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Abstract

A Bayesian inference methodology is developed for calibrating complex equations of state

used in numerical fluid flow solvers. Precisely, the input parameters of three equations

of state commonly used for modeling the thermodynamic behavior of so-called dense

gas flows, – i.e. flows of gases characterized by high molecular weights and complex

molecules, working in thermodynamic conditions close to the liquid-vapor saturation

curve–, are calibrated by means of Bayesian inference from reference aerodynamic data

for a dense gas flow over a wing section. Flow thermodynamic conditions are such that

the gas thermodynamic behavior strongly deviates from that of a perfect gas. In the

aim of assessing the proposed methodology, synthetic calibration data –specifically, wall

pressure data– are generated by running the numerical solver with a more complex and

accurate thermodynamic model. The statistical model used to build the likelihood func-

tion includes a model-form inadequacy term, accounting for the gap between the model

output associated to the best-fit parameters, and the true phenomenon. Results show

that, for all of the relatively simple models under investigation, calibrations lead to infor-

mative posterior probability density distributions of the input parameters and improve

the predictive distribution significantly. Nevertheless, calibrated parameters strongly

differ from their expected physical values. The relationship between this behavior and

model-form inadequacy is discussed.
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1. Introduction

Flows of complex organic fluids close to saturation conditions are encountered in 

several engineering applications like energy conversion cycles ([1, 2, 3]), high-Reynolds 

wind tunnels ([4]), chemical transport and processing ([5]), and refrigeration ([6]). In 

thermodynamic regions close to the liquid-vapor coexistence curve, the thermodynamic 

behavior of fluids with high molecular complexities differs significantly from that of a 

perfect gas and can no longer be represented by the polytropic perfect gas law. The 

largest deviations are encountered in the so-called dense gas flows ([7, 8, 9]) -for which a 

non-ideal dependence of the speed of sound on the fluid density is observed when the flow 

is submitted to isentropic perturbations- and most of all for a class of fluids known as 

the Bethe-Zel’dovich-Thompson (BZT) fluids ([10, 11, 12]). Examples of gases exhibit-

ing this special behavior are given by heavy hydro- and fluorocarbons and siloxanes, for 

which accurate and comprehensive thermodynamic data are scarce. As a consequence, 

high-accurate equations of state (EOS), i.e. thermodynamic laws designed to describe 

the fluid thermal and caloric behavior in the region of interest, are in general not avail-

able. Now, numerical simulations of dense gas flows, i.e. flows of molecularly complex 

gases at pressures and densities of the general order of magnitude of those of the liq-

uid/vapor critical point, can be extremely sensitive to the model used to describe the 

fluid thermodynamic behavior [13]. This sensitivity is particularly large for BZT fluids, 

which are theoretically predicted to exhibit non-classical gas dynamic behaviors, like ex-

pansion discontinuities and splitting shocks, in a tiny thermodynamic region close to the 

liquid/vapor coexistence curve [14].

On the other hand, reliable simulations of compressible flows with complex thermody-

namic behavior require the quantification of thermodynamic modeling errors, especially 

for those applications that look for improvements of the order of a few percents of the 

system performance, e.g. energy conversion cycles (see e.g. [3]).

For a given EOS, uncertainties of two kinds exist. The first source of uncertainty is 

represented by the mathematical form of the EOS to be used for a given fluid; on the other 

hand, the material-dependent coefficients associated to the EOS have to be calibrated 



from the available experimental data, which in turn are imperfectly known. Modeling 

uncertainties can be reduced to levels on the same order of the experimental uncertainty 

for molecularly simple well known fluids like water, hydrogen, or carbon dioxide (see 

[15]), i.e. even as low as 0.1 %. For molecularly complex fluids reserved essentially to 

an industrial use, like the dense gases of interest here, high accurate experimental data 

are more hardly available, so that a significant uncertainty on the closure coefficients 

may exist. Specifically, critical-point properties and acentric factors are particularly im-

portant data for the calibration of EOS, and are commonly used as input parameters 

in cubic EOS as, e.g., the Soave–Redlich–Kwong [16] and Peng–Robinson–Stryjek–Vera 

EOS [17], and virial EOS like Martin–Hou [18] and Benedict–Webb-Rubin [19]. However, 

in the common practice these input parameters are most often used without including 

statistical uncertainty information. Precisely, they are input to the model to obtain de-

terministic solutions corresponding to their nominal values, despite that small errors, 

e.g. in the critical properties, may sometime affect the quality of final results in a quite 

dramatic fashion [20]. In addition to uncertainties associated to thermodynamic model 

parameters, previous work [13] shows that for some particularly complex gases the un-

certainty associated to the mathematical form of the EOS, or model-form uncertainty, 

can be even overwhelming with respect to the parametric uncertainty.

In this work, we adopt a Bayesian approach to quantify modeling uncertainty asso-

ciated to thermodynamic models used for dense gas flow simulations, i.e. we take the 

point of view that the uncertainty associated to both model parameters and mathemat-

ical form can be represented in terms of probability. A similar approach was used in the 

work of Robinson et al. [21], who investigated the impact of parametric and modeling 

uncertainties associated to the Mie–Grunheisen thermodynamic model by using, as a first 

step, Bayesian inference techniques to obtain a posteriori estimates of the closure coeffi-

cients associated to the EOS and, as a second step, by propagating posterior distributions 

through a numerical code for shock hydrodynamics. Precisely, they first calibrated the 

EOS coefficients using thermodynamic experimental data available for Aluminium 6061, 

and then propagated the posteriors through the fluid dynamic model. Here, we investi-

gate the possibility of calibrating thermodynamic models by using directly aerodynamic



data, i.e. data describing the flow behavior, instead of strictly thermodynamic informa-

tion. For some engineering applications using complex fluids, this information is expected 

to be more readily available, e.g. through pressure taps inserted in the flow, than thermo-

dynamic data. Moreover, this approach allows calibrating the model directly on observed 

data for the output quantities of interest, like velocity, pressure, and temperature fields. 

The statistical model adopted is similar to that used in [22] and [23] to calibrate closure 

parameters of turbulence models for a boundary layer flow. The procedure includes a 

statistical ”model-inadequacy” term accounting for the gap between the model response 

obtained with the best-fit parameters, and the (unobserved) true phenomenon. The fea-

sibility of the proposed approach is investigated for a simple case study, i.e. the transonic 

flow of a silicon oil, namely cyclopentasiloxane (D5), past an airfoil, as in [13]. Experi-

mental data being not available for this case, and since the scope of the present work is 

assessing the proposed calibration approach and not solving a realistic flow configuration, 

”synthetic” calibration data are generated by numerically computing the pressure dis-

tribution around the airfoil using a reference EOS based on Helmholtz free energy [24], 

which is considered as the best available thermodynamic model for the selected fluid. 

Numerical solutions of the flow equations are generated by means of a finite volume 

code based on a third-order accurate numerical scheme [25]. Using these synthetic data, 

we calibrate two well-known cubic EOS, namely, the Peng-Robinson-Stryjek-Vera [17]

(PRSV) and the Soave-Redlich-Kwong [16] (RKS), and the five-term virial Martin-Hou 

model [18] (MAH), coupled to the numerical flow solver. This results in posterior prob-

ability distributions for the model parameters. Moreover, calibration allows quantifying 

the model-form uncertainty. This information is propagated back through the flow solver 

for providing posterior predictive distributions of the quantity of interest.

The paper is organised as follows: in Section 2 we introduce the physical problem, 

the governing equations used to model the fluid flow of interest, and the thermodynamic 

models used to describe the fluid thermodynamic behavior, as well as the numerical meth-

ods used to solve them. In Section 3 we present the reference data used for calibration. 

Section 4 introduces an analytical model used to replace the costly numerical flow solver 

to speed up prior and posterior uncertainty quantification analyses. A preliminary sensi-



tivity analysis is carried out in Section 5 to identify the most influential parameters and

interactions between them. Section 6 sets the Bayesian calibration framework, including

a discussion of the surrogate model used to represent the CFD code response to changes

in the input parameters. Finally, section 7 illustrates and discusses the numerical results,

with focus on the role played by the model-inadequacy term to capture the calibration

data.

2. Problem statement

In this study, we develop a methodology for calibrating thermodynamic models for 

the numerical simulation of dense gas flows, with focus on dense gas flow through energy 

conversion machines, and namely turbines of Organic Rankine Cycles (ORC). These are 

characterized by the presence of bladed disks. Blade sections can be roughly seen as 

airfoils. Hereafter, we investigate the feasibility of our calibration methodology for a 

simplified configuration, roughly representative of a blade section, i.e. an isolated airfoil. 

Such kind of configuration was often used in the past to investigate qualitatively dense 

gas effects in turbomachinery [26, 27]. Moreover, for this simplified problem sensitivity 

studies of the impact of thermodynamic uncertainties on flow simulation results where 

carried out in [13].

