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Abstract

The convergence of Fourier-based time methods applied to turbomachinery flows

is assessed. The focus is on the harmonic balance method, which is a time-

domain Fourier-based approach standing as an efficient alternative to classical

time marching schemes for periodic flows. In the literature, no consensus exists

concerning the number of harmonics needed to achieve convergence for turbo-

machinery stage configurations. In this paper it is shown that the convergence

of Fourier-based methods is closely related to the impulsive nature of the flow

solution, which in turbomachines is essentially governed by the characteristics of

the passing wakes between adjacent rows. As a result of the proposed analysis,

a priori estimates are provided for the minimum number of harmonics required

to accurately compute a given turbomachinery configuration. Their application

to several contra-rotating open-rotor configurations is assessed, demonstrating

the practical interest of the proposed methodology.
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1. Introduction

The industrial design of turbomachinery is usually based on steady flow anal-

ysis, for which the reference simulation tool are the three-dimensional Reynolds-

Averaged Navier–Stokes (RANS) steady computations. However, this approach

finds its limits when unsteady phenomena become dominant. In such a context,

engineers now need to account for unsteady-flow effects as early as possible in

the design cycle, which makes efficiency of unsteady computations a key issue.

A specificity of turbomachinery flows is their periodicity, at least as far as the

mean field properties are considered.

Fourier-based time methods for periodic flows have undergone major devel-

opments in the last decade (see He [1] for instance) as they allow to reduce

the computational cost of unsteady simulations as compared to standard time-

marching techniques. The basic idea is to decompose the time-dependent flow

variables into Fourier series, which are then injected into the equations of the

problem. The time-domain problem is thus made equivalent to a frequency-

domain problem, where the complex Fourier coefficients are the new unknowns.

At this point, two strategies coexist to obtain the solution. The first one is to

directly solve the Fourier coefficients equations, using a dedicated frequency-

domain solver, as proposed by He and Ning [2, 3]. The second strategy is

to cast the problem back to the time domain using the inverse Fourier trans-

form, as proposed by Hall [4, 5] with the Harmonic Balance (HB) method.

The unsteady time-marching problem is thus transformed into a set of steady

equations coupled by a source term that represents a spectral approximation

of the time-derivative of the initial equations. The main benefit of solving in

the time domain is that such a methodology can be easily implemented in an

existing RANS solver, taking advantage of all classical convergence-accelerating

techniques for steady state problems. The HB approach has demonstrated a
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significant reduction of the CPU time, typically one to two orders of magni-

tude [6, 7, 8].

Efficiency of the HB method results from a trade-off between accuracy and

costs requirements. On one hand, the accuracy of Fourier-based time methods

depends on the number of harmonics used to represent the frequency content of

the time signal; on the other hand, computational costs and memory consump-

tion of the computations also scale with the number of harmonics.

Theoretical results about the convergence of spectral methods (see e.g. Canuto et

al. [9] for a comprehensive review) predict convergence of the numerical solu-

tion starting from a given number of harmonics, provided that the approximated

function satisfies some regularity requirements [10]. Nevertheless, this number

of harmonics is configuration-dependent and hardly predictable. In this work,

we focus on the interface between two adjacent blade rows in a turbomachin-

ery stage configuration, which involve flow across a series of fixed and rotating

bladed wheels. Therefore, even though HB methods are capable to handle multi-

stage configurations [6], this paper only focuses on rotor/stator or rotor/rotor

stages. Studies on the convergence of Fourier-based time methods for turbo-

machinery simulations have been previously reported in the literature, but with

scattered results. For instance, using a frequency-domain approach, Vilmin et

al. [11] obtain accurate solutions using 5 harmonics for a compressor stage and

3 harmonics for a centripetal turbine stage. For a transonic compressor stage

with forced blade vibration, Ekici et al. [12] use up to 7 harmonics with a time-

domain harmonic balance approach. Finally, for a subsonic compressor stage,

Sicot et al. [7] report that 4 harmonics is the minimal requirement to properly

capture wake interactions as illustrated in Fig. 1.

The preceding examples show that no consensus exists in the literature con-

cerning the number of harmonics needed to achieve convergence, even for similar

configurations. The goal of the present paper is twofold: to analyze the con-

vergence of Fourier-based time method, with focus on turbomachinery applica-

tions, and to provide a criterion for the minimal number of harmonics required

to achieve a specified accuracy level.
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(a) reference unsteady si-

mulation

(b) HB N = 2 (c) HB N = 3

(d) HB N = 4 (e) HB N = 5 (f) HB N = 6

Figure 1: Convergence of harmonic balance computations for a rotor/stator configuration

from Sicot et al. [7].

The paper is organized as follows: first, we recall the design principles of

the time-domain harmonic balance approach and theoretical results about the

convergence of Fourier-based methods. Second, the HB method is applied to the

linear advection equation supplemented with unsteady boundary conditions of

different degrees of smoothness, to highlight the impact of solution regularity on

HB convergence. Third, a model problem representative of a turbomachinery

wake-passing configuration is set up, and different error measures are introduced

to compare the numerical and analytical solutions. These error measures allows

finally to define a prediction tool, which is applied to contra-rotating open rotor

simulations.
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2. Time-domain harmonic balance approach

2.1. Derivation for fluid dynamics applications

The Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations are

written in finite-volume semi-discrete form as:

V
∂W

∂t
+R(W ) = 0, (1)

with V the volume of the cell, R the residual resulting from the discretization

of the fluxes and the source terms (including the turbulent equations), and W

the average of the unknowns (conservative variables) over the control volume.

If the mean flow variables W are periodic in time with period T = 2π/ω, so

are the residuals R(W ) and the Fourier series of Eq. (1) is:

∞∑
k=−∞

(
ikωV Ŵk + R̂k

)
eikωt = 0, (2)

where Ŵk and R̂k are the Fourier coefficients of W and R(W ), respectively,

corresponding to the mode k:

W (t) =

∞∑
k=−∞

Ŵke
ikωt, R(t) =

∞∑
k=−∞

R̂ke
ikωt. (3)

The complex exponential family forming an orthogonal basis, the only way for

Eq. (2) to be true is that the weight of every mode k is zero, which leads to an

infinite number of steady equations in the frequency domain:

ikωV Ŵk + R̂k = 0, ∀k ∈ Z. (4)

McMullen et al. [13, 14, 15] solve a subset of these equations up to mode N ,

−N ≤ k ≤ N , yielding the Non-Linear Frequency Domain (NLFD) method.

The principle of the time-domain Harmonic Balance (HB) approach [4],

sometimes referred to as the Time Spectral Method (TSM) [5, 16], is to use an

Inverse Discrete Fourier Transform (IDFT) to cast back this subset of 2N + 1

frequency-domain equations into the time domain. The IDFT then induces lin-

ear relations between Fourier coefficients Ŵk and a uniform sampling of W at
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2N + 1 instants in the period:

Wn =
N∑

k=−N

Ŵk exp(iωnΔt), 0 ≤ n < 2N + 1, (5)

with Wn ≡ W (nΔt) and Δt = T/(2N + 1). This leads to a new system of

2N + 1 mathematically steady equations coupled by a source term:

R(Wn) = −V Dt(Wn), 0 ≤ n < 2N + 1. (6)

Equivalently, Eq. (6) may be rewritten as:

V Dt(Wn) +R(Wn) = 0, 0 ≤ n < 2N + 1. (7)

By comparison of Eq. (7) and Eq. (1), it appears that the source term V Dt(Wn)

plays the role of a spectral approximation of the time derivative in Eq. (1). This

new time operator connects all the time instantsinstances and can be expressed

analytically as:

Dt(Wn) =
N∑

m=−N

dmWn+m, (8)

with:

dm =

⎧⎪⎨⎪⎩
π
T (−1)m+1 csc

(
πm

2N+1

)
, m �= 0,

0 , m = 0.

