
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/10208

To cite this version :

Badis HADDAG, Farid  ABED-MERAIM, Tudor BALAN - Strain localization analysis using a large
deformation anisotropic elastic-plastic model coupled with damage - International Journal of
Plasticity - Vol. 25, n°10, p.1970-1996 - 2009

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/10208
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


Accepted Manuscript

Strain localization analysis using a large deformation anisotropic elastic-plastic

model coupled with damage

Badis Haddag, Farid Abed-Meraim, Tudor Balan

PII: S0749-6419(08)00191-5

DOI: 10.1016/j.ijplas.2008.12.013

Reference: INTPLA 1208

To appear in: International Journal of Plasticity

Received Date: 29 July 2008

Revised Date: 1 December 2008

Accepted Date: 21 December 2008

Please cite this article as: Haddag, B., Abed-Meraim, F., Balan, T., Strain localization analysis using a large

deformation anisotropic elastic-plastic model coupled with damage, International Journal of Plasticity (2008), doi:

10.1016/j.ijplas.2008.12.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ijplas.2008.12.013
http://dx.doi.org/10.1016/j.ijplas.2008.12.013


 

 

 

ACCEPTED MANUSCRIPT 

 
 

 

Strain localization analysis using a large deformation anisotropic 

elastic-plastic model coupled with damage 

 

Badis Haddag, Farid Abed-Meraim* and Tudor Balan 

 

Laboratoire de Physique et Mécanique des Matériaux, LPMM, UMR CNRS 7554, ENSAM de Metz, 

Arts et Métiers ParisTech, 4 rue Augustin Fresnel, 57078 Metz Cedex 3, France 

 

Keywords: Strain Localization, Anisotropic Elastic-plasticity, Large Strain, Isotropic-

Kinematic Hardening, Continuum Damage Theory, Shear Band, Finite Element Simulation. 

 

 

 

 

* Corresponding author. Address: ENSAM de Metz, 4 rue Augustin Fresnel, 57078 Metz 

Cedex 03, France. Tel.: +(33) 3.87.37.54.79; Fax: +(33) 3.87.37.54.70. 

E-mail address: farid.abed-meraim@metz.ensam.fr 



 

 

 

ACCEPTED MANUSCRIPT 

 

 2 

 

Abstract 

Sheet metal forming processes generally involve large deformations together with com-

plex loading sequences. In order to improve numerical simulation predictions of sheet parts 

forming, physically-based constitutive models are often required. The main objective of this 

paper is to analyze the strain localization phenomenon during the plastic deformation of sheet 

metals in the context of such advanced constitutive models. Most often, an accurate prediction 

of localization requires damage to be considered in the finite element simulation. For this pur-

pose, an advanced, anisotropic elastic-plastic model, formulated within the large strain 

framework and taking strain-path changes into account, has been coupled with an isotropic 

damage model. This coupling is carried out within the framework of continuum damage me-

chanics. In order to detect the strain localization during sheet metal forming, Rice’s localiza-

tion criterion has been considered, thus predicting the limit strains at the occurrence of shear 

bands as well as their orientation. The coupled elastic-plastic-damage model has been imple-

mented in Abaqus/Implicit. The application of the model to the prediction of Forming Limit 

Diagrams (FLDs) provided results that are consistent with the literature and emphasized the 

impact of the hardening model on the strain-path dependency of the FLD. The fully three-

dimensional formulation adopted in the numerical development allowed for some new results 

– e.g. the out-of-plane orientation of the normal to the localization band, as well as more real-

istic values for its in-plane orientation. 
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1. Introduction 

The numerical prediction of metal forming defects is a constant preoccupation both for 

scientists and industry. With the development of new grades of sheet metals with high per-

formances (i.e. combining large ductility with high strength), the study of their formability 

limits has become of great importance, since it contributes to increasing the design efficiency 

by reducing costs and time. In order to characterize the formability of sheet metals, Keeler 

(1965) introduced the concept of Forming Limit Diagram, which is defined by the two values 

of the principal strains in the sheet plane. This diagram represents a real practical interest, in 

the sense that it defines a safe zone corresponding to the domain of the sheet formability. 

Since this early work of Keeler, several efforts have been devoted to the prediction of such 

diagrams (e.g. Laukonis and Gosh, 1978; Hutchinson and Neale, 1978; Cordebois and 

Ladevèze, 1982; Needleman and Tvergaard, 1983; Brunet et al., 1985; Arrieux et al., 1985; 

Kuroda and Tvergaard, 2000a,b; Stoughton, 2000; Chow et al., 2002, Butuc et al., 2006). 

The use of advanced constitutive models is known to contribute to the proper prediction of 

the stress/strain history of the material under complex loading and, thus, to an improved pre-

diction of the formability limit. The accurate description of the material behavior has received 

considerable attention in the last decades. For simple applications, the Swift and Voce laws 

are widely used to reproduce the isotropic hardening that occurs during monotonic loading 

paths. However, strain-path changes induce more complex phenomena that must be consid-

ered in the constitutive model. Among the phenomenological approaches, more advanced 

models are defined by combining isotropic and kinematic hardening. In these models, several 

internal variables with nonlinear evolution laws are introduced in order to improve the de-

scription of the Bauschinger effect, the ratcheting effect in fatigue, etc. (e.g. Marquis, 1979; 

Chaboche, 1986; Lemaitre and Chaboche, 1985). An extensive bibliography on this subject is 

reported in (Haddag et al., 2007) as well as in (Chaboche, 2008). 

Since hardening in sheet metals is essentially due to the dislocation microstructure and its 

evolution, numerous attempts have been made to describe its effect on hardening at a macro-

scopic scale. Following this approach, Teodosiu and Hu (1995, 1998) and Teodosiu (1997) 

proposed a microstructure-based model representing not only the monotonic or reverse load-

ing, but also the whole range between the two, including the particular case of an orthogonal 

strain-path. More precisely, the introduction of physically-motivated internal variables that 

describe the evolution of the persistent dislocation structures allowed new transient phenom-
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ena to be modeled. Stagnation, softening, and rapid changes in the work hardening rate – as 

observed during abrupt, two-stage sequential rheological tests – for a wide range of sheet 

metals are very well described with this model (Haddadi et al., 2006). In the current work, the 

plastic anisotropy induced by hardening has been modeled with the Teodosiu and Hu (1998) 

hardening model. The model can be coupled with any yield potential to take into account ini-

tial anisotropy. The classical cyclic hardening model of Chaboche, combining the Armstrong-

Frederick and Voce (or Swift) laws, is used as a reference model, since it is widely available 

in commercial finite element codes. 

However, sheet metal forming involves large plastic deformation that may induce damage, 

eventually leading to strain localization when material failure is approached. In order to take 

this phenomenon into account, several theories have been proposed by introducing damage in 

the constitutive models. The most often used approaches can be classified into two categories: 

micromechanics-based damage formulations and continuum damage theories. Well-

established examples of each category are Gurson’s damage theory (Gurson, 1977) and the 

Continuum Damage Mechanics (CDM), popularized by Lemaitre (1985). The first approach 

consists in describing the material degradation by an internal variable representing the volume 

fraction of the micro-cavities formed during loading. This approach is widely applied for po-

rous materials (Gurson, 1977; Benallal and Comi, 2000; etc.), as well as for sheet metals (e.g. 

Brunet and Morestin, 2001). On the other hand, the CDM approach introduces an internal 

variable that represents the surface density of micro-cracks. It is based on the thermodynamics 

of the irreversible processes, and is widely applied to metallic materials (Lemaitre and 

Chaboche, 1985; Kachanov, 1986; Murakami, 1988; Lemaitre, 1992; Voyiadjis and Kattan, 

1992a,b; Chaboche, 1999). A comparative study of different ductile models (Lemaitre and 

Chaboche, 1985; Gurson, 1977; Thomason, 1990; etc) can be found in Pardoen et al. (1998). 