Precisely, the selected case study is represented by the steady transonic flow of a dense 

gas over a wing section, namely, a NACA0012 airfoil. The working fluid is a siloxane 

(silicon oil), known with the commercial name of D5 (chemical formula ((CH3)2SiO)5).

The free-stream conditions of the flow, i.e. flow velocity and thermodynamic condi-

tions at the far field, are treated in the following as deterministic and correspond to a 

value of the Mach number M∞ = 0.95, an angle of attack equal to 00, a reduced pressure 

pr,∞ = 0.92 and ρr,∞ = 0.5263.

Hereafter, we briefly describe the main features of dense gas flows, then introduce 

the equations used to model the flow, as well as the thermodynamic submodels used to 

describe the gas thermodynamic behavior, and finally provide some information about 

the flow solver used to generate numerical solutions.



2.1. Dense gas flows

Dense gas flows are flows of gases at thermodynamic conditions close to the liq-

uid/vapor critical point, where the perfect gas law is invalid. In the dense regime, some

heavy polyatomic fluids, referred to as the Bethe– Zel’dovich–Thompson (BZT) fluids,

can exhibit non classical nonlinearities, such as expansion shock waves, mixed shock/fan

waves, and splitting shocks (see, e.g. [27] and references cited therein). These peculiar

behaviors occur when the fundamental derivative of gas dynamics [12]

Γ := 1 +
ρ

a

(
∂a

∂ρ

)

s

(1)

exhibits a region of negative values, between the upper saturation curve and the Γ = 0 

contour. In the preceding equation, ρ is the fluid density, a the sound speed, and s the 

entropy. Such a region is often referred to as the inversion zone, and the Γ = 0 contour 

is called the transition line. Γ can be interpreted as a measure of the rate of change of 

the sound speed with density in isentropic perturbations. If Γ < 1, the flow will exhibit 

an uncommon sound speed variation in isentropic perturbations: a grows in isentropic 

expansions and decreases in isentropic compressions, the opposite of what happens in 

“common” fluids. For perfect gases, Γ is equal to (γ +1)/2, where the specific heats ratio 

γ is always greater than 1 for thermodynamic stability reasons; therefore, Γ > 1 as well. 

The simultaneous presence of regions of negative values of the fundamental derivative 

within a flow field leads to a drastically different behavior compared to that of a classical 

gas. This is why the size and location of the inversion zone has a deep impact on the 

resulting flow field. The inversion zone has been found to be extremely sensitive to the 

equation of state in use and the associated input parameters (see e.g. [13].

2.2. Governing equations

Turbomachinery dense gas flows are governed by the equations for equilibrium for non-

reacting flows, i.e. the Navier-Stokes equations. Since however dense gas effects mostly 

affect inviscid flow behavior and in the aim of achieving a simplified model problem 

to assess our calibration methodology, in the present study we neglect viscous effects 

and restrict to the Euler equations. The use of an inviscid flow model is also justified 

by the fact that the data used for calibration are values of the pressure coefficient at



different locations around the blade wall. For the present case study, the boundary

layer is supposed to be thin and attached (which corresponds to the hypothesis of high

Reynolds number flow, thin airfoil, no angle of attack). As a consequence, according to

boundary layer theory the pressure distribution at the wall is substantially the same as

in the inviscid flow.

The governing equations are written in integral form for a control volume Ω with

boundary ∂Ω:

d

dt

∫

Ω

w dΩ +

∫

∂Ω

f · n dS = 0 (2)

In equation (2), w is the conservative variable vector, where

w = (ρ, ρv, ρE)
T

n is the outer normal to ∂Ω, and f , is the flux density:

f =
(

ρv, ρI, ρvv, ρvH
)T

where ρ is the density, v is the velocity vector, E the specific total energy, H = E + p/ρ

the specific total enthalpy, p is the pressure and I is the unit tensor. The preceding

equations are completed by a thermal equation of state:

p = p (ρ(w), T (w)) (3)

with T the total pressure, and by a caloric equation of state for the specific internal

energy e, which must satisfy the compatibility relation:

e = e (ρ(w), T (w)) = e0 +

∫ T

T0

cv,∞(T ′) dT ′ −

∫ ρ

ρ0

[

T

(
∂p

∂T

)

ρ

− p

]

dρ′

ρ′ 2
(4)

In Equation (4), cv,∞ is the ideal gas specific heat at constant volume, quantities with a

prime superscript are auxiliary integration variables, and subscript 0 indicates a reference

state. The caloric equation of state is completely determined once a variation law for

cv,∞ has been specified.

2.3. Equations of state

In this work, we consider several alternative thermodynamic models for the thermal

and caloric equations of state, which are described in the following: the Redlich-Kwong 



cubic equation of state as modified by Soave [16] (denoted hereafter as the RKS equation),

the Peng-Robinson-Stryjek-Vera (PRSV) cubic equation of state [17], and the multi-

parameter Martin-Hou (MAH) equation [18], based on a five-term virial expansion.

In addition to the preceding EOS, we consider, for calibration and validation purposes

as discussed later, a more complex and accurate thermodynamic model, namely, the

multiparameter technical equation of state introduced by Span and Wagner (SW) [15]

with coefficients adjusted to D5 in [24].

This is a complex technical equation of state, which is considered as the most accurate

and complete thermodynamic model presently available for this fluid, provided that a

sufficiently large set of high-quality experimental data is available for a reliable fitting of

the model coefficients, i.e. for reproducing experimental data with very high accuracy.

In practice, the equation coefficients are obtained by means of a regression procedure:

the experimental data used for calibration are weighted in such a way that high-quality

data contribute with higher weights. Experimental data with uncertainties larger than

a required threshold are discarded, or, when no or insufficient data are available for a

certain region, they are weighted according to their level of uncertainty. So, the resulting

equation of state is expected to be intrinsically robust to input data uncertainties.

2.3.1. RKS model

The Redlich-Kwong equation of state with the Soave modification [16] is commonly

considered as one of the best available two-parameter equations of state. In reduced

form, i.e. with thermodynamic quantities normalized with respect to their values at the

liquid/vapor thermodynamic critical point, the equation writes:

pr =
Tr/Zc

vr − br
−

ar(Tr)/T
0.5
r

vr(vr + br)
(5)

where the subcript r denotes a reduced quantity, (•)r = (•)/(•)c, the subscript c denotes 

critical-point quantities, v the specific volume, and:

ar(Tr) = (0.42747/Zc)α(Tr), br = 0.08664/Zc

with Zc = (pcvc)/(RTc) the critical compressibility factor and R the gas constant. The 

function α(Tr) is an adimensional relationship depending on the reduced temperature



and the substance acentric factor ω:

α(Tr) = [1 +m(1− T 0.5
r )]2, (6)

with

m = 0.480 + 1.57ω − 0.176ω2 (7)

The critical compressibility factor is univocally determined by imposing that pr equals

1 at the critical point, i.e. for vr = 1, Tr = 1, which leads to the solution of a cubic

equation for Zc with only one relevant root (Zc = 0.3467). Thus, the only free parameter

left in the thermal equation is the acentric factor ω.

The RKS equation is supplemented with a model for the ideal gas contribution to the

specific heat at constant volume, represented here by a power law of the form:

cv,∞(T ) = cv,∞(Tc)

(
T

Tc

)n

(8)

where the c subscript denotes critical-point values, and the exponent n and the ideal-gas-

limit isocoric specific heat at the critical temperature cv,∞(Tc) are material-dependent

constants.

In summary, the RKS model in non-dimensional form (5), (8) considered in the

present work depends on three uncertain parameters, namely the acentric factor ω, the

exponent n and the reduced ideal-gas constant-volume specific heat at the critical tem-

perature cv,∞(Tc).

2.3.2. PRSV model

The cubic Peng and Robinson equation of state with modifications suggested by

Stryjek and Vera [17] can be written, in reduced form, as:

pr =
Tr/Zc

vr − br
−

ar(Tr)

v2 + 2brvr − b2r
(9)

with ar = (0.457235/Z2
c )α(Tr), br = 0.077796/Zc and the corrective factor α(Tr) given

again by relation (6). To improve the results, Stryjek and Vera recorrelated m as a func-

tion of acentric factor using the same polynomial form but up to third-order, obtaining

(10)m = 0.378893 + 1.4897153ω − 0.17131848ω2 + 0.0196554ω3 



Like in the RKS model Zc is univocally determined through the solution of a cubic

equation, derived by enforcing the passage of the critical isotherm through the critical

point (Zc = 0.3112 for the PRSV equation). Thus, the non-dimensional PRSV model

(9, 11) depends just only on the uncertain parameters ω, n, and cv,∞(Tc).