(9)

A similar derivation can be made for an even number of instants but Van der

Weide et al. [17] proves that it can lead to a numerically unstable odd-even

decoupling.

A pseudo-time (τn) derivative is added to Eq. (6) to march the equations in

pseudo-time to the steady state solutions of all the instants:

V
∂Wn

∂τn
+ V Dt(Wn) +R(Wn) = 0, 0 ≤ n < 2N + 1. (10)

2.2. Convergence of the spectral operator

The convergence of the spectral operator depends on the regularity of the

approximated function. Consider a function u(t) that is continuous, periodic

and bounded in [0, T ] and let PN (u(t)) denote its truncated Fourier series:

PN (u(t)) =
N∑

k=−N

ûke
ikωt. (11)
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The L2-norm of the error writes:

‖u‖2 =

(∫ T

0

|u(t)− PN (u(t)) |2 dt
)1/2

. (12)

If u(t) is m-times continuously differentiable in [0, T ] (m ≥ 1) and its j-th

derivative is periodic on [0, T ] for all j ≤ m− 2 then, it exists k0 ∈ [1, N ] such

that for k > k0:

ûk = O(k−m), (13)

where ûk is the k-th Fourier coefficient of u(t). This equation means that,

the more regular the function is, the faster the convergence rate of the Fourier

coefficients. The property of the error to decay exponentially as soon as the

function is approximated by a number of harmonics greater than k0 is called

spectral accuracy [9]. Note that k0 is not known but is rather essential for the

analysis. For k below k0, approximating the function u(t) with its Fourier series

yields unacceptably high errors.

2.3. Motivating example: numerical derivation of a smooth function

3. Linear advection of a periodic perturbation

To properly assess the convergence of the spectral operator and thus the

HB computations, a model problem is set up. We consider the linear advection

equation:
∂u

∂t
+ c

∂u

∂x
= 0, (14)

with the constant advection speed c assumed to be positive. The equation

is solved in the domain [0, 1]. Periodic perturbations of different shapes (and

therefore, different smoothness) are imposed at the left boundary:

u(0, t) = ul(t), (15)

where ul is a periodic function of period T = 1/c. These perturbations are ad-

vected across the computational domain and leave through the right boundary.

After a transient of time length Ttrans = 1/c, the solution at any point x in
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the space domain achieves a periodic state. The exact solution for this periodic

state is a periodic function of the form:

uex(x, t) = ul(t− x/c)ul(x/c+ t). (16)

The space derivative is discretized by means of a centered fourth-order finite-

difference scheme on an uniform fine Cartesian mesh (Δx = 0.002). According

to the theory of characteristics, the solution at the last mesh point on the right

of the domain cannot be imposed and is thus extrapolated from the inside, for

the last two points. Time-discretization is achieved through the HB method

described in Sec. 2.

A standard four-step Runge-Kutta method [18] is used to pseudo-time march

the HB equations to the steady state. The CFL number in pseudo-time is set

to 1 to ensure stability of the explicit time-marching scheme.

To compare numerical and exact solutions, the discrete L2-norm of the error

in time is computed over all the time instantsinstances at each grid points over

the domain. Then, the average in space is computed.

In the following, we consider solutions of the preceding problem for different

choices of the left boundary condition.

3.1. Sum of sine functions

First of all, a finite sum of sine functions, similar as the one used in Sec. ??,

is applied at the left boundary:

ul(t) = cos(ωt) + sin(2ωt) + cos(3ωt) + sin(4ωt) + cos(5ωt). (17)

Harmonic balance computations are run with 1 to 10 harmonics. For each

computation ranging from N = 1 to N = 6, we show spatial distributions of the

solution at three time instantsinstances, namely t = 0, t = T/3 and t = 2T/3.

Since these instantsinstances are not necessarily used in the HB discretization,

a temporal interpolation is performed. To do so, the frequency content of the

HB solution is used together with an inverse Fourier transform on the time-

vector [0, T/3, 2T/3]. Figure 2 depicts the results of HB computations using 1

to 6 harmonics. The analytical solution is also reported for comparison.
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Figure 2: Linear advection of a sum of sine functions: numerical solutions at different time

instantsinstances for different numbers of harmonics.
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The accuracy of the solution improves with the number of harmonics, until

it reaches the frequency content of the injected signal, i.e. 5 harmonics. For

higher sampling levels, the results of HB computations are superimposed with

the analytical solution.

The L2-norm of the relative error as a function of the number of harmonics

is shown in Fig. 3. Two results are displayed: one for the reference mesh (2,000

grid points) and one for a refined mesh (4,000 grid points). The convergence
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Figure 3: Linear advection of a sum of sine functions: convergence of the HB method error.

of the HB computations is slow for N ≤ 4. However, when the number of

harmonics composing the injected function is reached (N = 5), the error is

minimum and computing more harmonics does not change the error. It seems

that the convergence rate of Fourier-based time methods is inherently linked to

the spectrum of the temporal phenomenon that one wants to capture. Here a

finite discrete spectrum composed of only five harmonics is imposed. The value

of the plateau obtained after N = 5 is representative of the error introduced

by the different discretizations. In fact, refining the mesh changes this value

without modifying the error levels of the lower harmonics points. Note that

the error is the true residual, meaning that the computation is compared to the

analytical result. This is why the only way to have a zero machine valuelike in

Fig. ??, would be to have an infinite number of grid points and pseudo-iterations.

The temporal discrete Fourier transform of the computational results is com-

pared to the analytical results in Fig. 4. When the number of harmonics grows
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Figure 4: Linear advection of a sum of sine functions: discrete Fourier transform.

in the spectral computations, the Fourier transform gets closer to the analytical

solution. When the HB solution contains the whole frequency content of the in-

jected function, the numerical results are superimposed with the analytical ones.

For intermediate sampling frequencies, as for instance the three-harmonics HB

computation, the resolved harmonics have higher amplitudes than the exact

one, since they compensate for harmonics that are not resolved.

When the number of harmonics composing the spectrum of the computed

signal is reached, the computational results are superposed with the analytical

ones with plotting accuracy, namely we obtain spectral accuracy.

3.2. Rectangular function

3.3. Toward turbomachinery wakes

Consider for simplicity a turbomachinery stage composed of two rotors. A

wake is shed behind the upstream and the downstream rotor. It is stationary

in the frame of reference attached to the upstream wheel. However, when it

crosses the rotor-rotor interface, the wake becomes unsteady in the frame of

reference of the second wheel. Thus, an upstream steady spatial distortion

becomes unsteady in the downstream row.

Lakshminarayana and Davino [19] showed that the wake behind turboma-

chinery blade follows a similarity law for the velocity. It can be empirically
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Rotor Rotor

Figure 5: Characteristic rotor-rotor configuration of a turbomachinery. Dotted lines depict

wakes.

approximated by a Gaussian function:

u(θ) = um −Δu · e−0.693(2 θ
L )

2

, (18)

where um denotes the free-stream velocity, Δu the axial wake velocity deficit,

θ the azimuthal coordinate and L the wake width, defined as the full width at

half maximum.

Thus, in the downstream reference frame, wakes coming from the upstream

wheel can be represented, to a first approximation, as the periodic advection of

a Gaussian function from the inter-wheel interface.

We consider again the linear advection problem, with ul now taken equal

to a Gaussian function of the form Eq. (18). The width L is set to 10% of the

domain size, um is set to c and Δu to 10% of um.

