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Abstract 

In this study, the formulation of the SHB8PS solid-shell element is reviewed in order to eliminate some persistent membrane and 
shear locking phenomena. The resulting physically stabilized and locking-free finite element consists in a continuum mechanics shell 
element based on a purely three-dimensional formulation. In fact, this is a hexahedral element with eight nodes as well as five 
integration points, all distributed along the “thickness” direction. Consequently, it can be used for the modelling of thin structures, 
while providing an accurate description of the various through-thickness phenomena. The reduced integration has been used in order 
to prevent some locking phenomena and to increase computational efficiency. The spurious zero-energy deformation modes due to 
the reduced integration are efficiently stabilized, whereas the strain components corresponding to locking modes are eliminated with 
a projection technique following the Enhanced Assumed Strain (EAS) method. 

Keywords: SHB8PS solid-shell element, hourglass, locking, Enhanced Assumed Strain 

1. Introduction

Over the last decade, considerable progress has been made 
in the development of three-dimensional finite elements capable 
of modelling thin structures (see Refs. [1], [2], [5], [10], [16]). 
This interest is motivated by several requirements that can be 
met in certain industrial applications. Indeed, the coupling 
between solid and shell formulations is a good way to provide 
continuum finite element models that can be efficiently used for 
structural applications. The SHB8PS element is one such 
recently developed element, based on a purely three-
dimensional formulation (see Refs. [1], [2], [10]). This solid-
shell element has numerous advantages for the analysis of 
various complex structural forms that are common in many 
industrial applications. Its main advantage is to allow the 
meshing of complex structural forms without the classical 
problems of connecting zones meshed with different element 
types (continuum and structural elements for instance). Another 
important benefit of solid-shell elements is the avoidance of 
tedious and complex pure-shell element formulations. 

In this work, a new locking-free formulation for the 
SHB8PS solid-shell element is developed. More specifically, 
this work focuses on the elimination of the residual membrane 
and shear locking phenomena persisting in the previous 
formulations. By using orthogonal projection of the discretized 
gradient operator, these severe shear and membrane locking 
modes are removed. Moreover, reduced integration is used in 
order to improve the computational efficiency of the element 
and also to prevent some membrane and shear locking 
phenomena. The spurious zero-energy deformation modes due 
to this reduced integration are efficiently controlled by a 
stabilization technique following the approach given in Ref. [3]. 
To assess the effectiveness of this new version of the SHB8PS, 
several numerical experiments were performed. A selected set 
of these popular test problems is presented in this paper. It is 
shown that in many linear and nonlinear well-known 
benchmark problems, this new formulation of the SHB8PS 
element proves to be free of locking phenomenon and exhibits 
good convergence properties. 

2. Formulation of the SHB8PS element

2.1. Kinematics and interpolation 

SHB8PS is a hexahedral, eight-node and isoparametric 
element with linear interpolation. Its five integration points are 
spread along the ς  direction in the local coordinates. Figure 1 
shows the reference geometry of the element as well as the 
location of the integration points.  

Figure 1: Reference geometry of the element and Gauss points. 

The coordinates ix , i = 1, 2, 3 of a point in the element are 

related to the nodal coordinates iIx  using the classical linear 

isoparametric shape functions IN  (I = 1, …, 8) and the 
relations: 
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=
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The convention of implied summation for repeated 
subscripts will be used hereafter, unless specified otherwise. 
The lowercase subscripts i  go from one to three and represent 
the directions of the spatial coordinates. The uppercase ones  
go from one to eight and correspond to the nodes of the 
element. With this convention, the interpolation of the 
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displacement field  inside the element in terms of the nodal 

displacements  is similar: 

i
u

iI
u

( , , )
i iI I

u u N ξ η ζ=      (2) 

2.2.  Discrete gradient operator 

The displacement field interpolation, Eqn. (2), allows the 
strain field to be related to the nodal displacements. The linear 
part of the strain tensor is written: 

( ) (, , , ,
1 1
2 2ij i j j i iI I j jI I iu u u N u Nε = + = + )   (3) 

Then, the classical tri-linear shape functions for eight-node 
hexahedral elements are considered: 
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Combining Eqns. (1), (2) and (4), leads to the expansion of 
the displacement field as a constant term, linear terms in ix  and 

some terms depending on the hα  functions: 
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When this equation is evaluated at the element nodes, the 
three systems of eight equations are obtained as seen below: 