2.3.3. MAH model

The comprehensive thermal equation of state of Martin and Hou [18] reads:

pr =
Tr

Zc(vr − br)
+

5∑

i=2

fr,i(Tr)

(vr − br)i
(11)

with br = 1−β/15
Zc

, β = 20.533− 31.883Zc, and

fr,i(Tr) = Ar,i + Br,iTr + Cr,i exp (−kTr)

with the Boltzmann constant k = 5.475. The gas-dependent coefficients Ar,i, Br,i, Cr,i 

can be expressed in terms of the critical temperature and pressure, the critical com-

pressibility factor, the Boyle temperature (which may be expressed as a function of the 

critical temperature) and one point on the vapour pressure curve. The MAH equation 

of state is supplemented again by Eq. (8) to compute the ideal gas contribution to the 

specific heat at constant volume. Globally, the MAH thermodynamic model in reduced 

form, Eq. (11) and (8), requires the knowledge of six material-dependent parameters, 

namely, the critical pressure pc, the critical temperature Tc, the critical compressibility 

factor Zc, the normal boiling temperature Tb, the exponent n and the reduced ideal-gas 

constant-volume specific heat at the critical temperature cv,∞(Tc). Nevertheless, previ-

ous results [13] show that Zc, Tb and n have a relatively small impact on the results. As 

a consequence, we choose to neglect them for the following of the study. Nominal values 

of the different input parameters corresponding to D5 are given in Tab. 1.

2.3.4. SW model

The last thermodynamic model considered in this study is a 12-parameter technical 

equation of state based on the functional form for non polar fluids proposed by Span and 

Wagner ([15]). This is written as an expression for the reduced Helmholtz free energy 

Φ (i.e. normalized with RTc), sum of an ideal-gas part, Φ0, function of the ideal-gas



isobaric heat capacity cp,∞, and by a residual term Φr that takes into account real-gas

corrections:

Φr(δ, τ) = n1δτ
0.25 + n2δτ

1.25 + n3δτ
1.5 + n4δ

3τ0.25

+ n5δ
7τ0.875 + n6δτ

2.375 exp(−δ)

+ n7δ
2τ2.0 exp(−δ) + n8δ

5τ2.125 exp(−δ)

+ n9δτ
3.5 exp(−δ2) + n10δτ

6.5 exp(−δ2)

+ n11δ
4τ4.75 exp(−δ2) + n12δ

2τ12.5 exp(−δ3)

(12)

where n1,...,n12 are substance-specific coefficients, δ = ρ/ρc is the reduced density and

τ = Tc/T is the inverse of the reduced temperature. Material-dependent coefficients for

D5 have been taken from Ref. [24], to which we refer for more details. The thermal and

caloric EOS are derived from the following thermodynamic relations:

p

ρRT
= 1 + δ

(
∂Φr

∂δ

)

τ

;
e

RT
= τ

[(
∂Φ0

∂τ

)

δ

+

(
∂Φr

∂τ

)

δ

]

For the calculation of caloric properties, the SW EoS (Eq. (12)) is supplemented by the

ideal gas contribution to the specific heat at constant pressure, which is now approxi-

mated here as a polynomial function of the temperature:

cp,∞(Tr)

R
=

cv,∞(Tr)

R
+ 1 = c1 + c2T + c3T

2 + c4T
3 (13)

where the polynomial coefficients ci depend again on the substance under consideration

and are given for D5 in [24]. This model is considered as more accurate than the preceding

ones. For this reason, it is used in the following to generate reference solutions used to

calibrate the simpler RKS, PRSV, and MAH models.

2.4. Numerical setup

Numerical solutions for the dense gas flow of interest are found by means of an in-

house dense gas flow solver. The governing equations are discretized using a cell-centered

finite volume scheme for structured multi-block meshes of nominal third-order accuracy,

which allows computing flows governed by an arbitrary equation of state. We refer to [25]

and the references therein for more details about the numerical solver and its validation.

Since NACA0012 is a symmetric airfoil and the flow has no angle of attack, the flow

is steady and symmetric. For this reason, only one half of the computational domain 



is simulated, with symmetry conditions enforced on the axis. The results are computed

using a half C-shaped grid composed by 100× 32 cells. The mean height of the first cell

closest to the wall is equal to 0.001 chords for the medium grid. The outer boundary is

located 10 chords away from the airfoil. Previous studies (see [13]) show that this level

of mesh resolution is fine enough to keep the numerical error on the quantity of interest

to within reasonably small values. A picture of the computational mesh is provided in

Fig. 1.

Obtaining a converged numerical solution for this steady flow configuration with the

above numerical settings takes approximately 5 to 10 minutes according to the specific run

(equation of state, choice of thermodynamic parameters) on a standard desktop personal

computer. This is a relatively short computational time when seeking for deterministic

solutions. Unfortunately, sensitivity analyses to uncertain input data and, even more,

Bayesian calibration algorithms, may require several thousand of runs of the determinis-

tic solver, leading to unacceptably high computational times, as discussed later. This is

why we adopt in the following a surrogate model, i.e. an inexpensive analytic expression

approximating the response of the numerical solver to input parameter modifications.

Using the surrogate model, approximate solutions are obtained in the matter of sec-

onds, which is compatible with the uncertainty quantification and calibration algorithms

considered in this paper.

3. Calibration data

Unfortunately, no experimental data have been made available in the scientific liter-

ature for flows of dense gases, unlike for light fluids as air, carbon dioxide or nitrogen. 

The only experimental data available for a dense gas flow were produced for a shock tube 

flow of Freon-13, in the aim to show up the appearance of expansion waves [28]. How-

ever, these experiments where questioned by several authors (see, e.g. [29]). Efforts for 

carrying out new shock tube experiments were done at University of Colorado Boulder 

[29] and at TU Delft [30], but no data have been made available up to present. A dense 

gas nozzle facility is presently under construction at Politecnico di Milano [31]. Thus, no 

experimental data exist for flows of dense gases past airfoils.



Since the present paper aims first of all at proving the feasibility of the calibration

methodology, we generate synthetic ”experimental” data by running the dense gas solver

with the most complex and accurate thermodynamic model, namely, the SW model.

Fig. 2 shows a deterministic numerical solution obtained by using this model, and

precisely the Mach number contours around the airfoil. The flow becomes locally super-

sonic close to the airfoil, and the supersonic region is terminated by a shock wave located

at about 80% of the airfoil chord, driving the flow back to subsonic conditions. Fig. 3

illustrates the behavior of the pressure coefficient

Cp =
p− p∞
1
2ρ∞U2

∞

along the airfoil wall with U∞ the free-stream velocity. As the incoming flow is deviated 

by the airfoil nose, a suction region (i.e. a region of Cp < 0) is generated, corresponding 

to supersonic conditions. Then, the flow is first abruptly compressed by the shock wave 

and then further compressed downstream of the shock, so that it gradually returns to 

the free-stream pressure.

The location and intensity of the shock wave are extremely sensitive to the EOS in 

use, as discussed in [13]. Due to uncertainties intrinsic to the SW model and, more 

precisely, to the ancillary equation (13) for the specific heat capacity, the flow solver 

output is also uncertain. According to previous studies [13], this uncertainty is roughly 

on the order of 10% for the pressure coefficient.

In the following of this paper, we calibrate the input coefficients of three relatively 

simple EOS by using the synthetic data generated from SW simulations of D5 flow around 

the NACA0012 airfoil. Precisely, we use as calibration data the numerical values of the 

pressure coefficient Cp, evaluated at 17 equally distributed locations along the airfoil wall 

(simulated pressure taps). Figure 4 displays the iso-contours of the pressure coefficient 

for the SW model, as well as pressure tap locations. Then, these data are perturbed by 

a Gaussian noise with zero mean and standard deviation equal to 10% of the nominal 

value, to simulate the effect of experimental errors. The quantity of interest we want to 

predict is again the wall pressure distribution.

As discussed in the Section 6, the statistical model used for the present calibrations 

takes into account the uncertainty on the reference data.



4. Surrogate model

As seen in Section 2, deterministic numerical simulations of the problem under in-

vestigation take 5 to 10 minutes on a standard personal computer. However, in order to 

make reliable predictions of the physical system it is necessary to understand what effect 

the uncertainties in the inputs have on the output Quantity of Interest (QoI), which 

are the most influential parameters and, if needed, to update the uncertain parame-

ter distributions according to the available observations. A classical sensitivity analysis 

methodology consists in propagating the uncertain parameters through the model via 

some form of Monte Carlo (MC) sampling [32]. Although the convergence of the MC 

method is independent of the number of uncertain variables, it is slow due to the fact 

that the error decreases with the square root of the number of samples [33]. Since many 

modern computer codes are computationally expensive, utilizing MC sampling either for 

sensitivity analysis or calibration purposes is not tractable.