Figure 6 depicts the HB computations for one to six harmonics. The numer-

ical solution convergences toward the exact Gaussian function when increasing

the number of harmonicsstarting from N = 6 harmonics. When this numberthe

number of harmonics is too small, the width and the depth of the wake are

badly approximated by the method, and the solution exhibits some spurious

oscillations.

Figure 7 shows the quantitative convergence of the L2-norm of the relative

error error. The convergence curves for the previoustwo function studied in the

previous sections isare also reported for comparison. The error follows now a
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Figure 6: Linear advection of a Gaussian function representing a turbomachinery wake: nu-

merical solutions at different time instantsinstances for different numbers of harmonics.
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Figure 7: Linear advection of a Gaussian function representing a turbomachinery wake: con-

vergence of the HB method error.

nearly exponential convergence.
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Figure 8: Linear advection of a Gaussian function representing a turbomachinery wake: dis-

crete Fourier transform.

The discrete Fourier transform of the results is depicted against the ana-

lytical result in Fig. 8. The N = 2 and N = 4 computations badly capture

the amplitudes of the resolved harmonics. Starting from N = 6, some of the

lower frequencies are correctly captured, whereas high frequencies are always

under-estimated. This improves when further harmonics are added to the com-

putation.

For a better understanding of the HB convergence behavior, we consider the

spectral content of the Gaussian wake model. Precisely, the Fourier transform
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ĝĝ of a Gaussian function g defined as:

g(x) = Ae−αx2

, (19)

where A and α are constants, is:

ĝ(f) = A′e−α′f2

, (20)

where: ⎧⎪⎨⎪⎩A′ = A
√

π
α ,

α′ = π2

α .

(21)

For the similarity law of Lakshminarayana and Davino, α and α′ can be

identified as:

α = 0.693

(
2

L

)2

, α′ =
1

0.693

(
πL

2

)2

. (22)

The exponential factor of the wake law α is inversely proportional to its Fourier

counter-part α′, meaning that their width will vary in opposite way: the thinner

the wake, the wider its spectrum and vice-versavice-versa.

The convergence rate is inherently linked to the spectrum of the considered

unsteady signal. As for the present case we know the analytical wake spectrum,

we define the theoretical truncation error as the ratio of the energy contained

in the unresolved part of the spectrum to the overall energy content of the full

spectrum:

εth(f) =

√√√√∫∞
f

|ĝ(ζ)|2 dζ∫∞
0

|ĝ(ζ)|2 dζ . (23)

Introducing the error function defined as:

erf(x) =
2√
π

∫ x

0

e−t2 dt, (24)

and the complementary error function defined as:

erfc(x) = 1− erf(x), (25)

then: ∫ ∞

0

|ĝ(ζ)|2 dζ =
1

2

∫ ∞

−∞
|ĝ(ζ)|2 dζ (26)

=
A′2

2

√
π

2α′ , (27)
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and: ∫ ∞

f

|ĝ(ζ)|2 dζ =
A′2

2

√
π

2α′ erfc(
√
2α′f). (28)

The theoretical truncation error can then be written as:

εth(f, L) =

√
erfc(

√
2α′(L)f). (29)

One can notice from Eq. (29) that the truncation error does not depend on the

wake deficit Δu but only on the wake width L.
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Figure 9: Theoretical truncation error of the Lakshminarayana and Davino wake law.

Eq. (29) is depicted in Fig. 9. It can be seen that the wider the spectrum, the

higher the number of harmonics needed to reach a certain level of error. More-

over, for a thin wake width (e.g.e.g. 2% of the pitch) the number of harmonics

required to capture it with a truncation error of 10% is up to 25 harmonics.

In the limit of L → 0, the wake becomes a Dirac function which represents

the worst possible case. In the preceding example, the Gaussian function had

a width of 10% which, according to Eq. (29), is captured by using N = 7

harmonics for a 10% error target.

4. Application to a model turbomachinery configuration

4.1. Extension of the harmonic balance approach to turbomachinery computa-

tions

To efficiently apply the HB approach to turbomachinery configurations,

phase-lag boundary conditions [20] are used to cut down the mesh size by using
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a grid that spans only one blade passage per row. The phase-lag boundary con-

ditions are two-fold: i) the azimuthal boundaries of a passage and ii) the blade

row interface which must handle different row pitches on either sides (Fig. 10).

Furthermore, in the HB framework, each row captures the blade passing fre-

quency of the opposite row leading to different time samples solved in each

row.

Phase-lag boundary conditions only account for deterministic row interac-

tions, and therefore can not model natural unsteady phenomenon, such as vortex

shedding for instance. Actually, the phase-lag condition is based on the space-

time periodicity of the flow variables. It states that the flow in one passage θ is

the same as the next passage θ +Δθ but at another time t+ δt:

W (θ +Δθ, t) = W (θ, t+ δt) , (30)

where Δθ is the pitch of the considered row. The time lag δt can be expressed as

the phase of a rotating wave traveling at the same speed as the relative rotation

speed of the opposite row: δt = β/ωβ . The Inter-Blade Phase Angle β (IBPA)

depends on each row blade count and relative rotation speed. It is analytically

given by Gerolymos and Chapin [21]. The Fourier transform of Eq. (30) implies

that the spectrum of the flow in a passage is equal to the spectrum of the

neighbor passage modulated by a complex exponential depending on the IBPA:

Ŵk(x, r, θ + θG) = Ŵk(x, r, θ)e
ikβ .

At the azimuthal boundaries, this modulation can be computed on the fly in

the HB framework as a sampling of the time period is always known and it is

straightforward to derive an analytic derivation in the time domain (see Ref. [7]).

The blade row interface is more complex as the different pitches and relative

motion of the rows require to duplicate the flow in the azimuthal direction using

the phase-lag periodicity. A time interpolation also occurs to take the different

time samples into account and a non-abutting mesh technique is applied as the

mesh will unlikely have matching cells. To remove spurious waves, an over-

sampling followed by a filtering are performed.
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Figure 10: Definition of pitches and IBPA used with phase-lag boundary conditions.

The time-domain harmonic balance method has been implemented by CER-

FACS in the elsA solver [22] developed by ONERA. This code solves the RANS

equations using a cell-centered approach on multi-blocks structured meshes.

Using the HB method, significant savings in CPU cost have been observed in

applications such as rotor/stator interactions [7] and dynamic derivatives com-

putation [23].

4.2. Numerical Setup

We consider a simplified configuration modeling a turbomachinery stage.

The configuration consists of a spatially periodic azimuthal perturbation ad-

vected downstream of the inlet boundary of the computational domain. The

domain is made of two grid blocks in relative motion so that the perturbation,

which is steady in the upstream block, is seen as unsteady by the downstream

one. It, and is thus representative of turbomachinery wakes advected across

an inter-wheel interface. The blocks are generated in cylindrical coordinates

such that the presented configuration can be assimilated to a slice of a turbo-

machinery stage. Without loss of generality, we set the rotation velocity of the

upstream block to zero (stator). The stator is composed of Bstator = 10 "vir-

tual" blades and the rotor by Brotor = 12 "virtual" blades. These are termed
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virtual blades as no blade is actually meshed. The pitch ratio is representative

of contra-rotating open rotor applications in which the first row contains more

blades than the second (see Sec. 5). Indeed, in these applications, the number

of blades is typically smaller than classical turbomachinery configurations.