The CDM approach is adopted in this paper to couple the elastic-plastic model to damage. 

More specifically, the Teodosiu-Hu hardening model is coupled with a Lemaitre-type damage 

model. This allows one to simultaneously reproduce strain-path changes and softening effects. 

In order to define an intermediate state corresponding to the strain localization during 

loading, several approaches have been developed in the literature. Some of them are widely 

applied to determine the FLDs. During the last century, numerous criteria of plastic instabili-

ties have been proposed, e.g. maximum load criteria (Considère, 1885; Swift, 1952; Hora et 

al., 1996; Brunet and Morestin, 2001), Hill’s material stability analysis (Hill, 1952 and 1958), 

or models assuming an initial defect in the material (Marciniak and Kuczy�ski, 1967). More 
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pragmatic models (e.g. the Marciniak-Kuczy�ski model) have been given extensive attention 

because of their industrial applications, in spite of their weaker theoretical foundations (e.g. 

Kuroda and Tvergaard, 2000a,b, 2004; Aretz, 2008). On the other hand, the theoretically 

sounder approaches, e.g. Rice’s strain localization criterion (Rudnicki and Rice, 1975; Rice, 

1976) have mainly been investigated analytically, for simpler constitutive models and for par-

ticular (plane stress or plane strain) loading situations (Bigoni and Hueckel, 1991; Doghri and 

Billardon, 1995; Benallal and Comi, 2000; Benallal and Bigoni, 2004). 

In his initial analysis of localized necking, Hill (1952) used a simple constitutive model 

(rigid-plastic, J2 flow theory) with a plane stress condition, showing that localized necking of 

a thin sheet occurs along the line of minimum straining. As an improvement, Benallal (1998) 

proposed a three-dimensional analysis of localized necking by studying the properties of the 

plastic hardening modulus at the point of strain localization with J2 elastic-plastic flow theory. 

Dudzinski and Molinari (1991) proposed a linear perturbation analysis as an alternative to the 

bifurcation theory to predict plastic instabilities, while Barbier et al. (1998) showed a relation 

between this approach and the bifurcation one. Hora et al. (1996) proposed an improved ver-

sion of the Swift criterion and applied it to the prediction of FLDs, while Brunet and Morestin 

(2001) used this criterion with an advanced elastic-plastic damage constitutive model and fi-

nite element analysis. Recently, Kuroda and Tvergaard (2004) studied the development of 

shear bands by using non-associative plasticity within the framework of a finite element 

analysis, while Kristensson (2006) used a micromechanical model with void effects (size and 

distribution in the representative volume element) to study the formability of metal sheets 

with voids. 

However, the Rice localization criterion is seldom applied to study the ductility limit of 

metal sheets, although its application necessitates only the tangent modulus operator to pre-

dict strain localization and the orientation of localization bands. Also, its implementation in a 

finite element code is relatively easy compared to, for example, the M-K approach. 

In this paper, a general and physical approach is proposed to model sheet metal forming 

by combining: an elastic-plastic constitutive description based on the hardening model of 

Teodosiu-Hu; a Lemaitre-type isotropic damage model; and Rice’s localization criterion. The 

remainder of the paper is structured in four parts. In the first one (section 2), the complete set 

of constitutive equations is developed based on the large deformation theory. The second part 

(section 3) deals with the numerical implementation of the coupled constitutive model. The 

main aspects of the time integration algorithm are described, and the consistent tangent 



 

 

 

ACCEPTED MANUSCRIPT 

 

 6 

modulus is derived in a compact form in order to implement the model into an implicit finite 

element (FE) code. In the third part (section 4), the formulation of Rice’s localization criterion 

and its numerical implementation are presented. In the fourth and last part (section 5), the 

coupled elastic-plastic-damage constitutive model and the localization criterion are applied to 

predict forming limits for monotonous and two-path straining modes. The ability of the model 

to reproduce transient features of the hardening and softening due to damage is investigated 

by means of rheological test simulations. This study allows one to highlight the capability of 

the proposed approach to predict the FLDs as well as the orientation of the shear bands, dur-

ing direct and two-step loading paths. 

2. Constitutive equations 

The phenomenological elastic-plastic-damage modeling adopted here is rate independent 

(without viscous effects) and restricted to cold deformation. The material is initially stress-

free (well-annealed state), undamaged and homogeneous. The ingredients of the constitutive 

model are: a hypo-elastic-damage law defining the stress rate with respect to the elastic strain 

rate, a yield criterion delimiting the elastic zone, a plastic flow rule, and a set of internal state 

variable evolution laws defining the work hardening and damage evolution during plastic de-

formation. Within the framework of large deformation, the constitutive equations require the 

use of objective rates. The goal of such objective derivatives is to satisfy the material invari-

ance by eliminating all the rotations that do not contribute to the material response. A very 

common way to deal with this issue is to use the so-called local objective frames associated 

with various possible decompositions of the deformation gradient, which have been proposed 

in the literature to extend constitutive material models to the framework of large deformation. 

Indeed, when writing the constitutive equations in terms of rotation-compensated variables, 

simple time derivatives are involved in the constitutive equations making them identical in 

form to a small-strain formulation (see (Haddag et al., 2007) for more details on the large 

strain kinematics utilized). It should be noted, however, that when the strains become suffi-

ciently large, the choice of the particular co-rotational formulation (Jaumann, Green-Naghdi, 

plastic spin, etc.) may have an impact on the predicted stress-strain curves and the corre-

sponding limit strains, especially for simple shear. While the Jaumann objective rate is chosen 

here for simplicity, other methods can be adopted to describe the rotation of the material 

frame. Another motivation behind this choice is the conformity to Abaqus, which allows our 

numerical implementation to be validated with regard to existing hardening models that are 
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available in Abaqus. Furthermore, it is generally admitted that the particular choice of rotation 

matrix has little impact within the strain range before localization. 

2.1. Anisotropic elastic-plastic model coupled with damage 

Continuum damage mechanics was first introduced by Kachanov (1958) and slightly 

modified later by Rabotnov (1969). This concept was then further developed (Lemaitre, 1992; 

Chaboche, 1999), based on a continuous variable, d , related to the density of defects or mi-

cro-cracks in the material in order to describe its deterioration. Leckie and Hayhurst (1974), 

Hult (1974), and Lemaitre and Chaboche (1975) adopted this approach to solve creep and 

creep-fatigue interaction problems. Later, it was applied to ductile plastic fracture (Lemaitre, 

1985) and also to other various applications (Lemaitre, 1984). Note that most of the available 

presentations on the concept of continuum damage mechanics were concerned with metals as 

can be found in many treaties and research papers (Altenbach and Skrzypek, 1999; Doghri, 

2000; Brünig, 2002; Abu Al-Rub and Voyiadjis, 2003; Brünig, 2003; Brünig et al., 2008). In 

the context of damage mechanics in metal matrix composites, more recent publications can 

also be found, which are more specifically devoted to composite materials (see, for instance, 

Voyiadjis and Kattan, 1999). 

Experimental evidence of anisotropy in terms of both plasticity evolution and damage de-

velopment has been shown (Chow and Wang, 1987a). In this regard, the modeling of anisot-

ropy by using tensor-valued representation of damage has been done e.g. by Lee et al. (1985) 

and Chow and Wang (1987b), for ductile fracture problems, and more recently by Cicekli et 

al. (2007), for plain concrete problems. For applications to brittle and creep fracture, a number 

of contributions using appropriate anisotropic damage models have been published (see e.g. 

Murakami, 1983; Krajcinovic, 1983). 