To overcome this difficulty, a standard approach consists in replacing the expensive 

numerical model by an inexpensive analytical function approximating, as accurately as 

possible, the system response to the input parameters, i.e. a surrogate model. An ef-

ficient surrogate model has to provide an accurate approximation of the true solution 

(to within a given tolerance) by using information from a reduced set of samples (i.e. 

a number of samples much lower than those required by the Monte Carlo method). A 

comprehensive overview of different possible surrogate models for uncertainty quantifi-

cation and calibration is beyond the scope of this paper. For more details, it is possible 

to refer to, e.g. [34, 35, 36, 37].

Since the primary objective of this work is not to construct an efficient and accurate 

surrogate model for the problem of interest, but rather the calibration methodology, 

we restrict ourselves to simple polynomial surrogates. Further research on surrogate 

modeling for calibration and uncertainty propagation is underway [38].

Specifically, a surrogate model approximating the response of the flow solver to the 

EOS parameters is constructed by using piecewise multidimensional Lagrange interpola-

tions. This is a simple strategy, but it is found to be efficient and accurate enough for 

the present problem, characterized by relatively low-dimensional parameter spaces (no 

more than three uncertain parameters).



Two kinds of grid are employed: Gauss-Lobatto grids are used for a preliminary ex-

ploration of the parameter space, since they are expected to give more accurate results

when using a small number of nodes; then, the parameter space is remeshed by means of

Cartesian grids, which are easier to handle and enable local refinement if needed. More-

over, Cartesian meshes allow to significantly reduce the consuming time.

Let us represent the solution to the physical problem described in section 2, by a

generic mathematical model of the form:

y = M(x; θ) (14)

where M is a functional relation representing the physical problem (i.e the governing

equations and the closure EOS), x is a vector of explanatory variables, i.e known model

inputs, including the space coordinates, θ is a vector of input parameters associated to

the model description, and y is a vector of quantities of interest output from the model.

For the specific case study under investigation:

• M results from the combination of the governing equations, that remain always the

same, with the specific EOS in use, so that can be considered to directly represent

the EOS;

• the uncertain parameter vector θ only contains the uncertain thermodynamic input

parameters associated to the chosen EOS;

• because the calibration data are values of the pressure coefficient along the airfoil

wall, as discussed in Section 3, the model output y corresponds to the computed

values of the pressure coefficient at different locations along the airfoil (other choices

would be possible); as such it depends on the chord-wise coordinate x (explanatory

variable) and on the uncertain thermodynamic inputs θ.

Consequently, the numerical problem can be represented by:

y = M(x; θ) (15)



According to the preceding assumptions, the surrogate model yS for problem (15) can

be written

yS[y = M(x; θ);n1, n2, ..., nD] =

n1∑

i1=0

n2∑

i2=0

...

nD∑

iD=0

αi1i2...iD(x)

iD∏

j=i1

lj(θj) (16)

where the lj(θj) are the one dimensional Lagrange characteristic polynomials in each

direction, the αi1i2...iD are interpolation coefficients dependent on the explanatory vari-

ables, and D is the dimensionality of the parameter space. With this surrogate model,

we can exactly evaluate multivariate polynomial functions of the form:

P (θ1, θ2, ..., θD) = (an1,1θ
n1

1 + an1−1,1θ
n1−1
1 + ...+ a1,1θ1 + a0,1) (17)

× (an2,2θ
n2

2 + an2−1,2θ
n2−1
2 + ...+ a1,2θ2 + a0,2) (18)

× ... (19)

× (anD,DθnD

D + anD−1,Dθ
nD−1
D + ...+ a1,DθD + a0,D) (20)

where ai,j ∈ R is the ith-order term coefficient of the jth variable.

When Gauss-Lobatto grids are used, a global surrogate model is constructed over the

whole parameter space with about 10 points per direction. With Cartesian grids, a piece-

wise polynomial interpolation strategy is adopted to avoid Runge oscillations close to the

borders. Precisely, we construct local 5th-order polynomials by building an hypercube

made of 6 point per direction, enclosing the point to be interpolated. The interpolation

points are chosen in such a way as to obtain centered interpolation formulas. The local

polynomial order is decreased close to the boundaries in order to keep centered approxi-

mations.

The accuracy of the surrogate models used in this study is checked by taking 10

random points in the parameter space and by comparing the surrogate model output to

the exact model output. For that, we compute the relative error between the exact and

the surrogate model for each abscissa and then we check that the spatial mean of the

relative error is bellow 2% for each random point:

Relative error =

∣
∣
∣
∣

y(x; θ) − yS(x; θ)

y(x; θ)

∣
∣
∣
∣

(21)

16



On Figure 5, we plot the relative error for two different surrogate models of the Peng-

Robinson EOS. On each subfigure, we plot the pressure coefficient for the exact and

the surrogate model, along with the relative error for 81 abscissas xi along the airfoil

wall. Subfigures 5a and 5b are respectively the best and the worst cases, in terms of

resulting relative error, among the ten random points, for a three dimensional parameter

space and a Gauss-Lobatto grid. Subfigure 5c and 5d represent the best and the worst

cases for a two dimensional parameter space and a Cartesian mesh. The L1 norm of the

relative error over the airfoil is 0.000719 , 0.011649, 0.000106, and 0.001052 for solutions

displayed in Figs 5a, 5b, 5c, and 5d, respectively.

The L∞ norm (maximum relative error along x) is 0.015940, 0.889119, 0.000581, and

0.057111 for solutions displayed in Figs 5a, 5b, 5c, and 5d, respectively.

The largest errors are generally found in the region close the shock wave (when this

is present in the flow) or at the leading and trailing edges (x = 0 and x = 1) when the

flow is smooth.

Since the present surrogate model ensures average relative errors lower than 1%, we

consider that it provides an accurate enough approximation for the present purposes.

The residual errors introduced by the surrogate model are taken into account in the

statistical model, as discussed in Section 6.

5. Sensitivity analysis

In the following we investigate a priori the impact of thermodynamic uncertainties on

predictions of the transonic flow of D5 over an airfoil. Precisely, as a first step we carry

out a sensitivity analysis to identify the most influential coefficients with respect to the

quantity of interest used for the subsequent calibration step. Hereafter we first describe

the sensitivity analysis methodology adopted for the present calculations, afterwards, we

present results obtained for our specific case study.

5.1. Sensitivity analysis by surrogate Monte Carlo sampling

To evaluate the influence of EOS parameters on the quantity of interest y in (15), we

perform a sensitivity analysis according to Sobol’s framework [39]. The contribution to 



the variance of y of a random parameter θi belonging to the random vector θ, i.e. the

first order Sobol index, is defined as:

Si =
Var[E[y|θi]]

Var[y]
(22)

where E[X ] and Var[X ] denotes respectively the expected value and the variance of the

random variable X . In the above, the θi are independent parameters. Thanks to the

Sobol decomposition of y:

y = M(θ1, ..., θD) = M0+

D∑

i=1

Mi(θi)+
∑

1≤i<j≤D

Mij(θi, θj)+ ...+M1...D(θ1, ..., θD) (23)

where we omitted the dependency on the explanatory variable x, to simplify notations,

and where:

M0 = E[y]

Mi(θi) = E[y|θi]− E[y]

Mij(θi, θj) = E[y|θi, θj ]− E[y|θi]− E[y|θj ] + E[y]

Mijk(θi, θj , θk) = E[y|θi, θj , θk]− E[y|θi, θj ]− E[y|θi, θk]− E[y|θj, θk]...

Sobol showed that the variance of the model can be decomposed in:

Var[y] =

D∑

i=1

Vi +
∑

1≤i<j≤D

Vij + ...+ V1...D (24)

where

Vi = Var[E[y|θi]]

Vij = V[E[y|θi, θj ]]− Vi − Vj

Vijk = V[E[y|θi, θj , θk]]− Vij − Vik − Vjk − Vi − Vj − Vk

...

V1...D = Var[y]−
D∑

i=1

Vi −
∑

1≤i<j≤D

Vij − ...−
∑

1≤i1<...<iD−1≤D

Vi1...iD−1

By extension, we can also consider higher-order Sobol indices, i.e. the contribution to

the variance of y of k parameters θi1 , θi2 , ..., θik varying at a time:

Si1i2...ik =
Vi1i2...ik

Var[y]
(25)



The quantity in (25 is called the kth-order Sobol index. By construction, the sum of all

Sobol indices, whatever their order, is equal to one.

Finally, the total Sobol index ST,i[40] is the sum of all of Sobol indices involving the

parameter θi, and represents the global influence of θi on y.

In this study, we compute approximations of the Sobol indices based on Monte-Carlo

sampling. This method ([39],[41]) uses two N -samples of input parameters θ to compute

the Sobol indices by comparing the variance of y computed from mixed values of θ, picked

from both samples.