A wake is axially injected at the inlet of the stator block following the Lak-

shminarayana and Davino similarity law defined in Eq. (18). It is schematically

represented in Fig. 11. This is thus a representative model problem of the wake

shed by an upstream row that crosses the rows interface, here the stator-rotor

interface.

stator

rotor

Principle diagram Mesh, one out every five points

Figure 11: Model turbomachinery configuration.

The flow is modeled through the Euler equations in order to avoid wake

thickening associated with viscous effects. The velocity is not imposed at the

inlet directly but rather through the total pressure and total enthalpy distribu-

tions:

pi0(θ) = piref

[
1−Δpi · e−0.693(2 θ

L )
2]

, (31)

hi0(θ) = hiref

[
1−Δhi · e−0.693(2 θ

L )
2]

, (32)

where pi0 is the inlet total pressure, Δpi the total pressure deficit in the wake,

hi0 the inlet total enthalpy, Δhi the total enthalpy deficit in the wake and L the

wake width. To impose a realistic distortion, the total pressure and enthalpy

deficits are estimated from a separate turbomachinery simulation. This leads
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to Δpi = 0.025 and Δhi = −0.007. The negative sign is due to overturning in

the wake, which is due to velocity composition, and therefore specific to rotors.

The static pressure ps1 is imposed at the outlet:

ps1 =
pref(

1 + γ−1
2 M2

ref

) γ
γ−1

. (33)

Thethe mean velocity is thus set by imposing the target mean Mach number

value Mref . At the azimuthal boundaries, phase-lag conditions [20] are used to

take into account for the space-time periodicity.

Roe’s scheme [24] along with a second-order MUSCL extrapolation is used

for the spatial discretization of the convective fluxes. An, and implicit backward

Euler scheme is used to march the HB equations in pseudo-time.

A parametric study is carried out over the two parameters that influence the

truncation error as defined in Eq. (23): the number of harmonics and the wake

width. The number of harmonics used for the computations ranges from 1 to

25. The wake width L, that drives Eq. (31) and (32) varies between 1% and

30% according to a logarithmic scale to ease the visualization of the results.:

375 computations are performed in total.

Each grid block has a radial extent of five grid points (i.e. four cells). The

azimuthal grid density in the stator and rotor blocks is kept similar to guarantee

a consistent capture of the wake on each side of the interface. To do so, if Δθcell

denotes the azimuthal length of a cell at the interface, then:

Δθcell =
2π

Bstator

1

Nstator
=

2π

Brotor

1

Nrotor
, (34)

where Nstator and Nrotor are the number of cells in the stator and the rotor,

respectively.

Mesh convergence for the thinnest wake (1% of the pitch) is obtained with

500 cells in the azimuthal direction of the stator which gives 600 cells for the

rotor block. 30 grid points are put in the axial direction. Moreover, a constant

aspect ratio of 5 with respect to the azimuthal length of the cells is kept, which

sets the axial length of the case. This leads to a total number of grid points of
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approximately 170,000. Note that the memory requirement of an HB simula-

tion is 2N + 1 times that of the equivalent steady case. An equivalent steady

computation to N = 25 would thus require (2× 25 + 1)× 170, 000 = 8, 670, 000

grid point mesh. The grid used for the computations is shown in Fig. 11.

Convergence of the iterative procedure used to solve the HB equations is

achieved after 3,000 iterations for all the simulations, as presented in Fig. 12.

More than a three order of magnitude decrease is reached for all the simulations.

Small discrepancies are observed on the residual convergence for different wake

thicknesses while the number of harmonics does not influence the convergence

(Fig. 12(a)).
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Figure 12: Convergence of the turbomachinery stage computations.

4.3. Spectral convergence study

The primary interest in this section is the wake capturing capabilities of

the Fourier-based time method in the rotating part. To analyze this, two error

measures are defined and evaluated.

Those measures address the loss of information introduced by the HB ap-

proach at the interface. This loss is firstly evaluated by analyzing the spectrum

from a purely spatial point of view. Then, an hybrid spatial/temporal point

of view is taken. This finally allows to assess the filtering introduced by the

harmonic balance method on both the time and spatial signals.
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In fact, in the stator part, the wake is steady and is thus not filtered by the

HB operator. Conversely, in the rotor part, the steady wake becomes unsteady

due to the relative speed difference between the stator and the rotor. However,

only a finite number of harmonics N is used to describe the unsteady field, hence

the filtering.

4.3.1. Spatial-spectrum based error measure

Initially, we propose an error measure (ε1) based on the loss of signal energy

induced by the harmonic method at the interface. In fact, in the stator part,

the wake is steady and is thus not filtered by the HB operator. Conversely,

in the rotor part, the steady wake becomes unsteady due to the relative speed

difference between the stator and the rotor. However, only a finite number of

harmonics N is used to describe the unsteady field, hence the filtering.

The first error quantification ε1 is set up to quantify this filtering by using

only spatial information and is defined as the L2-norm applied on the difference

between the rotor and the stator spectra. It is equivalent to the analytical

truncation error defined in Eq. (23). Indeed, the error is defined as the ratio of

the unresolved energy in the rotor block to the energy of the full spectrum, i.e.

that of the stator block:

ε1(N) =

√√√√∑fmax

f=1 |ŝ θ
N (f)− r̂ θ

N (f)|2∑fmax

f=1 |ŝ θ
N (f)|2

, (35)

where ŝ θ
N denotes the spatial Fourier transform (indicated by the .̂ operator)

of the azimuthal extraction (shown by superscript θ) of the result of a HB

simulation using N harmonics, in the stator; r̂ denotes the spectrum of the

signal transferred to the rotor. The highesthigher frequency present in the

spectrum is dictated by the spatial discretization. Thus, fmax = 1/2Δθcells,

using the notations of Eq. (34). As the azimuthal cell size is similar in both

blocks, the same sampling is used leading to the same frequencies in both stator

and rotor spectra. Details of the algorithm used to compute ε1 are given in

Appendix A.

22



0.7

0.71

0.72

0.73

0.74

-0.2 -0.1 0 0.1 0.2

ρ
U
/
ρ
∞
U
∞

θ [rad]

stator
rotor

0

0.2

0.4

0.6

0.8

1

1.2

1 5 10 15 20

ρ̂
U

harmonics

stator
rotor

(a) N = 2

0.7

0.71

0.72

0.73

0.74

-0.2 -0.1 0 0.1 0.2

ρ
U
/
ρ
∞
U
∞

θ [rad]

stator
rotor

0

0.2

0.4

0.6

0.8

1

1.2

1 5 10 15 20

ρ̂
U

harmonics

stator
rotor

(b) N = 5

0.7

0.71

0.72

0.73

0.74

-0.2 -0.1 0 0.1 0.2

ρ
U
/
ρ
∞
U
∞

θ [rad]

stator
rotor

0

0.2

0.4

0.6

0.8

1

1.2

1 5 10 15 20

ρ̂
U

harmonics

stator
rotor

(c) N = 10

0.7

0.71

0.72

0.73

0.74

-0.2 -0.1 0 0.1 0.2

ρ
U
/
ρ
∞
U
∞

θ [rad]

stator
rotor

0

0.2

0.4

0.6

0.8

1

1.2

1 5 10 15 20

ρ̂
U

harmonics

stator
rotor

(d) N = 20

Figure 13: Wake of L = 5% width extracted in stator and rotor blocks. Signal and spatial

Fourier analysis for different computations.
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The azimuthal velocity distributions (left hand-side) and the corresponding

spatial spectra (right hand-side) are presented in Fig. 13 for a relative wake

thickness of 5% with respect to the pitch and for HB computations using N = 2,

5, 10 and 20, respectively. For the stator, the azimuthal distribution follows a

Gaussian function as expected. On the contrary, the rotor distribution is aliased

by the HB discretization and exhibits spurious oscillations that tend to disappear

when the number of harmonics used in the computation increases. For N = 10,

some oscillations are still present, but the wake captured in the moving block

begins to converge to that leaving the upstream block.