In the present work, as already announced in the introduction, a general rate-independent, 

anisotropic, elastic-plastic model is coupled to an isotropic damage model. More precisely, 

the physically-based hardening model of Teodosiu and Hu (1998) is coupled with the iso-

tropic damage model of Lemaitre (1992). The coupling is carried out through the concept of 

effective stress, defined as 

 
1 d

=
−
�

��  (1) 
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and associated with the principle of strain equivalence (Lemaitre, 1971; Lemaitre and Chabo-

che, 1985). In this equation, d  is the continuum damage variable ( [ ]0,1d ∈ , with 0d =  for a 

safe material and 1d =  for a fully damaged one). This is a scalar variable; thus, damage is 

assumed to be isotropic, while �  is the Cauchy stress tensor in the damaged material and �~  is 

the stress tensor in an equivalent undamaged material. This is the classical framework of con-

tinuum damage mechanics (Lemaitre and Chaboche, 1985; Lemaitre, 1992; Altenbach and 

Skrzypek, 1999). 

2.2. Basic equations of the coupled model 

The differentiation of Eq. (1) yields: 

 (1 )d d= − −� � ���� � �  (2) 

As already argued, the forthcoming simple expressions are valid only when applied to ro-

tation-compensated variables, which are adopted throughout this paper. Whenever the stress 

tensors are expressed in a fixed frame, some objective rates should be used instead. 

The rate of the effective stress can be expressed by a hypo-elasticity law: 

 ( )p= −� C : D D��  (3) 

where C  is the fourth-order tensor of the elastic constants, while D  and pD  are second-order 

tensors denoting the total strain rate and the plastic strain rate, respectively. Replacing in Eq. 

(2) leads to: 

 ( )(1 ) pd d= − − −� C : D D ��� �  (4) 

Several approaches have been developed in the literature for coupling this damage de-

scription with a plasticity model (Chaboche, 1999). The simplest one is to let damage affect 

the stress tensor as previously described, while the internal variables describing the hardening 

remain unaffected. This is the approach used by Lemaitre and co-workers (see Chaboche, 

1999; Lemaitre et al., 2000) who coupled damage with several isotropic and/or kinematic 

hardening models. We adopted the same approach in the current work. 

According to Lemaitre (1992), the elastic domain of the damaged material is defined by 

the yield surface written in the following form: 

 ( ) 0F Yσ ′= − − ≤� X� �  (5) 
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where σ�  is the equivalent effective stress, which is a function of ( )/ 1 d′ ′= −� ��  (the devia-

toric part of the effective stress), and the back-stress X  (describing the kinematic hardening), 

whereas Y is the size of the yield surface (related to the isotropic hardening). The associated 

plastic flow rule reads: 

 p Fλ λ∂= =
∂

D V
�

� � �  (6) 

where V�  is the flow direction normal to the yield surface and λ�  is the plastic multiplier that 

is to be determined from the consistency condition. 

By considering the quadratic Hill yield criterion (Hill’48) given by 

 ( ) ( ): :σ ′ ′= − −� X M � X� � �  (7) 

where M  is a fourth-order tensor containing the six anisotropy coefficients of Hill, the plastic 

flow rule can be expressed as 

 
( )

( )
( )

:
1 1

p

d d
λ λλ

σ
′ −

= = =
− −

M � X
D V V

� ��
� �

�
 (8) 

The evolution laws of hardening and damage, which will be defined subsequently, make 

use of the plastic multiplier λ� . This latter is related to the equivalent plastic strain rate p� , 

which is defined as the power conjugate of the equivalent effective stress σ� , i.e. 

 ( ) : ppσ ′= −� X D� � �  (9) 

Combining this last equation with Eq. (7), and given the plastic flow rule (8), the relation-

ship between p�  and λ�  can be written as 

 
1

p
d

λ=
−

�

�  (10) 

2.3. Hardening model 

The macroscopic hardening models are based on a set of internal variables, describing the 

isotropic and kinematic hardening. The Teodosiu-Hu hardening model is described in detail in 

Teodosiu and Hu (1995, 1998). This model makes use of four internal variables: X  and R are 

the classical back-stress and isotropic hardening variables, S  is a fourth-order tensor describ-

ing the directional strength of the planar persistent dislocation structures, and P  is a second-
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order dimensionless tensor describing the polarity of these structures. In general, kinematic 

hardening models use either the direction N  of the plastic strain-rate or the direction �  of the 

deviatoric stress. For a plasticity model coupled to damage, these quantities are defined as: 

 ( ) ( )
( ) ( ):

,             
:

p

p
d d

σ
′ − ′ −= = =
′ −

M � XD � XN �
M � XD

� �
� �

��
 (11) 

For the coupling of the Teodosiu model with damage, the original form of the constitutive 

equations (Teodosiu and Hu, 1995 and 1998; Haddadi et al., 2006) is kept unchanged, except 

for the directions N  and �  which are replaced by their “effective” counterparts N�  and �� . 

Part of the isotropic and kinematic hardening is described by classical R and X variables, 

like in most combined hardening models: 

 0Y Y R f= + + S  (12) 

 ( )R sat RR C R R Hλ λ= − =� ��  (13) 

 ( )X satC X λ λ= − = XX � X H� �� �  (14) 

The tensor S  is further decomposed along the current plastic strain-rate direction into the 

scalar, “active” part DS  and the fourth-order tensor, “latent” part LS , by the following expres-

sions: 

 D LS= ⊗ +� �S N N S  (15) 

 : : ,           D L DS S= = − ⊗� � � �N S N S S N N  (16) 

The evolution laws for DS , LS  and P are given as: 

 ( )
DD SD sat D D SS C g S S hS Hλ λ= − − =� �� �

� � �  (17) 

 
L

L

n

L
L SL L

sat

C
S

λ λ
� �

= − =� �
	 


S

S
S S H� � �  (18) 

 ( )pC λ λ= − = PP N P H� �� �  (19) 

The functions g  and h  have been introduced in order to capture transient hardening after 

a change in strain-path. Their assumed mathematical forms are 
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( )

1 :              if  : 0

1 : 1    otherwise

1 :
1

2 :

p

P D

SD P sat

n
P D

SD P sat

sat

C S
C C S

g
C S

C C S

h
X

�
− − ≥� +�= 


� �� + −� �� +	 
�

� �
= −� �

	 


P N P N

P N

X N
n N

� �

�

�

��

 (20) 

and satX  is a function of S , given by 

 ( ) ( )2 2
0 1 1sat DX X f r r S= + − + −S  (21) 

Consequently, this hardening model involves 13 parameters: 0Y , satR , RC , 0X , XC , PC , 

satS , SDC , SLC , Ln , pn , r  and f . The identification of these hardening parameters is a diffi-

cult task. The experiments required for the identification include monotonic tensile and shear 

tests, but also two or three reverse (preferably shear) tests and at least one orthogonal test (e.g. 

tensile test followed by shear test). The sensitivity of the predicted stress-strain curves to 

some of the hardening model parameters is restricted to small zones of one or several curves 

(e.g. the transition zone of one or the other of the sequential tests). A detailed parameter iden-

tification method for this particular hardening model has been described by Haddadi et al. 

(2006) and several sets of material parameters are provided therein for several sheet metals. 

The material parameters used in the current paper are selected from Haddadi et al. (2006). 