{ 0 1 2 3 1 1 2 2 3 3 4 41 2 3
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i i i i i i i i i
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d a s a x a x a x c h c h c h c h
=

= + + + + + + +   (6) 

In the equation above, the id  and ix  vectors respectively 
indicate the nodal displacements and coordinates and are 
defined as: 
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The unknown constants  and jia icα  in Eqn. (5) are found 

by introducing the ib  (i = 1,..., 3) vectors from Ref. [7], defined 
as: 

,
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Hallquist Formb N i= =   (9) 

The explicit expressions for the derivatives of the shape 
functions evaluated at the origin of the ( , , )ξ η ζ  frame are
given in Ref. [4]. The following orthogonality properties are 
first demonstrated, implying the vectors bi and the vectors 
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In order to calculate the constants jia  and icα , Eqn. (6) is 

multiplied by T

j
b  and Th

α
, respectively. Then, using the 

previously derived orthogonality conditions, one obtains: 
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The displacement field can be expressed in the following 
form, very convenient for the subsequent developments: 

0 1 1 2 2 3 3 1 1 2 2 3 3 4 4( )T T T T T T T

i i iu a x b x b x b h h h h dγ γ γ γ= + + + + + + + ⋅ (12) 

By differentiating this last equation with respect to jx , one 
obtains the displacement gradient as follows: 
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This allows us to express the discrete gradient operator, 
relating the strain field to the nodal displacements, as: 

,

,

,

, ,

, ,

, ,

  ( )

where:   ( ) ,      

s

x x

y y
x

z z

s y
x y y x

z
y z z y

x z z x

u B d

u
u d
u

u d
u

du
u

u
u
u

∇ = ⋅

∇ = =
+
+
+

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

d
  (14) 

This discrete gradient operator finally takes the following 
practical matrix form: 
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It is noteworthy that this form of the discrete gradient 
operator is very useful since it allows each of the non-constant 
strain modes to be handled separately, so that the assumed strain 
field can be easily built. Moreover, it is easy to show that the 

αγ  vectors that enter the expression of B  matrix verify the 

following orthogonality conditions: 

0,    T T

j
x h

α α β αβ
γ γ⋅ = ⋅ = δ    (16) 

These properties will be useful in the subsequent hourglass 
stability analysis of the SHB8PS element. 



2.3. Hourglass modes for the SHB8PS element 

The hourglass modes of the SHB8PS element are analyzed 
following the approach given in Ref. [3]. For the SHB8PS 
element, these spurious modes are shown to originate in the 
particular position of the integration points (along a line). They 
are characterized by a vanishing energy, while inducing a non-
zero strain. This pathological behaviour is explained by the 
difference between the kernel of the discrete and the continuous 
stiffness operators. It is recalled that the shell-like behaviour of 
the SHB8PS element is obtained by modifying its three-
dimensional constitutive law to approach the plane stress 
conditions and by aligning the five integration points of the 
element along a particular direction, called the thickness. This 
reduced integration also aims to increase the computational 
efficiency and to avoid some shear locking phenomena in 
bending-dominated problems. Accordingly, the elastic stiffness 
is obtained by Gauss integration: 
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where ( )
I

J ζ  is the Jacobian of the transformation between the 
unit, reference configuration and the current configuration of an 
arbitrary hexahedron. Table 1 below gives the coordinates of 
the five integration points of the SHB8PS element, as well as 
the associated weights (the roots of the Gauss-Legendre 
polynomial): 

Table 1: Coordinates and weights of the integration points. 
ξ η ζ ω 

P(1) 0 0 -0,91 0,24 

P(2) 0 0 -0,54 0,48 

P(3) 0 0 0 0,57

P(4) 0 0 0,54 0,48 

P(5) 0 0 0,91 0,24 

For the five Gauss points ( 1, ..., 5)I =  listed in the above 

Table, with coordinates 0,  0,
I I I

ξ η ζ= = ≠  the terms 

 vanish. Consequently, the operator 
,
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i
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α = = ) B

defined by Eqn. (15) reduces to 12B , where the sum on the 

index α  only goes from 1 to 2: 
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In order to study the kernel of the stiffness matrix, a basis 
for the discretized displacements is built. Then, the reduced 
integration is shown to diminish the rank of the discrete 

stiffness. Indeed, according to Eqn. (17), the rank of the 
stiffness matrix 

e
K  is related to that of the B  matrix. In other 

words, one should seek the zero-strain modes d  that verify at 
each Gauss point: 

( ) ( ) 0
s I

u B dζ∇ = ⋅ =  (19) 

Using the expression (18) for the discrete gradient operator 
computed at the integration points and making use of the 
orthogonality relations (10) and (16), the kernel of the stiffness 
can be explicitly derived. This naturally reveals the six rigid 
body modes only found in the kernel of a fully integrated 
stiffness: 
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The first three column vectors correspond to the translations 
along the ,  and Oz  axes, respectively. The three 
remaining vectors refer to the rotations about the ,  and 

 axes, respectively. 