The filtering introduced by the HB approach acts primarily on the time

resolution. For under-resolved HB computations, a dissipation error is observed.

This dissipation is not spatially uniform and gives rise to dispersion errors on the

spatial spectrum and to spurious high-frequencies as shown in Fig. 13. These

effects vanish when the HB computations converge i.e. for N ≥ 10. This

explains whyTherefore, the spectrum of the unresolved spurious frequencies is

imposed to have a zero amplitude value to compute ε1.

Inspection of the spectra suggests the same conclusions. The amplitude of

ρ̂U improves when increasing the number of harmonics. As previously men-

tioned, for under-resolved HB computations, a dispersion error is introduced

and spurious high-frequencies appear in the spatial spectra as shown in Fig. 13

for N = 2 to N = 10. For N = 20, the spectrum of the rotor block matches that

of the stator block. This is consistent with the theoretical analysis, in which

more than N = 10 harmonics are needed to capture the wake with less than

20% of error for this particular wake width (see Fig. 9).

In summary, for this wake thickness, the temporal filtering on a simulation

involving less than ten harmonics is too harsh and leads to a significant amount

of unresolved energy, which deteriorates the numerical representation of the

wake.

For a more quantitative analysis, we compute the error measure ε1 for each

computation ranging over different wake thicknesses and numbers of harmonics.

Figure 14 summarizes the resultsreeults. Because it quantifies the unresolved
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Figure 14: Evaluation of the error due to the wake capturing using the first error quantification

ε1, and comparison with analytical error (dotted lines).

energy in comparison to the resolved energy, ε1 exhibits a behavior similar to

that of the theoretical error εth for a Gaussian function (Fig. 9). The iso-

error contours have a similar shape as the analytical ones. The conclusions are

equivalent: the truncation error decreases with the wake thickness and with the

number of harmonics used to capture the wake. Nevertheless, for thicker wakes

and higher numbers of harmonics, the error measure ε1 is over-estimated. For

instance, around N = 15 and for L = 25%, ε1 ≈ 10−2 whereas the theoretical

error εth is less than 10−4. The error measure ε1 does not represent a realistic

measure, because of the spatial Fourier transform performed to compute the

error, as discussed in the following. As shown in Fig. 15, the Fourier transform

of the spatial signal in the stator block tends to a plateau. The thicker the

wake, the lower the frequency for which the plateau appears: approximately

15 harmonics for L = 10% (see Fig. 15(a)) and 6 harmonics for L = 25%

(see Fig. 15(b)). Actually, for a N -harmonic HB computation, the spectrum

is explicitly filtered in the moving block leading to an amplitude equal to zero

above the N th harmonic. Therefore, when the HB computations are converged,

the difference between the spatial spectra in the stator and in the rotor block is

driven by the plateau present in the spatial spectrum of the stator block.

In fact, this behavior is linked to the windowing of the signal on a bounded

interval, the pitch. To highlight that, the influence of a modification on the
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Figure 15: Discrepancies between the spectrum at the interface and in the rotor block, for

varying wake widths and number of harmonics.spatial and temporal spectra.

inlet boundary condition is analyzed. The inlet wake distortion used in the

model turbomachinery configuration is originally based on the analytical Lak-

shminarayana and Davino Gaussian law (see Eq. (18)). However, this law is

discretized and imposed on a bounded interval that spans the angular pitch. As

the relative thickness increases, the inlet condition diverges from the analytical

Gaussian law for which the angular pitch is theoretically infinite. This is shown

in Fig. 16 through the spectra of three Gaussian laws. The relative thickness of

the laws are modified through the size of the pitch Δθ. The multiplication by a

factor 100 of the pitch leads to a disappearance of the plateau in the spectrum,

which accurately matches with the Fourier transform of a Gaussian function.

To sum up, a plateau appears in the spatial spectrum of the stator block.

This plateau is explicitly filtered in the rotor block above the N th harmonic,

leading to an over-estimation of the first error measure. This over-estimation

drives the error value for higher number of harmonics and thicker wakes.

4.3.2. Spatial/Time duality error measure

To get a more realistic error measure, we take again into account the energy

loss through the interface, but based on a spatial/time duality. As this loss of

energy is precisely related to the filtering introduced on the temporal signal by

the HB approach, the second error quantification ε2 addresses the result on the

temporal information.
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Figure 16: Evolution of the spectrum of the inlet boundary condition for different angular

pitch.
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Near the interface of the blocks, consider a fixed observer in the rotor frame

of reference. This observer sees an unsteady wake passing as the blocks have a

relative speed difference. The first error quantification has shown the influence

of the number of harmonics on the spatial signal in the rotor block. The error

quantification will now point that this spatial influence is due to a temporal

filtering done by the HB approach.

Following the same notation as in Eq. (35), the second error measure is

written as:

ε2(N) =

√√√√∑fmax

f=1 |ŝ θ
N (f)− r̂ t

N (f)|2∑fmax

f=1 |ŝ θ
N (f)|2

, (36)

where superscript t denotes the temporal version of the Fourier transform. By

definition, ε2 quantifies the matching between a spatial signal and a temporal

information. Again, the error is described as the unresolved energy in the rotor

block, divided by the energy of the full spectrum, e.g. that of the stator block.

For ε1, the amplitude of the harmonics above the N th one was imposed to zero.

On the contrary, for ε2, the temporal spectrum in the rotor block is by essence

null above the N th harmonic, as the filtering acts on temporal values. Details

of the algorithm used to compute ε2 are given in Appendix B.

Figure 17 shows time signals extracted at two different azimuthal positions

at the interface of the rotor block, named loc 1 and loc 2. The small phase lag

between the two signals is due to the space shift between the two points, and is

the same for any choice of the number of harmonics used in the computation.

On the contrary, differences in terms of amplitude are only due to the use of

an insufficient number of harmonics: as the number of modes used for the time

approximation is increased from N = 5 to N = 15, the amplitude of the space-

shifted signals tends to converge to the same value, and spurious oscillations

tend to disappear. Therefore, in the following, only loc 1 will be considered.

Figure 18 describes the space and time spectra of the axial momentum ρU

at loc 1, for computations using N = 2, 5, 10 and 20 harmonics and for a wake

width of L = 5%. The spatial spectrum contains the whole wavelength content

associated to the incoming wake; on the contrary, due to the filtering introduced
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Figure 17: Temporal signal seen at loc 1 and loc 2 for a L = 5% wake width.

by the HB approach, the time spectrum is composed of only N harmonics. For

computations using less than 10 time harmonics, time spectra are truncated, and

the amplitude of ρU differs from that of the corresponding mode in the spatial

spectrum. As the number of time harmonics is increased, the amplitude of lower

harmonics becomes closer and closer to that of the corresponding harmonic in

the reference signal, and errors move toward the higher resolved harmonics. For

N = 20, the amplitudes of the 20 resolved harmonics are similar for both the

time and space spectra.

In summary, the preceding analysis shows that, for under-resolved HB com-

putations, the time signal is affected by both amplitude and phase errors, since

the energy content is redistributed incorrectly among the resolved harmonics.

To quantify this error, we apply the error measure defined in Eq. (36) , to HB

computations of the model turbomachinery problem corresponding to different

choices of the wake thickness and different numbers of harmonics. Results are

presented in Fig. 19. The ε2 error map is qualitatively and quantitatively similar

to the ε1 discussed in the previous section. Again, the truncation error measured
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Figure 18: Spatial/time duality for a L = 5% wake width.

using ε2 for thick wakes and high numbers of harmonics does not follow the trend

observed for the theoretical error εth, due to the spatial filtering introduced at

the interface by the phase-lag condition.