It is noteworthy that although the adopted coupling with a relatively basic isotropic dam-

age model modifies the equations, their mathematical structure remains identical to their un-

coupled form (see original work of Teodosiu and Hu, 1998). Indeed, the assumption of a 

scalar damage variable is convenient for its simplicity and allows the derivation of the cou-

pled evolution equations to be more easily handled. Besides this simplicity and the above-

mentioned difficulties related to material parameter identification, the seemingly form-

identical mathematical structure for the constitutive equations is another motivation that justi-

fies the choice of this simple approach for damage. This property proved very useful for the 

numerical implementation of the coupled model in a finite element code. 
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2.4. Damage evolution law  

Several damage evolution laws are proposed in the literature within the framework of the 

so-called continuum damage mechanics (Lemaitre, 1992; Lemaitre et al., 2000; Hammi, 2000, 

etc.), especially for sheet metals. Here, the evolution law of the damage variable d is assumed 

to be of the following form: 

 ( )
1

1
       if         

0                                               else

se e

i e e
i

d

Y Y

Sd
Y Y

d H β
λ

λ
−

−

� � � ≥� � �= = 
 	 

�
�

�
� �  (22) 

which was recently used by Khelifa (2004) to predict damage in deep drawing process simu-

lations. The scalar quantities s , S , β and e
iY  are material parameters, while the so-called 

strain energy density release rate eY  is given, for linear isotropic elasticity, by the following 

phenomenological expression (see e.g. Lemaitre and Chaboche, 1985; Lemaitre, 1992): 

 ( ) ( )
22

2

2

2
1 3 1 2

2 3

s
e J

Y
E J

σν ν
� �� �
� �= + + − � �
� �	 
� �

� �

�
 (23) 

where 1
3 ( )s trσ = �� �  is the hydrostatic effective stress, 3

2 2 :J ′ ′= � �� � �  is the second invariant of 

the effective stress deviator, and E  and ν  are, respectively, the Young modulus and Poisson 

ratio of the undamaged material. Note that Germain et al. (1983) were the first to suggest the 

extension of Eq. (22) from a linear relation to a more general power law ( 1s > ). 

2.5. Analytical tangent modulus 

Usually, rate-independent elastic-plastic laws can be written in the following compact 

form: 

 :ana=� L D�  (24) 

where anaL  is the so-called analytical tangent modulus. Again, note that this equation is writ-

ten in the local (material) frame. The expression of this modulus is required when formulating 

the Rice localization criterion (see section 4) for the chosen material. 

Let us first determine the plastic multiplier λ� . The consistency condition 0F =�  leads to 

 0Yσ − =� ��  (25) 
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The first term is obtained by the chain rule as 

 ( ): : :
σ σ σσ ∂ ∂ ∂′ ′= + = −

′ ′∂ ∂ ∂
� X � X

� X �

� � �� � �� �� � �
� �

 (26) 

and its subsequent terms are obtained as follows: 

 ( ) ( ): :p λ′ ′ ′= − = −� C D D C D V� ���  (27) 

 
( ):σ
σ

′ −∂ = =
′∂

M � X
V

�

��

� �
 (28) 

 λ= XX H ��  (29) 

 YY H λ= ��  (30) 

Back-substitution of these results leads to the following expression for the plastic multi-

plier: 

 
: : : :
H Hλ λ

λ
′

= =V C D V C D
�  (31) 

where Hλ  is the scalar hardening modulus, affected by damage: 

 : : : YH Hλ = + +XV C V V H�  (32) 

Finally, after substituting in Eq. (4) and rearranging all the terms, the following linear rate 

equation is found: 

 
( ) ( ) ( ): :

:dH
H Hλ λ

α
� �⊗ ⊗� �

= − +� �� �
� �	 
� �

C : V V C � V C
� C D

�
��  (33) 

where 1α =  for plastic loading and 0 otherwise, and (1 )d= −�C C . 

When the tensor C  is isotropic, these expressions are further simplified, giving 

 
2 :G

Hλ

λ = V D
�  (34) 

and 

 
( )224 1 2ana dG d GH

H Hλ λ

α
� �− ⊗ ⊗= − +� �
� �
	 


V V � VL C
� � �

�  (35) 
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where G  is the shear modulus and Hλ  is given by 

 ( )( )1 2 : : YH d G Hλ = − + +XV V V H� � �  (36) 

One can notice that, if there is no damage in the model, then =C C� , VV =���� , =�� �  and 

dH  vanishes; in this case, it is easy to see that the classical expression of the elastic-plastic 

tangent modulus is recovered (see e.g. Haddag et al., 2007). 

3. Numerical implementation 

In a finite element code, the constitutive model takes the form of a stress (and state) up-

date scheme between a time t  (at increment n ) and the subsequent time t t+ ∆  (increment 

1n + ). The numerical implementation of this coupled model is done here using an implicit 

time integration scheme, following the Hughes and Winget (1980) approach, i.e. integration 

of the constitutive equations in the co-rotational frame. For the selected elastic-plastic model 

without damage, an accurate, implicit state update algorithm has already been developed 

(Haddag et al., 2007). The numerical implementation of the damage-coupled model follows 

the same approach (see e.g. Benallal et al., 1988) and, under some assumptions, it will take a 

similar form. 

First, the discrete forms of the constitutive equations are reviewed. Then, the main steps of 

the derivation of the consistent (algorithmic) tangent modulus are given. 

3.1. Discrete form of the constitutive equations 

Elasticity and normality laws.    The discrete form of the elasticity law is 

 ( )e p∆ = ∆ = ∆ − ∆�� C : � C : � �  (37) 

This leads to the stress update equation 

 ( ) ( )1 11 p
n n nd+ +

� �= − + ∆ − ∆� �
�� � C : � �  (38) 

where ( )/ 1n n nd= −� �� . It appears that the final stress depends on the plastic strain increment 

and on the damage. The plastic strain increment is obtained from the discrete normality rule: 

 1 1
1 1

1
1

p
n n

n n

F
d

λ λ λ+ +
+ +

∂∆ = ∆ = ∆ = ∆
∂ −

� V V
�

�  (39) 
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where the implicit character of the scheme clearly appears. 

Hardening variables.    The hardening variables are governed by rate equations of the form 

λ= yy H �� . According to Haddag et al. (2007), they are updated with an implicit, semi-

analytical scheme. The following form of the update equations is obtained 

 ( )1 1 1, ,n n n n λ+ + += + ∆ ∆y y y � y  (40) 

Damage.    The semi-analytical time integration approach already used in Haddag et al. (2006, 

2007) is used for the damage variable, which leads to 

 ( ) ( )
1

1
1 1

1 1

1

1 1 1     if 

                                                                       otherwise

se e
e en i

n n n i

n n

Y Y
d d Y Y

S

d d

β
β β λ

+
+ +

+ +

+

� �� �−
� �= − − − + ∆ ≥� �
� �	 
� �

=

 (41) 

3.2. Numerical resolution 

The resolution of the previous set of nonlinear equations is performed using the Newton-

Raphson procedure. In Haddag et al. (2007), the elastic-plastic model has been reduced to a 

set of two equations, depending only on the main variables ′= −T � X  and ∆λ. The size re-

duction of the linear systems is a common preoccupation when constitutive models are im-

plemented (see e.g. Alves, 2003; Khelifa, 2004; Haddag et al., 2007, etc.). This approach 

ensures the robustness of the Newton-Raphson resolution, while keeping computing times 

within reasonable values. In the case of the damage-coupled model, adopting the same reduc-

tion procedure leads to the following two-equation system: 

 
( ) ( )

( ) ( )
1 1 1 1

1 1

2 2 , ,

0,

n n n n n

n n

G G d

Y

λ λ

σ λ
+ + + +

+ +

� �′− − ∆ + ∆ + ∆ ∆ � �� �= � �� �− ∆ � �� �

T T � V T X T 0

T T

� � � � �

� ��

 (42) 

where ′= −T � X� �  and ′∆�  is the deviatoric part of the strain increment. Nevertheless, Eq. (41) 

should be added to this nonlinear system, which can be subsequently solved for 1n+T� , λ∆  and 

1nd + . For the current implementation, a simpler approach has been chosen upon noticing that 

the damage variable 1nd +  enters the system (42) only through the V�  variable. Therefore, the 

damage equation is uncoupled for this system at each increment by considering the value nd  

instead of 1nd +  wherever it explicitly appears in system (42), namely in only one term ( V� ). 
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By doing this, the numerical resolution becomes very similar to the one used for the undam-

aged model. Another motivation behind this assumption is that the damage equation exhibits a 

yield value; thus, during the first part of the loading history, the previous approximation will 

have no impact on the solution. During the last part, when damage is activated, the strain in-

crements should be restricted to safe values in order to ensure the overall accuracy. 