Consider a N -sample θ̄(N) = (tk1, ..., tkD)k=1...N of realizations of the input param-

eters (θ1, ..., θD). The expected value of y, E[y]=M0, and the variance Var[y]=V are

estimated by:

M̂0 =
1

N

N∑

k=1

M(tk1, ..., tkD) and V̂ =
1

N

N∑

k=1

M2(tk1, ..., tkD)− M̂2
0 (26)

Then, the first order indices are computed by:

Vi = Var[E[y|θi]] = E[E[y|θi]
2]

︸ ︷︷ ︸

Ui

−E[E[y|θi]]
2 = Ui − E[y]2 (27)

where

Ûi =
1

N

N∑

k=1

M(t
(1)
k1 , ..., t

(1)
k(i−1), t

(1)
ki , t

(1)
k(i+1), ..., t

(1)
kD)M(t

(2)
k1 , ..., t

(2)
k(i−1), t

(1)
ki , t

(2)
k(i+1), ..., t

(2)
kD)

(28)

where the exponents (1) and (2) denotes respectively the first and the second N -sample.

Finally

Ŝi =
V̂i

V̂
=

Ûi − M̂2
0

V̂
(29)

For the second order indices, we compute:

Vij = Var[E[y|θi, θj ]]− Vi − Vj = Uij − E[Y ]2 − Vi − Vj (30)



and Uij is computed by

Ûij =
1

N

N∑

k=1

M(t
(1)
k1 , ..., t

(1)
k(i−1), t

(1)
ki , t

(1)
k(i+1), ..., t

(1)
k(j−1), t

(1)
kj , t

(1)
k(j+1), ..., t

(1)
kD)

×M(t
(2)
k1 , ..., t

(2)
k(i−1), t

(1)
ki , t

(2)
k(i+1), ..., t

(2)
k(j−1), t

(1)
kj , t

(2)
k(j+1), ..., t

(2)
kD) (31)

and then

Ŝij =
Ûij − M̂2

0 − V̂i − V̂j

V̂
(32)

and so on for the higher order indices.

To make sure of obtaining an accurate enough evaluation of the indices, even for 

coefficients with a very weak influence on y, we draw 1,000,000 samples from a joint 

prior distribution of the parameters. This is constructed as the product of large, non 

informative uniform marginal priors for each one of the physical parameters involved 

in the EOS, given in Tab. 2 for RKS, PRSV, and MAH, respectively. The underlying 

hypothesis is that all of the parameters are independent, which represents our prior belief 

about the parameters. As discussed in the following, the Bayesian calibration process 

may show up a posteriori dependencies between the parameters.

Given the huge amount of calculations required for the sensitivity analysis and the 

cost of a dense gas solver run (see Section 2), the Monte Carlo method is not directly 

coupled to the computed code, but instead to the piecewise polynomial surrogate model 

described in Section 4. This comes to apply formulas (26 to 32) to the analytical function 

yS instead of the computer code output y = M(θ).

5.2. Sensitivity analysis results

The quantity of interest yS being the surrogate model estimate of the pressure coef-

ficient at 17 locations along the airfoil wall, we compute Sobol indices relative to each 

chordwise location. Figure 6 shows distributions of the first-order Sobol indices along 

the airfoil wall for the three EOS under investigation. Table 3 summarizes the results of 

the analysis, and lists the overall most influential coefficients for each EOS. The whole 

set of results is given in Appendix 1. Note that the indices are sensibly constant all along 

the airfoil wall, with a negligibly small contribution of high-order interactions, except at



the airfoil trailing edge. In this region, strong nonlinear effects are developed due to the

presence of a shock wave, and high-order interactions become important. These corre-

spond to high values of the second-order Sobol indices between the two most influential

coefficients for each EOS, i.e. ω and cv,∞ or Tc and pc according to the EOS. We show

in the following that these interactions have a strong impact on the calibration results.

From the preceding analysis it appears that, for each EOS, the dimensionality of

the parameter space can be reduced by excluding from the subsequent calibration step

parameters exhibiting a weak influence on Cp, typically those for which the corresponding

first-order Sobol index is lower than 0.1 (i.e. that contribute to the overall variance by

less than 10%) all along the profile, which are expected not to be informed significantly

by the calibration process. For RKS and PRSV, which belong to the same class of EOS

(cubic EOS), the most influential parameters are found to be the acentric factor ω and

the reduced ideal-gas isochoric heat capacity cv,∞/R. For MAH, only the critical-point

temperature Tc and, to a lesser extent, the pressure pc have a significant influence on

yS . Parameters that are not used for the calibrations are kept at their usual nominal

values. The following calibration step is performed by considering just only the two most

influential physical parameters for each EOS as random variables, and by treating the

rest as deterministic. This allows reducing the overall cost of the calibration step and to

improve the accuracy of the surrogate model, thanks to the reduction of the parameter

space.

6. Bayesian calibration methodology

This section describes the statistical procedure used to calibrate the closure parame-

ters associated to the EOS described in Section 2.3.

Consider first the generic physical problem described in equation (15). In the Bayesian 

framework, knowledge (or lack of knowledge) about the value of a parameter is repre-

sented by a random variable, characterized by means of its probability density function 

(pdf ). Consequently, M is a stochastic model, with stochastic parameters θ, and y is 

also a random vector.



The main goal of calibration is to achieve new knowledge about θ by constructing an

improved representation of its pdf.

Assume that new amount of information is available, represented by a random vector

of observed data d. Bayes rule states that:

p(θ|d = d, y) ∝ p(d = d|y, θ)p(θ). (33)

The right-hand side of equation (33) is made of two parts:

• p(θ) is the prior pdf and represents the initial belief about θ;

• p(d = d|y, θ) is the likelihood, and corresponds to the probability to observe d, a

realization of the random variable d, if y and θ are known exactly.

Finally, left-hand side of equation (33) is the posterior pdf and represents the updated

knowledge of θ given information about d and the model y. Note that d can be any

available data and not necessarily of the same nature as the quantity of interest y.

For our concerns, the uncertain parameter vector θ is the set of closure parameters

associated to a given EOS, x represents problem inputs that are modeled as determinis-

tic, e.g. the boundary conditions and the airfoil geometry, y is a vector of outputs from

the dense gas solver M , and d is a random vector of experimental data.

The EOS coefficients are calibrated by using the synthetic data generated from SW

simulations of D5 flow around the NACA0012 airfoil, as discussed in Section 3, and

specifically values of the pressure coefficient Cp, at 17 locations along the airfoil wall.

From equation (33), it appears that the distribution of the prior and the likelihood

have a strong influence on the posterior and have to be chosen carefully.

A common practice is to chose for the priors non-informative uniform distributions:

p(θ) ∼ U([a, b]) (34)



where the interval [a, b] is chosen large enough to ensure a good exploration of the pa-

rameter space, while avoiding to include unphysical values.

The likelihood function is a statistical model describing the probability of observing

the data for a given choice of the model parameters. It may include information both

about the observational error on the data and the model error, including the effect of

surrogate modeling if needed. In the following, we use a likelihood function resulting

from a multiplicative/additive error model, similar to that used in [22] for calibrating

the closure coefficients of turbulence model from measured velocity profiles in a turbulent

boundary layer. We refer to [42], [22] and the references cited therein for more details

about possible choices for the construction of likelihood functions.

Precisely, the model includes an additive error modeling observational noise and a

multiplicative term representative of the model inadequacy.

First, the data d at a given location xi along the airfoil wall are modeled as:

d(xi) = d̂(xi) + ei (35)

with

• ei, the experimental noise at location xi;

• d̂(xi), the true (unobserved) pressure coefficient value at xi.

The observational errors, ei, i = 1, ..., N (N = 17 being the number of data) are taken

here as independent and normally distributed with zero mean and a standard deviation

equal to 10% of the observed value.

On the other hand, the true process d̂ is in general not exactly captured by the model

(15) –even with the best possible choice of the parameters θ– because of inadequacies

intrinsic to the simplifying assumption used to mathematically modeling the physical

phenomenon under study.

In this work, we assume the true process to be equal to the model output y(xi, θ),

multiplied by an error coefficient ηi:

d̂(xi) = ηiy(xi, θ) (36)

which takes into account the discrepancy between the simulation and the actual system.

Note that the use of corrective multiplicative coefficients to account for model predictive 



deficiencies (safety factors) is common engineering practice (see, e.g. [43]). The vector of

model-inadequacy terms η = (η1, ..., ηN ) is assumed to be well represented by a correlated

Gaussian model of the form: η ∼ N (1,KM ) with

(KM )ij = σ2 exp

[

−

(
xi − xj

10αX

)2
]

, 1 ≤ i, j ≤ N (37)

(see [42]), where xi and xj are two distinct observation abscissas separated by the length

scale 10αX , X being a reference length scale, here taken equal to the airfoil chord. The

coefficients σ and α are supplementary parameters intrinsic to the statistical model.

They are referred-to as hyper-parameters and are calibrated along with the parameters

of the physical model. Note that σ represents the magnitude of the model inadequacy

and thus can be taken as an indicator of the accuracy of a given model. On the other

hand, the model-inadequacy term is expected to reduce the risk of over-fitting the model

parameters, by introducing additional degrees of freedom (see, e.g. [44] for a discussion

about the importance of model-inadequacy terms in Bayesian calibration).