The preceding analysis shows that, for HB computations that are well con-

verged in terms in harmonics, the spatial spectrum in the stator and the time

spectrum in the rotor block tend to match, except for additional spatial errors

introduced by the use of an azimuthal Fourier transform on a bounded interval,

which confirms the validity of the error measure defined in Eq. (36).

4.4. Comparison with the theoretical error measure

The preceding results show that approximated truncation error measures

computed for the model turbomachinery problem using a nonlinear flow model

(Euler equations) exhibit trends, with respect to the wake thickness and number

of HB harmonics, in close agreement with the theoretical error measure derived

in Section 3.3 for a Gaussian function. Figure 20 compares the different error

measures for HB simulations of advected wakes of varying thickness versus the

number of harmonics used for the time discretization. This corresponds to
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Figure 19: Evaluation of the error due to the wake capturing using the second error quantifi-

cation (ε2), and comparison with analytical error (dotted lines).

horizontal cuts of Figs 9, 14 and 19. For a number of harmonics higher than

the cutoff harmonic used in the phase-lag condition the three error measures

give results in very close agreement. After that value, both the ε1 and ε2 error

measures applied to the model turbomachinery problem exhibit a plateau. The

same plateau is also observed on εmxp error whose definition will be given in

the next section. The preceding remarks suggest the idea that, since all error

measure provide similar results, at least up to numbers of harmonics of interest

for practical applications. An a priori , an a priori estimate of the number of

harmonics required to achieve a given error level could then be obtained by

using the theoretical error measure Eq. (29), if a quick estimate of the wake

thickness characteristic of a given turbomachinery problem is available. In the

next section, we show that a reasonable estimate of the convergence of the error

can be obtained from a preliminary steady computation based on the mixing

plane interface condition.

4.5. Toward an a prioripriori error estimate

In order to define an a priori error measure that can be used to estimate

the number of harmonics required to achieve a reasonable convergence of the

HB method, we suggest to evaluate the wake thickness by using a preliminary

mixing plane steady computation. Indeed, if potential effects due to the down-

stream row can be neglected, the spatial information at the interface in the

31



10−3

10−2

10−1

100

1 5 10 15 20 30 50

ε(
N
)

# harmonics

εth
ε1
ε2
εmxp

(a) L = 2%

10−3

10−2

10−1

100

1 5 10 15 20 25

ε(
N
)

# harmonics

εth
ε1
ε2
εmxp

(b) L = 5%

10−3

10−2

10−1

100

1 5 10 15 20 25

ε(
N
)

# harmonics

εth
ε1
ε2
εmxp

(c) L = 10%

10−3

10−2

10−1

100

1 5 10 15 20 25

ε(
N
)

# harmonics

εth
ε1
ε2
εmxp

(d) L = 15%

Figure 20: Truncation, computed and analytical errors for four wake widthswidth.

stator block, essentially due to the incoming wakes, can be captured without

taking into account the relative motion between the wheels, i.e. by means of a

mixing plane computation. Given the approximated azimuthal distribution at

the stator interface, we consider the cumulative energy content of the signal up

to a given frequency f (or, equivalently, to a given harmonic N = f/f1 where f1

is the frequency value of the considered unsteadiness). The cumulative energy

is defined as:

E(f) =

∫ f

0
|ĝ(ζ)|2 dζ∫∞

0
|ĝ(ζ)|2 dζ , (37)

where ĝ is the spectrum of the quantity of interest , here the axial momentum.

By comparison with Eq. (23), the relation between the relative accumulated

energy E and the truncation error εmxp is:

E(f) = 1− ε2mxp(f). (38)

Note that this last error measure is based only on the amount of unresolved
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energy that is left in a computation if the spatial signal is truncated at a given

cutoff frequency f , and does not require any information from the rotor block.

In fact, , but it depends only on the characteristics of the incoming wake.

To check if the new error measure represents an accurate estimate of the

truncation error of an HB simulation, we carry out again a parametric study of

the error versus different wake thicknesses and numbers of harmonics (equiva-

lently, cutoff frequencies), and compare the results to those of the a posteriori

error measures obtained for the model turbomachinery problem (ε1, ε2) and

tofor the theoretical error εth. Results corresponding to εmxp are superposed to

the corresponding curves in Fig. 20. The a priori error measure (εmxp) matches

the theoretical estimate (εth) and the a posteriori measures (ε1, ε2) over a wide

range of harmonics. Similarly to the a posteriori errors ε1 and ε2, the a priori

error εmxp exhibits a plateau for high N and high wake thicknesses, due to the

application of the Fourier transform on a bounded interval. We also stress the

close agreement between εmxp and εth: specifically, estimates of the number of

harmonics needed to capture 99% of the cumulative energy (equivalently, to get

a truncation error equal to 10% whom value will be justified later) are identical

for all error measures.

5. Application to a contra-rotating open rotor configuration

Originally, this study was conducted to understand the convergence issues

observed on Contra-Rotating Open Rotor (CROR) configurations. In contrast

to turbomachinery applications, convergence in terms of harmonics has been

observed to be slow on some configurations.

5.1. Presentation of the cases

To investigate this issue, two CROR configurations are studied at different

operating conditions:

1. a Mock-up CROR (noted MU) designed by Safran to be investigated in a

wind tunnel (i.e. ground condition: Pi = 101, 300 Pa and Ti = 293 K).
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Two regimes are considered representative of low (LS) and high-speed (HS)

conditions (different rotation speeds and blade angles),

2. the Airbus-designed AI-PX7 CROR (noted AI) at cruise condition: high-

speed and flight level (i.e. Pi = 23, 842 Pa and Ti = 219.6 K).

5.2. Results of HB computations

Figures 21, 22 and 23 show the non-dimensional entropy at 75% span com-

puted by the HB method for the three configurations. The MU-LS configura-

tion has the fastest convergence. There are indeed some spurious entropy waves

downstream the blade row interface for N = 1 and 2 but none are observed

starting N = 4.

(a) N = 1 (b) N = 2 (c) N = 3

(d) N = 4 (e) N = 5 (f) N = 6

Figure 21: MU-LS convergence – Non-dimensional entropy at 75% span.

For the MU-HS configuration, one can observe in Fig. 22(g) that the N =

7 HB computation still presents some spurious waves downstream the interface.

It becomes negligible for a finer sampling. The main difference with the MU-

LS configuration is the blade angle. By comparing Fig. 21 and Fig. 22, one
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can observe that the blade angle is lower in the high-speed case. Therefore,

even if the wake is of similar thickness downstream the front rotor, it impacts

the axial blade row interface with a lower angle and therefore looks thinner.

Assuming that the flow angle downstream the trailing edge is the same as the

blade incidence angle ξ, the wake thickness observed by the blade row interface

Litf is

Litf =
L

cos(ξ)
. (39)

When ξ rises from low-speed to high-speed configuration, L will remain almost

constant but Litf will decrease and the spectrum widens.

For the AI configuration, Fig. 23 shows that the convergence is not achieved

as the finest HB computation (N = 10) still not capture correctly the wake

through the interface. It is thickened by the low time resolution. Although

the solver is able to account for an arbitrary number of time samples, the re-

quired memory would lead to run on more processors and thus block splitting

would become necessary. As the advantage over classical time-marching scheme

would vanish, only N = 1 to 10 HB simulations were performed.becomes too

demanding and only N = 1 to 10 were attempted.

