efficient numerical tools are developed to predict localized necking in elastomer/metal bilayers.

• The predictions are based on two necking limit criteria and two constitutive frameworks.

• The ductility of freestanding metal layers is compared to that of substrate-supported metal layers.

• The impact of the behavior of the metal layer on the ductility of the bilayer is investigated.

• The combined effect of initial imperfection and elastomer relative thickness is analyzed.