With the preceding assumptions, the product (ηiyi)i=1,...,N happens to follow a nor-

mal distribution with mean y and a covariance matrix defined by:

(K ′
M )ij = yiyj(KM )ij , 1 ≤ i, j ≤ N (38)

Finally, because (ei)i=1,...,N is also a random vector, the likelihood can be written under

the form:

p(d|y, θ) =
1

√

(2π)N |K|
exp

[

−
1

2
(d− y)TK−1(d− y)

]

(39)

where K = Ke +K ′
M , with Ke a diagonal matrix associated to the observational error

vector.

From a numerical point of view, the inference is done by drawing samples from the

prior pdf and the likelihood. For this purpose, we use a Markov-Chain Monte-Carlo

sampler, based on the Metropolis-Hastings algorithm, which is well suited to represent

non-classical pdfs. Precisely we use the implementation made available through the pymc1

python library.

1http://pymc-devs.github.io/pymc/



Typically, a large number of samples is required to converge the posterior distribu-

tions. The results presented hereafter were obtained by running a preliminary sampling

of 100000 draws followed by a subsequent sampling of 200000 after burn-in. To check

that the convergence is reached, we use the method proposed by Geweke[45] available in

the pymc package. It consists of comparing the mean and the variance of segments from

the beginning and the end of the Markov chain:

z =
E[θbeginning ]− E[θend]

√

Var[θbeginning ] + Var[θend]
(40)

This z-score is theoretically distributed as standard normal variates. If the chain has

converged, the majority of point should fall within 2 standard deviations of zero.

For the present application, each sample corresponds to a separate run of the dense gas

solver, which takes approximately 10 min of CPU time to obtain a converged numerical

solution. Clearly, running sequentially several hundreds of thousands of code runs would

require an impractically long turn-around time. To overcome this difficulty, we use again

a surrogate model, which replaces the computationally expensive flow solver with an

inexpensive approximate function. Note that the number of code runs needed to build

the surrogate model (of the order of a few thousands at most) is much smaller that

that required by MCMC; furthermore, their computation can be parallelized, unlike the

MCMC algorithm. The surrogate model used for the calibration step is again the one

described in Section 4. As a consequence, the calibration problem is modified in the

following way:

p(θ|d = d, yS) ∝ p(d = d|yS , θ)p(θ). (41)

with yS the surrogate model. Obviously, the surrogate model introduces an additional

modeling error, which is expected to be small compared to that introduced by the true

model (less than 1% in average, as discussed in section 4). In any case, this additional

modeling error is expected essentially to affect the posterior distributions of the hyper-

parameters, and namely the modeling error magnitude σ.

In summary, the steps required by the calibration procedure are:

1. a surrogate model is build over the prior ranges of the model parameters; the



deterministic computations required for sampling the parameter space can be par-

allelized; the CPU time required for evaluating the surrogate model at a given point

of the parameter space depends on the number of parameters and the number of

points per direction but is approximately equal to 0.01 seconds, i.e. it is negligible

compared to the CPU time required for sampling.

2. the core of the calibration procedure is the MCMC algorithm, run on the surrogate

model, that provides samples of the posterior distributions for the model and hyper

parameters. This part cannot be parallelized.

3. a standard Monte-Carlo algorithm, coupled to the surrogate model, is used to

propagate the posteriors into the entire statistical model. The size of the sample is

chosen equal to 1000000. This part can also be parallelized.

7. Results and discussion

Preliminary calibration runs are carried out by using piecewise polynomial surrogate

models of degree four, using 50 × 50 Cartesian grids of the parameter space for each

EOS. The surrogate models are built over the prior physical parameter range used for the

calibrations, given in Tab. 2. For the hyper-parameters associated to the multiplicative

model-inadequacy term 36, we choose the following uniform prior distributions for all of

the three models:

σ ∼ U(0.0, 0.6), α ∼ U(−4.0, 1.0). (42)

Markov chain Monte Carlo samplings of the posteriors are used to draw scatter plots of 

the calibrated physical parameters.

Figs 7 to 9) display two kinds of scatter plots. Subfigures 7a, 8a and 9a represent 

scatter plots between parameters, whereas subfigures 7b, 8b and 9b show isocontours of 

the probability density of the correlations: light-gray regions correspond to low density 

levels and dark-gray ones to high density levels.

These scatter plots highlight a very strong correlation between ω and cv,∞/R for the 

two cubic EOS, and Tc and pc for MAH. The correlation can be easily detected from scatter 

plots in the case of the PRSV model; for the other two models it can be more easily 

deduced by inspection of the density plots.



Note that the correlated parameters where found also exhibit very strong second-

order interactions in the shock-wave region, according to the sensitivity study of Section

5.2. To a first approximation, the correlations can be seen as linear.

Inspection of the marginal posterior distributions shows that the parameters are not

to be well informed from the data. For instance, Fig. 15 shows a typical marginal pos-

terior for pc. This is almost as spread out as the non-informative prior and does not

exhibit any clearly identified mode after calibration, despite the fact that the calibration

algorithm clearly detects a region of high probability density for the joint posterior (see

Fig. 13 to 15). Convergence difficulties are better highlighted by plots of the Geweke

z-score, depicted on the left part of Figures 10 to 12. It can be seen that the z-scores

associated to the correlated parameters are far from approaching the converged value of

0, or even to stay in the [−2; 2] interval.

Note that strong correlations between parameters were not expected a priori, based on

a purely thermodynamic viewpoint. They are due to the propagation of thermodynamic

uncertainties through the set of highly nonlinear governing equations for compressible

gas dynamics. The present case study is characterized by a region of strong nonlinearity

and high sensitivity, namely, the shock region. In this region, changing pairs of parame-

ters along certain paths in the parameter spaces enables better capturing the calibration

data, and specifically the shock location. Actually, the most significant discrepancies be-

tween simple models and the reference data being located in the highly nonlinear shock

region, parameter correlations happen to play a fundamental role, even if they are quite

negligible elsewhere. Parameters being correlated in the shock region, the calibration

problem is left with a supplementary degree of freedom that prevents the random sam-

pling method to converge to sharp posterior marginal distributions.

In order to remove the supplementary degree of freedom, we need to provide additional

information. Two possible strategies are:

• to calibrate one parameter and to calculate the other as a function of the calibrated

one, by means of a statistical regression of the scatter plots,

• to fix one parameter and calibrate the other one.



To avoid the introduction of additional empiricism via regression relations, we chose the

second approach. However we checked that leaving both parameters free and relating

them via an empirical correlation law gives similar results.

Subsequently, a new series of calibration runs is carried out by taking into account

just only the most influential physical coefficient for each model, namely, ω for RKS and

PRSV and Tc for MAH. Using information from the preceding scatter plots, we chose to

fix the correlated parameters cv,∞/R to a value of 300.0 and 200.0, for the RKS and the

PRSV models, respectively, and pc to a value of 16.0 for the MAH model. Thanks to the

further reduction of the parameter space, very accurate surrogate models are generated

by using 100 points uniformly spaced along the intervals spanned by the priors for ω and

Tc, for the cubic EOS and the virial EOS, respectively. These are the same given in Tab.

2. Priors for the hyperparameters are also left unchanged.

Marginal posterior distributions are depicted in Figures 16, 17, and 18, for RKS, 

PRSV, and MAH, respectively. Posterior expectancies and standard deviations of the 

physical and hyper-parameters are summarized in Tabs. 4a, 4b and 4c.

First of all, we notice that all of the parameters are now well informed by the cal-

ibration. Precisely, posterior ranges for the physical parameters ω and Tc are strongly 

reduced with respect to the prior distributions and exhibit a well-defined mode. This is 

confirmed by the fact that the Geweke z-scores, depicted on the right part of Figures 

10b to 12b, are now close to 0. In other terms, fixing a parameter removes the indeter-

mination introduced by parameter correlations and helps the Markov chain to converge 

toward a well-defined solution for the parameter posterior marginals. Concerning the 

two cubic EOS, PRSV exhibits a much more peaky posterior than RKS, consistently 

with the spread of the scatter plots of Figs 7, 8.

Secondly, we observe that the hyper-parameter σ, which represents the magnitude 

of the model-inadequacy term η in our statistical model, takes relatively high values for 

all EOS. The lowest value of σ (about 17.5% of the model output y) is obtained for the 

PRSV model, the highest (more than 47.0%) for MAH. This means that calibration of 

the physical parameters does not suffice to obtain a good fitting of the model output, and



the calibration procedure still relies on σ for capturing the data. Hyper-parameter α, 

on the other hand, has a more secondary effect, since it essentially measures the level of 

smoothness of the model-inadequacy term. This is found to be correlated over a distance 

roughly equal to one hundredth of the airfoil chord for all of the models.