3.3. Consistent tangent modulus 

For the finite element equilibrium resolution, the constitutive algorithm must also provide 

the variation of the stress increment due to a variation in the strain increment: 

 ( ) ( ):algD D∆ = ∆� L �  (43) 

The fourth-order tensor algL  is the so-called consistent tangent modulus (algorithmic 

modulus), which is calculated hereafter. 

The differentiation of the elasticity law gives 

 ( ) ( ) ( ) ( ) ( ) ( )1 : 1 2 pD d D d GD D d∆ = − ∆ − − ∆ −� C � � ��  (44) 

The differential of the plastic strain increment, ( )pD ∆� , can be determined by differentia-

tion of the normality rule: 

 ( ) ( ) ( )pD D Dλ λ∆ = ∆ + ∆� V V� �  (45) 

The differentiation of the yield criterion and V� , respectively, gives 

 ( ) ( ) ( ) ( )1
: ,              :d

Y

Y
D D D D

H
λ ∂� �∆ = − =� �∂	 


V T V Q T
T

�� � �
�

 (46) 

where 

 ( ) ( )1
,            

1
d
Y

Y
H

d σ λ
∂ ∂= = − ⊗ =
∂ − ∂∆
VQ M V V
T

�
�

� �
 (47) 

By replacing ( )D λ∆  and ( )D V�  in Eq. (45) and then in Eq. (44), one can obtain 

 ( ) ( ) ( ) ( ) ( ) ( ) 
1

1 1 2 :d
Y

Y
D d D d G D D d

H
λ

� �∂� �∆ = − ∆ − − ⊗ − + ∆ −� �� �∂	 
� �
� C : � V V Q T �

T
�� � �

�
 (48) 
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One still has to express ( ) ( ) ( )D D D′= −T � X� � . By differentiating ′��  and X , and replac-

ing in the relation of ( )D T� , one can obtain 

 ( ) ( )12 :D G D−= ∆T � ��  (49) 

with 

 4

1 1
2 d d

Y Y

Y Y
G

H H
λ

λ
� �∂ ∂ ∂ ∂� � � �′= + ⊗ − + ∆ + + ⊗ −� �� � � �∂ ∂ ∂∆ ∂	 
 	 
� �

X X
� I V V Q V

T T T
��

� � �
 (50) 

where 4′I  is the fourth-order symmetric and deviatoric identity tensor. By differentiating the 

discrete form of the damage evolution law (Eq. (41)), ( )D d  reads 

 ( ) ( ) ( )e
e

d d
D d D D Y

Y
λ

λ
∂ ∂= ∆ +

∂∆ ∂
 (51) 

The differentiation of Eq. (23) gives 

 ( ) ( ) ( )2 11 1
: 4 : : 3 :

2
e s

d
Y

Y
D Y G D D

G H
λ −� �� �∂� �� �′= − ⊗ − + ∆ ∆ + ∆
 �� �� �∂	 
� �� �� �

� C V V Q � � � �
T

��� �
�

 (52) 

By replacing all these terms, ( )D ∆�  can be linearly related to ( )D ∆�  (see Eq. (43)) us-

ing the consistent modulus algL , which takes the following form: 

 

( ) ( ) ( )

( )

( )

2 1

2 1

1
1 4 : :

1 1
          : 4 : :

2

2
          3 :   :

d
Y

e d
Y

s
e d

Y

Y
D d G D

H

d Y
G D

Y G H

d G d Y
D

Y H

λ

λ

λ

−

−

−

� �� �∂� �� �∆ = − − ⊗ − + ∆ ∆
 �� �� �∂	 
� �� �� �

� �� �∂ ∂� �� �′− ⊗ − ⊗ − + ∆ ∆
 �� �� �∂ ∂	 
� �� �� �

∂ ∂ ∂� �− ⊗ ∆ − ⊗ −� �∂ ∂∆ ∂	 


� C V V Q � �
T

� � C V V Q � �
T

� � � � V �
T

��
�

��� �
�

� � �
�

( )1 : D ∆�

 (53) 

This last expression defines the algorithmic tangent modulus algL  to be used for the nu-

merical implementation into an implicit finite element code. 

4. Localization criterion 

As mentioned in the introduction, several theories have been proposed in the literature to 

predict strain localization in sheet metals. One of the most popular theories is the Marciniak-
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Kuczy�ski analysis, which has been intensively used in sheet metal forming, both due to its 

simple implementation and also for its applicability to a wide range of materials: rate-

dependent and rate-independent behavior models. The localization criterion first proposed by 

Rice (Rudnicki and Rice, 1975; Rice, 1976) is used in this study. This criterion has already 

been applied by other authors to analyze strain localization for different material behavior 

models. For example, Benallal and Comi (2000) applied this criterion to porous media, Le-

maitre et al. (2000) used it to define a critical value of damage in an elastic-plastic-damaged 

material, while Doghri and Billardon (1995) adopted this criterion to predict the orientation of 

the localization bands for an elastic-plastic-damaged material within a finite element analysis. 

In a recent study, this bifurcation criterion has also been used with a Gurson-type model for 

ductile fracture analysis (Sánchez et al., 2008). Ito and co-workers (Ito et al., 2000) have 

combined an original constitutive law that takes into account the fact that “the direction of the 

stress rate affects the direction of the plastic strain rate” (Goya and Ito, 1990) and Hill’s quad-

ratic yield surface with Rice’s criterion to compute FLDs without pre-strain. Recently, Rice’s 

criterion has been combined with a self-consistent micromechanical model to predict ductility 

limits (Franz et al., 2008, 2009), while Signorelli et al. (2008) and Wu et al. (2005, 2007) used 

the M-K approach combined with crystal plasticity models. 

In addition to its sound mathematical background, this criterion does not require any fit-

ting parameter and it is independent of the resolution of the constitutive equations. Therefore, 

it is relatively easy to implement as a post-processing computation. Moreover, it predicts the 

limit strains reached at localization, as well as the orientation of the localization band. Rice 

(1976) indicates that the criterion does not detect any strain localization in the case of associa-

tive plasticity, unless a softening behavior is considered in the constitutive model. 

The basic ideas underlying this criterion are briefly recalled hereafter, before the particular 

form of the analytical tangent modulus required for its application is derived. 

4.1. Rice’s localization criterion 

This criterion applies to a continuous medium undergoing a homogeneous strain state. The 

strain localization is searched for as a bifurcation phenomenon, meaning that a non-

homogeneous straining mode becomes possible (i.e., the uniqueness of the solution of the rate 

equations is lost). This non-homogeneity is considered as a planar localization band, defined 

by its normal n (see Fig. 1). The velocity gradient inside and outside the band are respectively 

denoted as −G  and +G , while the corresponding nominal stresses are denoted as −
�  and +

� . 
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Fig. 1. Schematic representation of the localization band. 

 

 

The nominal stress rate is related to the velocity gradient by the following constitutive law: 

 :=� G� L  (54) 

where L  is an analytical tangent modulus that has to be expressed in terms of anaL  and other 

fourth-order moduli induced by the large strain formalism. The continuity of the stress vector 

through the band of normal n is written as 

 � �⋅ =� �n � 0�  (55) 

where [ ] + −= −A A A  designates the jump in a quantity A across the chosen plane. Maxwell’s 

compatibility condition for the velocity field states that a vector �  exists such that the jump in 

G reads 

 [ ] = ⊗G � n  (56) 

Note that =� 0  enforces a continuous velocity gradient field. Combining Eqs. (54)-(56), 

one obtains 

 ( )⋅ ⋅ ⋅n n � = 0L  (57) 

This is a typical eigenvalue problem and the existence of a nontrivial solution for �  (i.e., 

bifurcation condition ≠� 0 ) requires that the following determinant vanishes: 

 ( )det 0⋅ ⋅ =n nL  (58) 
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This last equation gives a necessary condition for a localization band to appear (i.e., when 

the acoustic tensor becomes singular, thus corresponding also to the loss of ellipticity of the 

boundary value problem); it describes the strain localization criterion introduced by Rice 

(1976). 