Ox Oy
Oz Oy

Ox
In addition to these six rigid body modes, the following six 

vectors are also found in the kernel of the stiffness eK : 
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  (21) 

The hourglass modes corresponding to Ox  axis are shown 
in Fig. 2 for a hexahedron with a single integration point, 
located at the origin of the referential coordinate system. 
Similar modes are obtained for the  or Oz  axes by axis 
permutation. 

Oy

Figure 2: Hourglass modes in x-direction for a one-point 
quadrature hexahedron. 

2.4. Stabilization and hourglass control 

The control of the six hourglass modes of the SHB8PS 
element, as revealed by Eqn. (21), is achieved by adding a 
stabilization stiffness to the stiffness matrix 

e
K . This part is 

drawn from the approach given in Ref. [3]. The stabilization 



forces are deduced in the same way. It is important to note that 
this stabilization part is treated independently from the assumed 
strain projection part, the later being intended to eliminate the 
locking phenomena. This projection technique will be applied in 
next section. 

Let us start by decomposing the B  matrix into two parts as 
follows: 

12 34
B B B= +  (22) 

The first term in this additive decomposition is given by 
Eqn. (18). The second term 

34
B  is precisely the one that 

vanishes at the Gauss points. It is given by the following matrix 
form: 

4

,

3 4

,

3 4

,

34 4
34

, ,

3 3 4

, ,

3 ,4 34

, ,

3 3

0 0

0 0

0 0

0

0

0

T

x

T

y

T

z

T T

y x

T T

z y

T

z x

h

h

h
B

h h

h h

h h

α α

α

α α

α

α α

α

α α α α

α α

α α α α

α α

α α α α

α α

γ

γ

γ

γ γ

γ γ

γ γ

=

=

=

= =

= =

= =

=

⎡
⎢
⎢
⎢
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
∑

∑
∑ ∑

∑ ∑
∑ ∑

, 4

T

⎤
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎦

  (23) 

In the standard displacement approach, the stiffness and 
internal forces are defined as: 

 

  

e

e

T

e

int T
f

K B C B d

B dσ

Ω

Ω

=

= ⋅ ⋅

⋅ Ω

∫

∫

Ω

 (24) 

By introducing the additive decomposition (22) of the B

matrix, the stiffness matrix becomes: 

12 12 12 34
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which can be simply written as: 

12e STAB
K K K= +  (26) 

The first term, 
12

K , is the only one taken into account when 

the stiffness is evaluated at the Gauss points as defined above. It 
reads: 
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The second term, 
STAB

K , represents the stabilization stiffness 

since it vanishes if evaluated at the Gauss points: 
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In a similar way, the internal forces of the element can be 
written as: 

12

STABint intf f f= +  (29) 

The first term, 
12

intf , is the only one taken into account when 

the forces are evaluated at the Gauss points: 
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The second term STABf  of Eqn. (29) represents the 

stabilization forces and should be consistently calculated 
according to the stabilization stiffness given by Eqn. (28). 

Since the stabilization stiffness and forces cannot be 
calculated properly at the integration points, we will calculate 
them in the co-rotational coordinate system proposed in Ref. 
[3], in order to prevent the hourglass mode phenomena. An 
intermediate stage for this approach consists in the projection of 
B  onto a B  matrix, in order to eliminate the remaining 

locking problems. 