The posterior expectancies of the physical parameters differ significantly from the ex-

pected physical values: this shows that, despite the introduction of a model-inadequacy 

term, small modifications of the standard values of the physical parameters are not suffi-

cient to correct the model output, and specifically the shock location. As a consequence, 

the parameters loose their underlying physical meaning and tend to become tuning pa-

rameters. A thorough discussion of the importance of the model discrepancy term for 

capturing physically relevant values of physical parameters is provided in [42]. Future re-

search is warranted to explore calibration strategies involving more realistic descriptions 

of model discrepancy.

The role of the model-inadequacy term is better understood by inspection of Figs. 

19 to 21, showing posteriors of the hyper-parameters obtained by running calibration 

runs with all of the physical parameters taken fixed at their nominal values. As a con-

sequence, calibrations now rely entirely on the model-inadequacy term for capturing the 

data, all degrees of freedom associated to tunable closure parameters having been sup-

pressed. As expected, posterior distributions of σ for all of the three models are shifted 

toward higher values with respect to the preceding case, with expectancies higher than 

300% of the model output in the worst case (MAH EOS). This demonstrates the crucial 

importance of the model-inadequacy term for the present highly sensitive flow problem. 

Unlike to the preceding calibration, RKS model inadequacy is found to be lower than for 

PRSV (see Tabs 5a–5c), MAH still being the worst case.

Finally, posterior parameter distributions are propagated through the flow solver to 

obtain posterior estimates of the quantity of interest. Figures 22 to 24 compare solution 

expectancies and error bars (corresponding to ± three times the standard deviation) 

for the calibrated models against the reference data and the deterministic solutions ob-

tained by using the nominal values of the parameters. Generally speaking, calibration 

improves dramatically model predictions for all of the three models. Note that the three



calibrated models have to rely on the model-inadequacy term to be consistent with the 

experimental data, the posterior uncertainty about the parameters being smaller than 

the experimental one. The effect of the model inadequacy term is to enlarge numerical 

error bars with respect to those obtained just only by propagating a posteriori parameter 

distributions through the model. This effect is particularly significant at the rear part of 

the airfoil, were model uncertainties have a strong influence on shock location and the 

data is captured essentially through the model-inadequacy term. Error bars are greater 

for models characterized by higher values of the hyper-parameter σ. Specifically, for RKS 

and, even more, MAH, the model-inadequacy uncertainty is extremely large, denoting 

that these models not reliable enough, even after calibration. On the contrary, the resid-

ual model-inadequacy uncertainty for PRSV is of the same order of the experimental 

one.

In summary, the preceding calibration results show that, out of the three alternative 

thermodynamic models under investigation, PRSV gives the more informative parameter 

posteriors along with the lowest model-inadequacy term contribution, even if this remains 

relatively important for all of the models.

7.1. Conclusions

In this work we proposed and assessed a Bayesian calibration strategy for quantifying 

parametric uncertainties associated to thermodynamic models used in dense gas flow 

solvers. The objective is to use data for aerodynamic quantities, and specifically wall 

pressures, to inform thermodynamic data input to the code. Precisely, we calibrated 

the input parameters of three well-known real-gas equations of state by using reference 

data available for the transonic flow of a dense gas, a siloxane known as D5, over a wing 

section. Since no experimental data are available for the configuration of interest, and in 

the aim of assessing the feasibility of the proposed calibration strategy more than solving 

a real calibration problem, we used synthetic reference data generated by running a more 

complex and accurate equation of state than the three to be calibrated.

A sensitivity study based on Monte Carlo sampling of the parameter space was carried 

out prior to the calibration step, to identify the most influential parameters, as well as 

possible interactions between them. Inspection of the Sobol indices of second order shows



that strong higher-order interactions developed in the flow region characterized by the

presence of a shock wave, dominated by nonlinear effects.

For the calibration step, we built a statistical model accounting both for uncertain-

ties intrinsic to the calibration data, via an additive error term, as well as model-form

uncertainties, via a multiplicative error term applied to the computational model out-

put. Both terms where modeled as Gaussian processes with a given correlation structure.

Nevertheless, given the complexity of the flow model, represented by a set of highly non-

linear partial differential equations supplemented by thermodynamic submodels, namely,

equations of state, there is no possible analytical solution for the posterior probability

density of the parameters, and numerical approximations are obtained by sampling the

likelihood function by means of a Markov-chain Monte Carlo algorithm.

The large amount of flow solver runs required by both the sensitivity analysis and

the algorithm is drastically reduced by introducing a surrogate model approximating the

response of the numerical solver to variations of the input parameters. The surrogate

model used in the present study is a simple polynomial model based on Gauss-Lobatto

interpolation or piecewise polynomial interpolation on Cartesian grids. A preliminary ac-

curacy study demonstrated that, for the present problem, such a simple strategy ensures

an accurate enough representation of the response surface.

Calibration results showed that model parameters are well informed by the data avail-

able for pressure coefficient distributions along the airfoil wall. Nevertheless, parameter

interactions also play a major role, due to strong flow nonlinearities associated to shock

waves, and need to be taken into account in the calibration in order to obtain informative

posteriors. The calibration step also highlighted a huge impact of the model-inadequacy

term on calibration results. However, the use of a multiplicative model-error term alone

is not enough, for the present highly sensitive and highly nonlinear flow problem, to pre-

vent posterior parameter expectancies from deviating significantly from the physically

expected ranges. For this reason, in future research we plan to investigate advanced

strategies for representing model inadequacy. One of them is to use Bayesian model

averaging for taking into account uncertainties associated to the existence of several

alternative models, and improving predictive robustness (see e.g. [46]).

Future work includes the application of the present calibration strategy to more real-



istic flow configurations, like flows through turbine cascades, and the use of experimental

data instead of synthetic data. Moreover, we are planning to investigate the use of aero-

dynamic data of a different nature, like wall temperature distributions, velocity profiles,

and/or global force coefficients.
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9. Appendix

9.1. Sobol indices

9.1.1. RKS model

x (cv,∞) (ω) (n) (cv,∞,ω) (cv,∞,n) (ω,n) (cv,∞,ω,n)

1.0049 0.7670 0.0755 0.0010 0.1570 -0.0010 -0.0010 0.0012

9.3519 10−1 0.3423 0.2414 -0.0013 0.4159 0.0015 0.0014 -0.0013

8.5879 10−1 0.8229 0.1781 0.0089 -0.0009 -0.0089 -0.0090 0.0089

7.7770 10−1 0.8550 0.1538 0.0110 -0.0089 -0.0110 -0.0111 0.0111

6.9139 10−1 0.8546 0.1543 0.0108 -0.0089 -0.0109 -0.0109 0.0109

5.9969 10−1 0.8535 0.1554 0.0105 -0.0089 -0.0105 -0.0106 0.0106

5.0220 10−1 0.8525 0.1566 0.0103 -0.0091 -0.0104 -0.0105 0.0105

3.9849 10−1 0.8505 0.1585 0.0099 -0.0092 -0.0099 -0.0101 0.0101

2.8830 10−1 0.8475 0.1615 0.0093 -0.0090 -0.0093 -0.0094 0.0094

1.8739 10−1 0.8417 0.1668 0.0083 -0.0085 -0.0083 -0.0084 0.0084

1.1800 10−1 0.8323 0.1745 0.0070 -0.0068 -0.0070 -0.0070 0.0070

7.1130 10−2 0.8148 0.1865 0.0050 -0.0014 -0.0050 -0.0050 0.0050

3.9689 10−2 0.7558 0.2162 0.0008 0.0277 -0.0007 -0.0007 0.0007

1.9039 10−2 0.8643 0.1536 0.0337 -0.0182 -0.0334 -0.0342 0.0342

6.2130 10−3 0.8133 0.1985 0.0143 -0.0116 -0.0145 -0.0146 0.0146

−4.9549 10−4 0.8101 0.2057 0.0187 -0.0153 -0.0188 -0.0191 0.0187

−2.4699 10−3 0.8150 0.2087 0.0248 -0.0228 -0.0247 -0.0260 0.0251
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9.1.2. PRSV model

x (cv,∞) (ω) (n) (cv,∞,ω) (cv,∞,n) (ω,n) (cv,∞,ω,n)