4.2. Tangent modulus for the ellipticity loss prediction 

The application of the former localization criterion requires the calculation of the modulus 

L . In a fixed frame, the hypo-elasticity law reads 

 ( ): p= −� C D D
�

�  (59) 

where �
�

�  designates the Jaumann derivative of the effective Cauchy stress 

 = − ⋅ + ⋅� � W � � W
�

�� � � �  (60) 

The stress rate can be thus expressed as 

  (1 )d d= − − + ⋅ − ⋅� � � W � � W
�

�� � �  (61) 

The Cauchy stress and the nominal stress are related to each other by the classical relation 

 J = ⋅� F �  (62) 

where F is the deformation gradient and )det(F=J  is its Jacobian. Thus, 

 ( )1  ( )J tr−= ⋅ + − ⋅� F � D � G �� �  (63) 

In an updated Lagrangian formulation, =F I  and 1J = ; Eq. (63) simplifies as: 

  ( )tr= + − ⋅� � � D G �� �  (64) 

and, replacing the Cauchy stress rate from Eq. (61) yields: 

 ( )  (1 )  ( )pd d tr= − − − − ⋅ + − ⋅� C : D D � � W � D D ��� �  (65) 

All terms on the right-hand side of this above expression can be linearly expressed in 

terms of the velocity gradient G, in the following way: 

 ( )  (1 ) : :p anad d− − − =C D D � L G� �  (66) 

 1 ( ) :tr =� D L G  (67) 
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 2 :⋅ =D � L G  (68) 

 3 :⋅ =� W L G  (69) 

where anaL  is the analytical tangent modulus from Eqs. (24) and (33), while 1L , 2L  and 3L  

are fourth-order tensors that can be expressed, after some mathematical manipulations, as 

 1ijkl ij klL σ δ=  (70) 

 1
2 2ijkl ik lj il kjL δ σ δ σ� �= +� � (71) 

 1
3 2ijkl ik lj il jkL σ δ σ δ� �= −� � (72) 

and finally 

 1 2 3
ana= + − −L L L LL  (73) 

It is noteworthy that the resulting modulus L  possesses no symmetry, due to the particular 

forms of the three iL  terms. 

4.3. Numerical implementation of the localization criterion 

The numerical detection of localization with Rice’s criterion can be considered as a mini-

mization problem: 

 
( )

( ) { }
minimize  with 1

det

f

f

� =�



= ⋅ ⋅��

n n

n n nL
 (74) 

In the case where ( )min 0f >� �� �n , there is no localization in the material point considered. 

Otherwise, ( )  / 0loc locf∃ =n n , corresponding to the moment of the apparition of localization, 

where locn  represents all possible normal directions to the bands so formed. The applied algo-

rithm is composed of the following main steps: 

 

1. Compute the tangent modulus L  at the end of the loading increment. 

2. Compute ( )f n  for different directions. 

3. Search the direction minn , thereby giving the minimum of ( )f n . 

4. Verify whether ( )min 0f ≤n . 
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o If .true. then minloc =n n  is the orientation of the first band and strain localiza-

tion is reached. 

o Otherwise, continue to 1 for the next loading increment. 

5. Applications 

In this section, the capability of the proposed approach to predict the FLDs, as well as the 

orientation of the shear bands, in monotonic and two-step sequential loading paths, is investi-

gated. The study highlights the capability of the coupled model to predict different character-

istics of the stress-strain relationship, especially its potential to simultaneously reproduce 

transient features of the hardening due to strain-path changes and the softening due to damage. 

5.1. Validation of the constitutive model 

Several direct and sequential loadings are considered for the investigation of the constitu-

tive model and the validation of the computer implementation. The simulated tests correspond 

to typical in-plane sheet metal rheological tests, which are regularly used for the experimental 

and numerical assessment of FLDs using various models. 

The materials used for the investigations are a dual phase high strength steel and a mild 

steel. The corresponding plastic anisotropy and hardening parameters (Hill’48 yield surface 

and Teodosiu-Hu hardening parameters) are listed in Table 1 and have been taken from 

Haddadi et al. (2006) and (3DS Report, 2001). The initial anisotropy is rather negligible for 

the dual phase steel (F, G, and H close to 0.5), while it is important for the mild steel. Plastic 

anisotropy is known to dramatically influence the forming limits and thus the use of the ani-

sotropic Hill criterion is compulsory for the mild steel. Concerning hardening parameters, it is 

noteworthy that the latent part of the directional strength tensor, LS , is deactivated for the 

dual phase steel, since SLC  and r are set to zero. 

In (Haddadi et al., 2006), the material parameters are also available for a simpler harden-

ing model combining the Armstrong-Frederick kinematic hardening model, Eq. (14) without 

coupling to damage (i.e., 0d = , =�� � , and � �=� ), with the Swift isotropic hardening model: 

 ( )0

np
RR C ε ε= +  (75) 
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where 0,  and RC nε  are material parameters and pε  is the cumulated plastic strain. This clas-

sical model will be used hereafter as a reference when useful; the corresponding parameters 

are also listed in Table 1. 

One should note, however, that coupling with damage was not taken into account during 

the parameter identification of the elastic-plastic model. Parameter identification of damage 

models is a troublesome task and, to the knowledge of the authors, no attempt has been made 

to identify the parameters for the Teodosiu model coupled with damage. Moreover, the hard-

ening parameters also depend on the parameter identification of the yield function, which also 

may influence considerably the FLD (Aretz, 2007). For the current work, a numerical study 

has been performed to address the impact of the damage parameters on the stress-strain curves 

and the FLDs. Consequently, a set of parameters has been chosen (see Table 2) that exhibits 

acceptable results, e.g., in terms of limit strains for simple tests. While one cannot consider 

the resulting set of parameters to correspond to the real materials under study, the use of the 

same set of damage parameters for both the Teodosiu model and the reference Armstrong-

Frederick-Swift (AFS) model is believed to be consistent for the numerical comparison per-

formed in the remainder of the paper. 
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Table 1. Parameters of plastic anisotropy and hardening for the two materials analyzed in the 

paper, from Haddadi et al. (2006). 

 
Hill’48 yield function parameters Teodosiu model parameters 

 dual phase mild steel  dual phase mild steel 

F 0.490 0.251 Y0  (MPa) 308.3 122.2 

G 0.504 0.297 RC  49.7 27.3 

H 0.496 0.703 satR  (MPa) 125.2 80 

L 1.5 1.5 XC  53.5 614.6 

M 1.5 1.5 0X   (MPa) 153 6.9 

N 1.27 1.29 SDC  4 3.9 

   SLC  0 1.1 

AFS model parameters satS   (MPa) 387.2 246.7 

Y0  (MPa) 308.3 122.2 Ln  0 0 

0ε  0.00082 0.00308 pn  649 27.7 

n 0.132 0.219 r  0 1.9 

satX   (MPa) 169.2 116.7 f  0.862 0.415 

XC  15.8 1.45 pC  0.13 2.2 

 

 

Table 2. Damage parameters used in the simulations. 
 
 

Parameters e
iY  (MPa) S s β 

Values 0 2 1 5 
 
 

Fig. 2 illustrates the effectiveness of the implementation of the damage model in the FE 

code Abaqus and its numerical validation. Since the damage model adopted in this work is not 

available in Abaqus, the validation is performed with respect to the isotropic-kinematic hard-

ening model (without damage), which is available in Abaqus. First, the same hardening model 

is obtained from the Teodosiu model by setting several parameters to zero and by deactivating 

the damage. As shown in Fig. 2a, the reference curve is obtained even when extremely large 

time increments are used. Next, the same reference curve is recovered by giving limit values 
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to the damage parameters, when the damage law is activated. Through these simple simula-

tions, the numerical implementation of the model appeared to be accurate and effective. 