2.5. Assumed strain field and orthogonal projection 

The discrete gradient operator is projected onto an 
appropriate sub-space in order to eliminate shear and membrane 
locking. This projection technique can be derived from the 
formalism of the assumed strain method. It is also shown that 
this approach can be justified within the framework of the Hu-
Washizu nonlinear mixed variational principle (see for instance 
Ref. [9]). Indeed, this variational principle reads: 
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e e

T T T

sv d v d dδπ ε σ δε σ δ σ ε δ
Ω Ω

extf= ⋅ Ω + ⋅ ∇ − Ω − ⋅ =∫ ∫ (31) 

where δ  denotes a variation, v  the velocity field, ε  the 

assumed strain rate, σ  the interpolated stress, σ  the stress 

evaluated by the constitutive law, d  the nodal velocities, extf  

the external nodal forces and ( )s v∇  the symmetric part of the 

velocity gradient. The assumed strain formulation used to 
construct the SHB8PS element is a simplified form of the Hu-
Washizu variational principle as described in Ref. [14]. In this 
simplified form, the interpolated stress is chosen to be 
orthogonal to the difference between the symmetric part of the 
velocity gradient and the assumed strain rate. Consequently, the 
second term of Eqn. (31) vanishes and one obtains: 
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In this form, the variational principle is independent of the 
stress interpolation, since the interpolated stress is eliminated 
and does not need to be defined. The discrete equations then 
only require the interpolation of the velocity and of the assumed 
strain field. The assumed strain rate ε  is expressed in terms of 

a B  matrix, projected starting from the classical discrete 

gradient B  defined by Eqn. (14) and (15): 

( , ) ( ) ( )x t B x d tε = ⋅   (33) 



Once this expression is replaced in the variational principle 
(32), the new expressions for the elastic stiffness and internal 
forces are obtained: 
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Before defining the projected B  operator, let us replace in 

the previous equations the Hallquist form of the ib  vectors, 

Eqn. (9), by the mean form îb  from (Ref. [6]): 

,

1ˆ ( , , ) ,    1, 2, 3     
ee

T

i i
b N d i Mean value formξ η ζ

ΩΩ
= Ω =∫   (35) 

Accordingly, the vectors 
α
γ  are replaced by the vectors 

α̂
γ  

defined as: 
3

1

ˆˆ ( )1
8

T

j j

j

h h x b
α α α
γ

=

= − ⋅
⎡ ⎤
⎢⎣ ⎦

∑ ⎥   (36) 

Finally, the B  matrix, defined by Eqn. (15), is replaced by 

the B̂  operator defined by: 
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The approach developed earlier still applies, as well as the 
expressions of the stabilization stiffness and internal forces, if 
the same additive decomposition is adopted: 

12 34
ˆ ˆ ˆB B B= +  (38) 

It is noteworthy that in the former version of the SHB8PS 
element, the Hallquist forms ib  have been replaced with the 

mean expressions îb  of Flanagan-Belytschko only in the 

stabilization terms 
34

B̂  and thus 
STAB

K . 

It is also important to note that the two forms ib  and ˆ
ib

have been tested on a large number of test problems and that 
Flanagan-Belytschko’s mean form performed better in all cases. 
Its better convergence is even more dramatic when a few, 
highly distorted elements are used. Similar results have been 
found in Ref. [3] with an assumed strain, eight-node solid 
element with one-point quadrature. 

At this stage, one can project the B̂  operator from Eqn. (38) 

onto a B̂  operator such as: 

12 34
ˆ ˆ ˆB B B= +  (39) 

It is clear that only the second term 
34

B̂  from Eqn. (38) is 

projected; the first term 
12

B̂  remains unchanged and is given by 

Eqn. (18) where the vectors ib  are replaced by ˆ
i

b . The 

operator 
34

B̂  is projected onto 
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B̂  given by: 
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  (40) 

The elastic stiffness is then given by Eqn. (26) as the sum of 
the following two contributions: 

5
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The stabilization stiffness, Eqn. (42), is calculated in a co-
rotational coordinate system (see Ref. [3]). This orthogonal co-
rotational system that is embedded in the element and rotates 
with the element is chosen to be aligned with the referential 
coordinate system. This choice is justified here by the rotation 
extracted from the polar decomposition of the transformation 
gradient (Refs. [1], [2]). As noticed in Ref. [3], such a co-
rotational approach has numerous advantages: simplified 
expressions for the above stiffness matrix, whose first two terms 
vanish; more effective treatment of the shear locking in this 
frame; the co-rotational system assures a frame-invariant 
element. 