1.0049 0.5736 0.3242 -0.0571 0.1009 0.0576 0.0585 -0.0578

9.3519 10−1 0.2785 0.1218 -0.0005 0.5986 0.0010 0.0009 -0.0004

8.5879 10−1 0.5912 0.2685 0.0006 0.1399 -0.0006 -0.0006 0.0006

7.7770 10−1 0.1195 0.1112 -0.0091 0.7682 0.0098 0.0098 -0.0094

6.9139 10−1 0.6098 0.3488 -0.0332 0.0409 0.0335 0.0338 -0.0338

5.9969 10−1 0.6065 0.3592 -0.0313 0.0337 0.0319 0.0318 -0.0320

5.0220 10−1 0.6063 0.3609 -0.0299 0.0321 0.0305 0.0305 -0.0305

3.9849 10−1 0.6058 0.3635 -0.0282 0.0299 0.0286 0.0286 -0.0285

2.8830 10−1 0.6051 0.3682 -0.0250 0.0260 0.0255 0.0255 -0.0256

1.8739 10−1 0.6032 0.3751 -0.0206 0.0212 0.0210 0.0211 -0.0211

1.1800 10−1 0.5992 0.3839 -0.0157 0.0164 0.0160 0.0161 -0.0161

7.1130 10−2 0.5914 0.3947 -0.0097 0.0134 0.0100 0.0100 -0.0100

3.9689 10−2 0.5724 0.4087 -0.0005 0.0186 0.0007 0.0007 -0.0007

1.9039 10−2 0.4888 0.1940 -0.1752 0.3142 0.1778 0.1795 -0.1792

6.2130 10−3 0.5466 0.4094 -0.0215 0.0434 0.0221 0.0219 -0.0221

−4.9549 10−4 0.5466 0.4023 -0.0432 0.0505 0.0437 0.0442 -0.0443

−2.4699 10−3 0.5345 0.3990 -0.0581 0.0648 0.0597 0.0595 -0.0594
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9.1.3. MAH model

x (Tc) (pc) (cv,∞) (Tc,pc) (Tc,cv,∞) (pc,cv,∞) (Tc,pc,cv,∞)

1.0049 0.6961 0.0473 0.0029 0.2246 0.0074 0.0018 0.0196

9.3519 10−1 0.9527 0.0036 0.0003 0.0273 0.0015 0.0014 0.0129

8.5879 10−1 0.9079 0.0074 0.0024 0.0409 0.0099 0.0075 0.0236

7.7770 10−1 0.6217 0.0592 0.0021 0.2627 0.0168 0.0100 0.0270

6.9139 10−1 0.9210 0.0071 -0.0020 0.0350 0.0064 0.0110 0.0214

5.9969 10−1 0.8168 0.0112 0.0004 0.0914 0.0300 0.0150 0.0348

5.0220 10−1 0.7663 0.0154 0.0048 0.1463 0.0185 0.0085 0.0398

3.9849 10−1 0.7060 0.0149 0.0126 0.1832 0.0602 -0.0006 0.0234

2.8830 10−1 0.9337 0.0126 0.0030 0.0309 0.0114 -0.0023 0.0104

1.8739 10−1 0.9653 0.0254 0.0077 0.0024 -0.0014 -0.0023 0.0028

1.1800 10−1 0.9623 0.0272 0.0076 0.0025 4.6661 -0.0013 0.0014

7.1130 10−2 0.9516 0.0322 0.0082 0.0055 0.0021 -0.0004 0.0005

3.9689 10−2 0.9223 0.0430 0.0105 0.0182 0.0057 -2.9407 0.0002

1.9039 10−2 0.9420 0.0444 0.0258 0.0073 -0.0204 -0.0225 0.0234

6.2130 10−3 0.9509 0.0412 0.0030 0.0050 -0.0001 -0.0007 0.0005

−4.9549 10−4 0.9488 0.0415 0.0028 0.0066 -0.0003 -0.0013 0.0018

−2.4699 10−3 0.9493 0.0410 0.0039 0.0070 -0.0011 -0.0024 0.0021

37



10. Figures

Figure 1: Computational grid.
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Figure 2: Iso-contours of Mach number.
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Figure 3: Pressure coefficient all along the profile.

Figure 4: Iso-contours of pressure coefficient. •: numerical pressure sensors.
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(a) Best case among the ten random points.

x

C
p

R
el

at
iv

e
er

ro
r

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

3

4

5 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Worst case among the ten random points.
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(c) Best case among the ten random points.
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Figure 5: Relative error ( ) between the exact solution (�) and the surrogate model

( ) in the PRSV case. The top figures correspond to a three dimensional surrogate

model with a Gauss-Lobatto grid whereas the bottom part correspond to a two dimen-

sional surrogate model with a Cartesian mesh.
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Figure 6: Distributions of the Sobol indices along the airfoil wall.
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Figure 7: Scatter plot for cv,∞ and ω, RKS model.
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(b) Density of correlations between cv,∞ and ω.

Figure 8: Scatter plot for cv,∞ and ω, PRSV model.
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Figure 9: Scatter plot for Tc and pc, MAH model.
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Figure 10: Geweke z-scores for RKS model.
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Figure 11: Geweke z-scores for PRSV model.
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Figure 12: Geweke z-scores for MAH model.
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(a) Posterior distribution for ω.
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(b) Posterior distribution for cv,∞.

Figure 13: RKS model - Posterior distributions for the calibrated parameters. ( ),

prior ( ).
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(a) Posterior distribution for ω.
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(b) Posterior distribution for cv,∞.

Figure 14: PRSV model - Posterior distributions for the calibrated parameters. ( ),

prior ( ).
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Figure 15: MAH model - Posterior distributions for the calibrated parameters. ( ),

prior ( ).
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(a) Posterior distribution for ω.
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(b) Posterior distribution for σ.
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(c) Posterior distribution for α.

Figure 16: RKS model - Posterior distributions for the calibrated parameters. ( ),

prior ( ).
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(a) Posterior distribution for ω.
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(b) Posterior distribution for σ.
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(c) Posterior distribution for α.

Figure 17: PRSV model - Posterior distributions for the calibrated parameters. ( ),

prior ( ).
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(a) Posterior distribution for Tc.
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(b) Posterior distribution for σ.
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(c) Posterior distribution for α.

Figure 18: MAH model - Posterior distributions for the calibrated parameters. ( ),

prior ( ).
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(a) Posterior distribution for σ.
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(b) Posterior distribution for α.

Figure 19: RKS model - posterior distributions of σ and α with fixed physical parameters:

posterior ( ), prior ( ).
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(a) Posterior distribution for σ.
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(b) Posterior distribution for α.

Figure 20: PRSV model - posterior distributions of σ and α with fixed physical param-

eters: posterior ( ), prior ( ).
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(a) Posterior distribution for σ.

α

p(
α)

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 20

1

2

3

4

(b) Posterior distribution for α.

Figure 21: MAH model - posterior distributions of σ and α with fixed physical parame-

ters: posterior ( ), prior ( ).
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Figure 22: Redlich-Kwong - Cp vs x. Solutions: reference (�), nominal ( ), a

posteriori ( ). Error bars (three times the standard deviation): experimental ( ).

Error ranges (three times the standard deviation): parametric + model-inadequacy (

), model ( ).
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Figure 23: Peng-Robinson - Cp vs x. Solutions: reference (�), nominal ( ), a

posteriori ( ). Error bars (three times the standard deviation): experimental ( ).

Error ranges (three times the standard deviation): parametric + model-inadequacy (

), model ( ).
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Figure 24: Martin-Hou - Cp vs x. Solutions: reference (�), nominal ( ), a posteriori

( ). Error bars (three times the standard deviation): experimental ( ). Error ranges

(three times the standard deviation): parametric + model-inadequacy ( ), model (

).
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11. Tables

Tc (K) 617.4

pc (atm) 10.2

Zc — 0.237

Te (K) 484.1

ω 0.6658

cν,∞(Tc)/R 76

n 0.5208

Table 1: Nominal values of thermodynamic properties and parameters for D5.

RKS PRSV MAH

Tc – – U(550, 640)

pc – – U(10.5, 20)

cν,∞(Tc) U(30, 400) U(30, 400) U(75, 80)

ω U(0, 5) U(0, 5) –

n U(0, 1) U(0, 1) –

Table 2: Prior distributions of physical parameters for the three EOS under investigation.

Strong influence on Cp Weak influence on Cp

RKS ω, cν,∞(Tc) n

PRSV ω, cν,∞(Tc) n

MAH Tc, pc cν,∞(Tc)

Table 3: Summary of the Sobol analysis for each EOS.
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Mean Standard

deviation

ω 0.16940 0.33381

σ 0.28270 0.06128

α -2.61809 0.69334

(a) RKS model

.

Mean Standard

deviation

ω 1.10834 0.00244

σ 0.17540 0.03903

α -2.61000 0.72742

(b) PRSV model

.

Mean Standard

deviation

Tc 559.28678 1.64511

σ 0.47193 0.06809

α -2.51034 0.68401

(c) MAH model

Table 4: Posterior parameter statistics.

Mean Standard

deviation

σ 0.32378 0.06911

α -2.17570 0.74721

(a) RKS model.

Mean Standard

deviation

σ 0.36567 0.07473

α -2.38574 0.70160

(b) PRSV model.

Mean Standard

deviation

σ 3.63605 0.66215

α -1.37589 0.19883

(c) MAH model.

Table 5: Hyperparameter statistics with fixed physical parameters.
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