The observed convergence differences between the AI and MU-HS configu-

rations can be attributed to two main differences: The are two main differences

with the MU-HS configuration:

1. the AI configuration is at scale meaning that the radial extent is several

times larger than the MU configuration. As the pitchwise relative wake

width is defined as

Lpitch = L
B

2πR
, (40)

the relative wake width will decrease for higher radius R. It also explains

the difference with classical turbomachinery: as the number of blades B

can be one order of magnitude higher in the latter case than in a CROR

configuration and the diameter lower, the relative wake thicknesses are

higher and the spectrum narrower.
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(a) N = 1 (b) N = 2 (c) N = 3

(d) N = 4 (e) N = 5 (f) N = 6

(g) N = 7 (h) N = 8 (i) N = 9

Figure 22: MU-HS convergence – Non-dimensional entropy at 75% span.

2. the viscosity is also different: applying the Sutherland law for air at ground

and flight level leads to dynamic viscosities of respectively, 1.807·10−5 Pa.s

and 1.434 ·10−5 Pa.s, respectively. With lower viscosity, the blade bound-

ary layer is thinner and the generated wakes are thinner as well. Fur-

thermore, the mixing with the main flow is weaker and the thickening of

the wakes is also slower leading to a thinner wake reaching the blade row

interface.
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(a) N = 1 (b) N = 2 (c) N = 3

(d) N = 4 (e) N = 5 (f) N = 6

(g) N = 7 (h) N = 8 (i) N = 9

(j) N = 10

Figure 23: AI-HS convergence – Non-dimensional entropy at 75% span.
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5.3. Prediction tool based on the wake thickness

To estimate the wake thickness, a curve fitting algorithm is used to fit the

CFD wakes to the Lakshminarayana and Davino Gaussian wake law. Only

the relative span between 10% and 70% is considered as elsewhere, the wake

interacts with the hub boundary layer and tip vortex. This estimation is plotted

in Fig. 24 for the three configurations. The wake thickness is almost constant
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Wake thickness / pitch ratio [%]
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MU-HS
AI-HS

Figure 24: Estimation of the relative wake thickness for the three contra-rotating open rotor

configurations.

along the span for the two HS configurations. In opposite, the MU-LS shows an

increase at 50% of the relative span. This is due to a large tangential distortion

that is attributed to flow separation. Thus, the wake width estimation is not

reliable in this region for the MU-LS configuration as the tangential distortion

is no longer Gaussian-shaped. Nevertheless, using Fig. 24, the wake widths of

the AI-HS, the MU-HS and the MU-LS are approximately 4%, 9.5% and 20%,

respectively.

At this point, using the theoretical error defined in Eq. (29), the last thing

needed to provide an estimation of the required number of harmonics, is the

level of accumulated energy (or alternatively the level of error) that ensures the

convergence of the HB method. The level of accumulated energy (defined in

Eq. (37)) required for a computation to be rigorously converged is difficult to

estimate. It seems reasonable, from an engineering standpoint, to consider that

a 99% accumulation of energy should be a good criterion. To emphasize that,

the reconstruction of a wake as a function of four levels of cumulative energy
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E is depicted in Fig. 25. One can see that a reconstruction using only 50%
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Figure 25: Reconstructions of a wake depending on the energy content kept in the signal.

of the energy leads to a signal that has neither the right wake deficit nor the

correct width. Using 90% and 95% of the energy improve the resulting shape

but large secondary oscillations remain, with a bad capture of the wake deficit.

In opposite, by using 99% of the energy to reconstruct the signal, only minor

oscillations are seen but the wake width and deficit are recovered with more

than 95% accuracy. Thus, the 99% energy threshold ensures that the wake

will be correctly transmitted to the opposite row, which is the prior concern

of this paper. Therefore, based on this value and the estimation of the wake

width for all the three CROR configurations shown in Fig. 24, one can evaluate

the number of harmonics needed to compute such applications. In fact, based

on the analytic formula derived in Sec. 3.3 and the equivalence of truncation

error and accumulated energy given by Eq. (38), one can deduce the number

of harmonics N needed to capture a target level of accumulated energy E for a

given wake width:

N(E) =
erfc−1 [1− E]√

2α′ , (41)

where α′ is the wake parameter as defined in Sec. 3.3:

α′(L) =
1

0.693

(
πL

2

)2

. (42)

Here, the theoretical estimation of the number of harmonics needed to recover

99% of the energy is then 17, 7 and 3 for, respectively, the AI-HS, the MU-
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HS and the MU-LS. These numbers explain why the AI-HS configuration is

still not converged after N = 10 harmonics. In fact, such a computation leads

to a capture ofrecover only 87% of the signal energy. Figure 25 supports the

argument that with this level of energy, the wake is not properly captured as a

90% energy signal does not accurately estimate the wake deficit and thickness.

With this approach, one can deduce approximately the number of harmonics

needed to compute such CROR configurations using Fourier-based time methods

for a target level of accumulated energy. However it is limited to Gaussian

wakes. If the wake shape is very fardifferent from a Gaussian curve or if another

tangential distortion reaches the interface, the present prediction tool cannot

be used. However, as demonstrated in Sec. 4.4, the analytic error and the error

based on an azimuthal Fourier transform of the distortion seen just upstream

the interface for a mixing-plane configuration are equivalent.

5.4. Prediction tool based on an azimuthal Fourier transform

Thus, a more general way to analyze the spectrum in a wake is to perform an

azimuthal Fourier transform at the rows interface in a mixing-plane computa-

tion. It encompasses both the wake analysis done above and also any tangential

disturbances, as for instance the viscosity effects near the hub or the tip vortex.

Details of the algorithm used to compute the tangential accumulated energy

from a mixing plane computation are given in Appendix C.

To have a global insight of the energy contained in the tangential distortion

across the whole span, the energy accumulation is plotted using a color map in

Fig. 26. Three contour lines are added to ease the interpretation: 90%, 95% and

99% of accumulated energy, corresponding to a truncation error of respectively

30%, 20% and 10%. The richer spectrum is observed in the wake region between

10% and 70% of relative span. This is the region where the wake is influenced

neither by the hub boundary layer nor by the tip vortex. Therefore the wake

drives the convergence of HB computations. Results are in good agreement with

the prediction tool based on the wake thickness. To emphasize that, the number

of harmonics needed to have 99% of the energy is given in Tab. 1 for a relative
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Figure 26: Energy accumulation by harmonics for all spans.

span between 10% and 70%.

configuration AI-HS MU-HS MU-LS

wake thickness 17 7 3

azimuthal Fourier transform 16 7 4

Table 1: Predicted number of harmonics associated to E = 99% of accumulated energy,

using two prediction tools, the first based on the wake thickness and the second based on an

azimuthal Fourier transform.

Figure 27 shows the non-dimensional axial momentum extracted at the ro-

tor/rotor interface from a single-passage mixing-plane computation for the three

considered configurations. One can observe different wake shapes: the AI High-

Speed (HS) wake looks much thinner than the MU-HS, which looks thinner

than the Low-Speed (LS) one. Indeed, the latter does not show a well delimited

wake structure all along the span explaining the estimation of the number of

harmonics needed to capture such configurations.
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(a) MU-LS (b) MU-HS (c) AI-HS

Figure 27: Non-dimensional axial momentum (ρU)/(ρU)∞ at the rotor/rotor interface

(mixing-plane computations).

This prediction tool is more accurate as it handles wake tangential distortion

as well as any other type of azimuthal distortions. Thus, it can be used to

predict the number of harmonics needed to capture a certain level of energy

for any relative span. The computational time needed to get the accumulated

energy pictures as in Fig. 26 is negligible. In fact, it takes less than a minute.