The main equations defining the chosen co-rotational 
coordinate system are given hereafter. First, the components of 
the column vectors forming the rotation matrix are computed: 

1 1 2 2
  ,    ,    1, 2, 3T T

i i i i
a x a x i= Λ ⋅ = Λ ⋅ =    (43) 

with: 
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 (44) 

Then, the correction term ca  is calculated so that the 

orthogonality relation ( )
1 2

0T

c
a a a⋅ + =  is verified: 

1 2

1
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c T
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a

a a

⋅
= −

⋅
a  (45) 

The third base vector 3a  is then obtained by the cross-
product: 

( )
3 1 2

^
c

a a a a= +  (46) 



The rotation matrix R  that maps a vector in the global 

coordinate system to the co-rotational system is finally given, 
after normalization, by: 

1 2 3
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The stabilization terms (stabilization stiffness and internal 
forces, Eqn. (42)) are computed in this co-rotational coordinate 
system, where several terms simplify. Indeed, in this co-
rotational system one obtains: 
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In these last formulas, there is no sum on repeated 
subscripts. Moreover, the subscripts  and  in the 

expressions of  and  are two by two distinct and take the 

values 1, 2 and 3 with all of the possible permutations. Using 
these explicit expressions, the stabilization stiffness given in 
Eqn. (42) is obtained completely analytically in this co-
rotational system as: 
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where the 8 x 8 matrices ijk  are given by: 

11

22

11

11 3 3 4 4

22 3 3 4 4

33 4 4

1
3
1
3

( 2 )

( 2 )
1
3

0     ,    

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

T T

T T

T

ij

k H

k H

k H

k i j

λ µ

λ µ

µ

γ γ γ γ

γ γ γ γ

γ γ

= +

= +

=

= ≠

+

+

⎡ ⎤⎧ ⎣ ⎦
⎪ ⎡ ⎤⎪ ⎣ ⎦⎨
⎪
⎪⎩

  (50) 

Note that an improved, plane-stress type constitutive law is 
adopted for the SHB8PS element. This specific law is given by: 
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(51) 

On one hand, the choice of this constitutive matrix avoids 
locking encountered with a full three-dimensional law and, on 
the other hand, allows for the deformation energy associated to 
the strains normal to the mean surface of the element to be 
taken into account. 

For the computation of the internal forces of the element, 
the same approach is adopted (Refs. [1], [2]). The additive 
decomposition (39) and the projection (40) allow for the 
calculation of the stabilization forces: 
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and: 
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The 
i

Q
α

, called generalized stresses and entering the 
expressions of the stabilization forces, are related to the so-
called generalized strains 

i
q

α
 by the following incremental 

equations: 
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The generalized strain rates 
i

q
α

 are given by: 

=3, 4ˆ  , 1, 2, 3   ,    T

i iq d iα α αγ= ⋅ =   (56) 

The previous expressions for the stabilization stiffness and 
forces hold for an elastic behaviour. In the case of elastic-plastic 
behaviour, the Young’s modulus  is replaced by the mean 
tangent modulus (i.e. the average of the tangent moduli at the 
five Gauss points across the thickness). This choice avoids the 
response to be too stiff, which is the case with a purely elastic 
hourglass stabilization. Thus this leads to an adaptive element 
provided with a stabilization that automatically adjusts to the 
physical situation of the element: elastic or elastic-plastic. 

E

3. Numerical results

In order to validate the new version of the SHB8PS 
element, its performances have been tested, based on the 
analysis of a variety of linear and nonlinear benchmark 
problems frequently used in the literature. For each test 
problem, the results were compared to the reference solutions 
and, on the other hand, to those given by the previous version of 
the SHB8PS element (Ref. [10]). Note that several projections 
have been formulated in this study and extensively tested over a 
wide range of benchmark problems. The retained projection that 
is presented here is the one that showed the best convergence 
and exhibited no transverse shear and membrane locking 
phenomena. This projection improved the former version of the 
SHB8PS element in all cases and especially in the test of the 
pinched hemispherical shell where the improvement is 
significant. 



3.1. Pinched hemispherical shell 

This test has become very popular and has been used by 
many authors (see Ref. [13]). It is very severe since the 
transverse shear and membrane locking phenomena are very 
important and emphasized by the problem geometry (distorted, 
skewed elements). As reported by many authors, in this doubly-
curved shell problem, the membrane locking is much more 
severe than the shear locking. Figure 3 shows the geometry, 
loading and boundary conditions for this problem. 

Figure 3: Schematic of hemispherical shell. 