Fig. 3 shows the stress-strain predictions of several monotonic and two-step sequential 

tests for the mild steel. The effects of strain-path changes are clearly captured by the Teodosiu 

model for both reverse and orthogonal tests, as reported by Haddadi et al. (2006). On the other 

hand, the coupling with the damage model introduces softening behavior effects that were not 

available in the previous versions of the model. Other two-stage strain-path loadings will be 

further simulated in § 5.2 to analyze the effect of pre-strain on the FLD. Fig. 3b emphasizes 

the differences between the predictions of the two hardening models. As expected, the two 

models describe in a very different manner the transition zones after strain-path change; how-

ever, the predictions of the remaining of the two-stage sequential tests are remarkably similar 

up to very large strains. While this figure illustrates well the consistency of the two models, it 

is noteworthy that the predictions of the shear test up to shear strains equal to 3 cannot be con-

sidered realistic. In addition to the damage parameter identification, the choice of the Jaumann 

rate also becomes very questionable at such large strains. Indeed, although very popular in FE 

codes, this co-rotational description has been shown to exhibit some shortcomings when ki-

nematic hardening is considered in the elastic-plastic constitutive modeling (Nagtegaal and 

De Jong, 1981; Lee et al., 1983). The main manifestation of this, which was first observed by 

Dienes (1979), is a spurious oscillatory shear stress response in simple shear test simulation 

when the strains become sufficiently large. This observation gave rise to extensive investiga-

tions in the literature; some of which suggesting the use of alternative objective stress rates, 

while a more consistent treatment of this undesirable oscillation, pioneered by Dafalias (1985), 

seems to be the inclusion of the plastic spin as a variable in the constitutive modeling. How-

ever, the evolution law of such a spin tensor is generally difficult to model; only microme-

chanical physically motivated models give an explicit formula for the plastic spin, whereas in 

most phenomenological models it is assumed to vanish. In all the subsequent applications, 

however, the stress-strain curves should not go beyond the strain localization point as dis-

cussed in Section 5. 
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Fig. 2. Validation of the numerical implementation of the constitutive model; simulations of 

tensile tests for the DP material. (a) Validation of the elastic-plastic model with respect to the 

Abaqus built-in model. (b), (c) Effect of the damage parameters s and S on the stress-strain 

curve. 
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Fig. 3. Different loading path simulations for the mild steel using the damage model coupled 
to: a) the Teodosiu model, b) the Armstrong-Frederick-Swift (AFS) model. Monotonous ten-
sile and shear tests (dashed lines), reverse shear tests (thin line), 10% tensile test followed by 

a shear test (thick line). The (.)11 Cauchy stress / logarithmic strain components are repre-
sented for all situations but simple shear, when the shear Cauchy stress and shear engineering 
strain components 12σ  and 12 122 D dtγ = �  are plotted instead. The zones of moderate strains 

are enlarged to emphasize the transition zone predictions after strain-path changes. All the 
tests are performed along the rolling direction. 
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5.2. Forming Limit Diagram prediction 

As demonstrated by Rice (1976), the localization criterion considered here does not allow 

for the detection of strain localization in the case of an associative plasticity model with satu-

rating stress-strain curves. This limitation is clearly illustrated in Fig. 4 (Top). In other terms, 

the introduction of a softening effect (by coupling the model with damage for instance) is re-

quired for the activation of the criterion, as shown in Fig. 4 (Bottom). 

Fig. 5 illustrates the evolution of the localization criterion for different rheological tests as 

well as its respective predictions of limit strains. The strain state corresponding to the criterion 

activation is considered as the formability limit, and is plotted on the FLD. Fig. 6 shows the 

FLDs that correspond to various sets of damage parameters. As expected, delayed initiation of 

damage predicts higher formability limits. This figure clearly demonstrates the dramatic im-

pact of the damage parameters on the formability prediction (see also Haddag et al. (2008)). 
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Fig. 4. Detection of strain localization by means of Rice’s criterion in a uniaxial tensile test 

for the dual phase material without damage (Top) and with damage (Bottom). 
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Fig. 5. Loading path simulations (bottom) and detection of strain localization by means of 

Rice’s criterion (top) for the dual phase steel. 
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Fig. 6. FLDs for the mild steel predicted by means of the Rice criterion for different values of 

damage parameters. When not specified on the plots, the missing damage parameters take the 

values in Table 2. The thick curve on all the plots corresponds to the damage parameters se-

lected for all the subsequent simulations. 
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In the remainder of the paper, the same damage model and the parameters from Table 2 are 

used with either the Teodosiu or Armstrong-Frederick-Swift (AFS) hardening model. In order 

to illustrate the consistency of this choice, the tensile stress-strain curves for the mild steel and 

the FLDs corresponding to both situations are plotted in Fig. 7. The respective predictions of 

the two models are slightly different. One may note that, in the range of moderate strains 

where the hardening parameters are usually identified (up to 30…40% of tensile strain), the 

stress-strain curves almost coincide. Beyond the strain range that is typical for the identifica-

tion of the hardening parameters, differences appear between the two predictions and, accord-

ingly, the limit strains are somewhat different. As seen in Fig. 7a, the FLDs predicted by the 

two models are fairly close to each other, with the largest difference being observed for uniax-

ial tension. Finally, the effect of a pre-strain on the FLD is shown in Fig. 8. The well-known 

“translation” of the FLD to the left in the case of uniaxial tensile pre-strain is observed, as 

well as the translation of the FLD to the right in the case of balanced biaxial pre-strain. Thus, 

the classical tendencies observed in experiments are well reproduced by the localization crite-

rion adopted in this work. 
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Fig. 7. Forming limit diagrams and tensile stress-strain curves for the mild steel predicted 

with the Teodosiu hardening model and the Armstrong-Frederick-Swift (AFS) model. The 

hardening parameters for both models are taken from (Haddadi et al., 2006), listed in Table 1, 

and the damage parameters are given in Table 2. 
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Fig. 8. Effect of 10% tensile and expansion pre-strains on the FLD predicted by means of 

Rice’s criterion (mild steel, Teodosiu model). 

 
 

5.3. Orientation of the localization bands 

Rice’s localization criterion also provides the orientation of the localization band. This 

orientation can be defined by two angles, as shown in Fig. 9: the angle 1θ  gives the inclina-

tion of the band with respect to the rolling direction in the sheet plane (RD,TD), while the an-

gle 2θ  gives the inclination of the band with respect to the rolling direction in the thickness 

plane (RD,ND). For sheet materials, these two angles correspond to the in-plane orientation of 

the band, and a measure of its out-of-plane inclination. Most of the developments available in 

the literature assume a plane stress state and, moreover, do not take the out-of-plane inclina-

tion into account (e.g. Lemaitre et al., 2000). 
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Fig. 9. In-plane and out-of-plane orientation of the localization band of the sheet. 

 

 

 

The orientation of the localization band is reported in Fig. 10 for different loading modes. 

The values of the in-plane angle for simple shear and uniaxial tension correspond to the clas-

sically known experimental values as well as to those predicted with other models. For the 

plane strain tension, the result corresponds to the experimental observations, as well as to the 

prediction of the Marciniak-Kuczy�ski model (for the in-plane orientation). On the contrary, 

calculations of plane strain tension using the Rice model, when the normal to the localization 

band is forced to lay in the sheet plane, predict an in-plane angle of about 75°…80° (depend-

ing on the material model and parameters). Although the analysis is purely theoretical, the 

graphical representations clearly correspond to the experimental localization modes for the 

considered tests. The 3D analysis is not only useful for predicting the out-of-plane orientation 

of the band, but it is compulsory for a proper prediction of the in-plane orientation of the band 

and the corresponding limit strains. As shown in Fig. 10, the band is perpendicular to the 

sheet plane for simple shear and uniaxial tensile tests, while it is inclined at an angle of 45° to 

the sheet plane for plane strain tension. In the case of the equibiaxial tensile test, there is no 

privileged in-plane orientation for the band. As a final result, the effect of pre-strain on the 

band orientation has also been investigated during sequential rheological tests. After 5% and 

10% of pre-strain in uniaxial tension or equibiaxial tension are applied, the band orientations 

are practically unchanged during the subsequent monotonic tests. Thus, no effect of the pre-
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strain on the orientation of the localization band has been noticed. However, the limit strains 

are strongly influenced. This aspect is further investigated hereafter. 