We verify a posteriori that the number of harmonics provided in Tab. 1 are

sufficient to yield converged HB computations. For the MU-LS, the prediction

tool estimate that four harmonics are sufficient. In fact, Fig. 21 supports the

argument that four harmonics gives a converged simulation as the difference

between N = 4, N = 5 and N = 6 HB computations are barely visible. For

the MU-HS, seven harmonics are estimated to be sufficient while visually, it

seems that N = 8 is converged. In fact, one must keep in mind that these

criteria just give a lower bound of the required number of harmonics needed to

get the convergence of the HB method. Indeed, when running a N -harmonic

HB computation, the time period is sampled with 2N + 1 time instants which

is, according to the Nyquist-Shannon criteria [25, 26], the minimum sampling

to get the N th of the fundamental frequency. It does not necessarily mean that

the level of the N th harmonic is accurately predicted. Experience shows that
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in order to reach this level, one has sometimes to run a N + 1 or N + 2 HB

computation.

6. Conclusions

The accuracy and efficiency of Fourier-based time methods used to solve

periodic unsteady problems depends on the number of harmonics chosen to rep-

resent the frequency content of the time signal. In this work we investigate the

accuracy and convergence properties of Fourier-based time integration methods.

The convergence rate of these methods, in terms of harmonics required to de-

scribe the solution with a given level of accuracy, depends on the spectral content

of the solution itself: Fourier-based time methods are particularly efficient for

flow problems characterized by a narrow Fourier spectrum. Starting from this

remark, we try to define a relevant indicator of solution regularity in the specific

case of turbomachinery flows, which represent one of the main applications of

Fourier-based time methods in Fluid Mechanics. To this aim, we show that

the main source of unsteadiness in turbomachinery flows is due to the relative

motion of wakes generated by a given blade row with respect to the downstream

row. Statistically speaking, the passing wakes can beare seen by the downstream

row as an azimuthally advected periodic Gaussian pulse, characterized by its

relative thickness compared to the pitch in between two subsequent blades and

by the velocity deficit associated to it. We show that the narrower the wake, the

larger its Fourier spectrum, and the slower the convergence of Fourier-based time

methods. In order to achieve a prioria priori estimates of the number of harmon-

ics required to accurately solve a given turbomachinery problem, we introduce

two error measures based on the relative thickness of the passing wakes. It

is shown that, for practical purposes, these can be preliminary estimated by

running a companion steady simulation of the turbomachinery stage. The a

steady (mixing-plane) simulation is post-processed to extract information about

the spanwise distribution of wake thickness tangeantial variations and the cor-

responding spectrum upstream the blade row interface and an error criterion is
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used to estimate the number of harmonics required to resolve 99% of the energy

content associated to the velocity signal. The preliminary step has a negligible

cost compared to the overall simulation, since the steady computation is used

to initialize the unsteady run, and extraction of wake characteristics takes less

than a minute on a single processor.

The proposed methodology represents an efficient and reliable operational

tool to guide the choice of the number of harmonics for a given turbomachinery

problem, and to evaluate beforehand the interest of applying or not a Fourier-

based time integration scheme instead of a classical time-marching scheme.
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Appendix A. Detailed algorithm to compute ε1

A sketch of the steps used to evaluate ε1 from a computation is shown in

Fig. A.28. Two azimuthal lines are extracted in the stator and in the rotor

respectively (step 1©). These are duplicated using the phase-lag condition to

retrieve the full 2π signal in both blocks. The axial momentum ρU variable is

analyzed. The main advantages of this variable are that it is a representative

variable for the wake, it is a conservative variable of the considered governing

equations and finally, it is invariant under a change of reference frame, unlike the

relative velocities for instance. Then, an azimuthal Fourier transform, denoted

Fθ, is carried out on each azimuthal 2π signals and gives the frequency content

of the wake in both the stator and the rotor (step 2©). However, due to the time

interpolation between the two rows achieved at the interface, spurious effects can
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Figure A.28: Sketch of the steps needed to compute the first error quantification ε1.

appear upstream the interface as shown in Fig. A.29. For instance, tThe effects

of the rotor block are significant on the closest cells to the interface for the N = 5

computation and still appear on the very lasts cells before the interface for the

N = 10 computation. They have disappeared when using N = 15 harmonics.

To lessen the influence of this interpolation, and thus the spurious effects, the

extraction of the axial momentum is not performed at the closest cell to the

interface. If dref is the axial length of a block, the extraction is achieved at

dref/5 of the interface upstream and downstream the stator and rotor block,

respectively. It represents six time the length of a cell in the axial direction. As

the governing equations are the Euler ones, there is no significant variation of the

wake thickness within six cells, which supports this hypothesissupporting this

approach. Moreover, preliminary studies have shown that dref/5 is sufficient to

lower the spurious effects while keeping the results consistent.
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rovx / rovx_inf: 0.70 0.71 0.72 0.74

(a) N = 5

rovx / rovx_inf: 0.70 0.71 0.72 0.74

(b) N = 10

rovx / rovx_inf: 0.70 0.71 0.72 0.74

(c) N = 15

Figure A.29: Occurrence of spurious effects upstream the interface between stator and rotor

blocks for a L = 5% wake width.

Appendix B. Detailed algorithm to compute ε2

The steps to compute the second error quantification for each of the 375 com-

putations, are schematically shown in Fig. B.30. An azimuthal line is extracted

in the stator domain, nearby the interface (step 1©), as for the first error quan-

tification. However, in the rotor block, a time probing is done at one point

giving an unsteady time signal of ρU(t) (step 1©′). The azimuthal signal is

duplicated using the phase-lag condition to retrieve the full 2π signal. The tem-

poral and spatial signals are then Fourier transformed so that their spectrum

can be compared (step 2©). The wake extraction is performed at the same ax-

ial distance of the interface as for the first error quantification. In this case,

the location of the point in the rotor block has a direct impact on the results

especially when the wake is under-resolved. To highlight this impact, the tem-

poral Fourier transform is evaluated at two different locations called loc 1 and

loc 2. The two points are separated by a distance Δθloc1−loc2 = dref/10 in the

azimuthal direction, as shown in Fig. B.30.
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Figure B.30: Sketch of the steps needed to compute the second error quantification.

Appendix C. Detailed algorithm to the tangential accumulated en-

ergy from a mixing plane computation

Figure C.31 shows the different steps: firstly, the row interface is extracted

from a mixing-plane computation. Secondly, using this interface, the axial mo-

mentum is extracted for several spanwise positions in the region of interest

(step 1©). In a CROR configuration this is the region with a relative span rang-

ing between 0% and 120%. In fact, beyond the 120% threshold, the influence

of the blades on fluid unsteadiness decreases rapidly such that the fluid has a

narrow spectrum as the whole spectrum energy lies in the first, at most, the

first three harmonics. Then, for each radii, an azimuthal Fourier transform is

performed to obtain the tangential spectrum of the axial momentum (step 2©).

The relative cumulative energy for a given number of harmonic N is then defined

as:

E(N) =

∑N
k=1

[
ρ̂U

θ
(k)
]2

∑∞
k=1

[
ρ̂U

θ
(k)
]2 , (C.1)
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Figure C.31: Steps for the prediction tool based on an azimuthal Fourier transform of the

axial momentum at the rotor-rotor interface.

where ρ̂U
θ

denotes the axial momentum spectrum extracted from the rows inter-

face plane. In Eq. (C.1), the cumulative energy up to harmonic N is compared

to the total energy.
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