The radius is R=10, the thickness is t=0.04, the Young 
modulus is E=6.825×107 and the Poisson’s ratio is ν =0.3. 
Using the symmetry of the problem (i.e. planes (XZ) and (YZ)), 
only a quarter of the hemisphere is meshed using a single 
element through the thickness and with two unit loads along 
directions Ox and Oy. Except for the symmetry, the boundary 
conditions are free; nevertheless, the displacement of one point 
in the z-direction is fixed in order to prevent rigid body 
motions. According to the reference solution (Ref. [13]), the 
radial displacement at the load point A along the x-direction 
equals 0.0924 (see Fig. 3). The convergence results are reported 
in Tab. 2 in terms of the normalized displacement at the load 
point in the x-direction. The new version of the SHB8PS 
element is compared to the former one and to the three elements 
HEX8, HEXDS and H8-ct-cp. The HEX8 element is the 
standard, eight-node, full integration solid element (eight Gauss 
points). The HEXDS element is an eight-node, four-point 
quadrature solid element (see Ref. [12]). The H8-ct-cp element 
was developed in Ref. [11]. Table 2 shows that the new version 
of the SHB8PS element provides an excellent convergence and 
shows no locking. 

Table 2: Normalized displacement at the load point. 

SHB8PS 
previous 
version 

HEX8 HEXDS H8-ct-
cp 

SHB8PS
new 

version Number of 
elements Ux/Uref Ux/Uref Ux/Uref Ux/Uref Ux/Uref

12 0.0629 0.0005  0.05 0.8645 
27 0.0474 0.0011  1.0155
48 0.1660 0.0023 0.408 0.35 1.0098 
75  0.2252 0.0030 0.512 0.58 1.0096 
192  0.6332 0.0076 0.701 0.95 1.0008 
363  0.8592 0.0140 0.800  1.0006 
768 0.9651 0.0287  1.0006 

1462  0.9910 0.0520 1.0009 

3.2. Pullout of an open-ended cylindrical shell 

This nonlinear test is severe and has been studied by several 
authors. Figure 4 shows the geometry, loading, boundary 
conditions as well as the material properties for this open-ended 
cylindrical shell pulled by a pair of radial forces.  

Figure 4: Geometry, loading and material properties. 

Using the symmetry of the problem, only one-eighth of the 
shell is meshed with 24 36 1× ×  elements as in Ref. [15]. The 
reference solution is obtained from Ref. [15] which uses the 
S4R shell element in the finite element code Abaqus. Figure 5 
plots the radial deflections at points A, B and C against the 
applied load. 

Reference and SHB8 solutions
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Figure 5: Load-deflection curves at points A, B and C: reference 
solution and numerical results obtained with the SHB8PS. 

Figure 6: Deformed 24 36 1× ×  mesh under the maximum load. 



It is noteworthy that this problem involves large 
displacements and rotations allowing the new version of the 
SHB8PS to be tested in nonlinear situations. The results given 
by this version of the SHB8PS are very close to those of the 
reference solution (Ref. [15]). A snap-through phenomenon 
occurs also at a certain critical load. This snap-through 
instability can be clearly observed in Fig. 5 corresponding to a 
change in displacement direction of point C, and also in Fig. 6 
showing the deformed mesh for the cylindrical shell under 
maximum load of . 40000P =

3.3. Arch subjected to inclined load 

An inclined force is applied at the center of the 90° arch, 
leading to unsymmetrical buckling (limit point). This test 
problem has been studied by several authors; we will compare 
our results with the reference solution given in Ref. [8]. Figure 
7 shows the geometry where the two straight edges are simply 
supported, whereas the curved edges are free. 

Figure 7: Geometry of the 90° arch subjected to inclined force. 

Figure 8: Load against radial-displacement at the load point: 
reference solution and numerical results obtained with a mesh 
of  SHB8PS elements. 20 8 1× ×

The geometrical dimensions and material properties are: 
 2.54mR = ,  0.504mL = ,  0.0127 mt = ;  3.105GPaE = , 

0.3ν = . The appl mied force uses a load para eter λ  such that: 
100P λ= [ N ]; it is inclined of 10° with respect to  axis and 

clination is 45°. Several meshes have been tested; 
Fig. 8 portrays the results obtained with a 20 8 1× ×  mesh and 
shows very good agreement with the refe lution. As 
shown by the successive states of the arch (Fig. 8), the pre-
buckling is nonlinear and stable whereas the post-buckling is 
asymmetric and instable. The Riks’ continuation method (arc 
length technique) has been used to follow the path after the limit 
point. 

 Z
the in-pla

rence so

4. Discussion and conclusions

A new formulation of the solid-shell element SHB8PS has 
bee
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