 

 

 
 

 

Fig. 10. Sketches of the in-plane and out-of-plane orientation of the localization band of the 

sheet. 

 
 
 
 

5.4. Influence of strain-path changes on the predicted FLDs 

The dramatic impact of the strain path on the forming limits is well known. The concept of 

stress-based FLD (the σ FLD) initiated by Arrieux et al. (1985) sought to provide an alterna-

tive, strain-path independent way to address the sheet metal formability. However, the recent 

works of Yoshida and co-workers (Yoshida et al., 2007; Yoshida and Kuwabara, 2007; Yo-

shida and Suzuki, 2008) provide experimental evidence and theoretical explanations of the 

strain-path dependency of the σ FLD for particular cases of strain-path changes and, more 

generally, when the constitutive behavior of the material is strain-path dependent. It has also 

been shown (Gotoh, 1985; Kuroda and Tvergaard, 2000b) that the details of the loading pro-

cedure during a strain-path change (with elastic unloading or not; with abrupt or continuous 

path change) strongly affect the results. Of equal importance, the constitutive model is known 

to affect the strain-path dependency of the FLD, at least when the Marciniak-Kuczy�ski 

model is used (Hiwatashi et al., 1998; Yoshida and Suzuki, 2008). Since Rice’s criterion re-
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lies mainly on the constitutive tangent modulus to predict localization, its ability to capture 

the strain-path dependency on the FLD prediction is investigated here. Among several popular 

strain-path change possibilities (Nakazima et al., 1968), the combination of tensile or bal-

anced biaxial pre-strains followed by plane strain tension has been shown to be insensitive to 

the details of the loading procedure adopted in the simulation (Kuroda and Tvergaard, 2000b). 

The mild steel is used for this investigation, as it exhibits complex strain-path-change tran-

sient phenomena, and the predictions of the Teodosiu model are compared to those of the 

AFS model (both of which are coupled with damage). 

The results of this investigation are summarized in Fig. 11. When the second loading 

mode is plane strain tension, the formability of the sheet material is dramatically reduced. As 

soon as the amount of pre-strain reaches a certain level, the strain localization appears imme-

diately after the strain-path change. It is clear from Fig. 11 that this critical pre-strain level is 

smaller for the Teodosiu model than for the AFS model, whatever the pre-strain is tensile or 

biaxial. In order to understand the origin of these differences, the stress-strain curves corre-

sponding to the two-path tests used to determine the FLDs are shown in Fig. 12 for both mod-

els. The ( )11
⋅  stress and strain components are represented in these plots so that the strains at 

localization are the same as the major strain values for the corresponding points in Fig. 11. 

When tensile pre-strains are used (Fig. 12a and 12b), the results are very illustrative. With the 

increase of the pre-strain amount, the two models exhibit different characteristics. The classi-

cal AFS model always predicts almost the same plane strain tension curve, except that it is 

“translated” with the amount of tensile pre-strain. While the amount of pre-strain is increasing, 

the amount of subsequent strain prior to localization decreases and vanishes when the pre-

strain is 70% or larger. The Teodosiu model exhibits fairly different behavior characteristics. 

Larger pre-strains induce an increase in the stress level after strain-path change, together with 

a decrease of the slope of the stress-strain curve. As a consequence, the decrease of the 

amount of subsequent strain before localization is accelerated, and decreases more rapidly 

down to zero. The same conclusions can be observed in Fig. 12c and 12d for the second 

strain-path change, which involves a biaxial pre-strain followed by plane strain tension. These 

latter figures also show very clearly that the two models predict very different stress levels at 

localization. Indeed, the stress at localization is decreasing continuously for the AFS model as 

the pre-strain is increasing. However, for the Teodosiu model, the stress is increasing until the 

pre-strain reaches a value of 15%. At this point, the subsequent strain (until localization) al-
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most vanishes and increasing the pre-strain leads to a decrease of the stress levels. This differ-

ence is due to the larger stresses and smaller hardening slopes predicted by the Teodosiu 

model after a strain-path change, in agreement with the experimental observations reported 

e.g. by Haddadi et al. (2006) for this material. These observations concerning the path-

dependence of the stresses at localization agree very well with the recent conclusions obtained 

by Yoshida and Suzuki (2008) using the Marciniak-Kuczy�ski model. 
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Fig. 11. Effect of strain-path change on the forming limit diagram of the mild steel: a com-

parison between the Teodosiu model and the Armstrong-Frederick-Swift (AFS) model. 
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Fig. 12. Stress-strain curves for tensile loading followed by plane strain loading (a) with the 

AFS model and (b) with the Teodosiu model. (c) Stress-strain curves for balanced biaxial 

loading followed by plane strain loading with the AFS model and (d) with the Teodosiu 

model. Open circles indicate the points where the localization criterion has been reached for 

each simulation. The material used is mild steel. 
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The two-step loading procedure used for this analysis did not include elastic unloading, as 

is clearly visible from the plots. The second loading path has been directly imposed at the end 

of the first path, and the stress point slides along the yield surface from the initial location to 

the subsequent one without unloading. This is consistent with Kuroda and Tvergaard (2000b), 

who showed the FLD to be insensitive to the loading procedure for this particular strain-path 

change. It is noteworthy that the transition zones after a strain-path change are correctly re-

produced here with the Teodosiu model, whether elastic unloading is simulated (Fig. 3) or not 

(Fig. 12), provided that the numerical implementation is accurate. This clarifies some discus-

sions in the scientific literature about the need for a modified version of the Teodosiu model 

when the strain-path changes continuously. 

 
 
 

6. Conclusions 

An advanced anisotropic elastic-plastic model has been coupled to an isotropic damage 

model, and the bifurcation condition of Rice has been introduced as a localization criterion for 

this material model. The whole set of constitutive equations is formulated within the large de-

formation framework, since sheet metals undergo large strains during forming. In order to use 

the proposed approach as an effective prediction tool, a robust implementation of the constitu-

tive model has been performed using an implicit integration scheme. The corresponding con-

sistent tangent modulus has been derived, so that it can be used in an implicit finite element 

code. 

For the strain localization analysis, an analytical tangent modulus has been developed 

within a general, fully three-dimensional framework, in order to predict the limit strains at 

localization, as well as the orientation of the localization band in the general 3D case, without 

the assumption of a plane stress state (as is commonly adopted in the literature). Also, the ori-

entation of the planar band of localization has been sought in the whole space of possible ori-

entations. 

Monotonous and sequential two-step rheological tests have been simulated. As a first re-

sult, the proposed hardening-damage coupling allows for the description, simultaneously, of 

transient hardening due to strain-path changes and softening effects. These numerical simula-

tions reproduce the experimental trends both in terms of limit strains and localization band 
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orientation. In addition, the unconstrained, fully three-dimensional implementation of the lo-

calization criterion made out-of-plane orientations possible for the localization band, which 

represents an original result. The prediction of sequential FLDs after two-step loading 

strongly depends on the material model. The trends predicted with the Rice localization crite-

rion used in this paper are confirmed by recent results from literature, obtained with the M-K 

model. 

Consequently, the Rice criterion proves itself to be an effective alternative for the predic-

tion of sheet metal formability. In order to further improve its accuracy, this modeling frame-

work will be generalized to more complex (anisotropic) damage models and their numerical 

implementation in a fully implicit way. The model can be applied for the prediction of form-

ing limits for arbitrary loading paths (e.g. with continuous strain-path changes), as well as 

strain localization predictions in finite element simulations of complex forming processes. 
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