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In this work we propose a micromechanics model, based on the composite spheres
assemblage method, for studying the electrostatic behaviour of particle and porous
composites when the interface between the particle (or the pore) and the matrix
has its own independent behaviour. Examples from experimental results in porous
media and particle composites are utilized to demonstrate the model’s capabilities.
The current model shows a better agreement with experiments compared with
other available studies. Furthermore, it is shown that the interface dielectric
constant is independent of the experiments which prove its nature as a material
parameter.

1. Introduction

The interfaces between particles and matrix material play a significant role in the relative
permittivity [1–3]. It has been shown experimentally that the electric performance of a
particle can be improved with surface modification [4–7]. It has also been observed that
the increase in the area-to-volume ratio (i.e. decrease in the particle and/or grain size)
can influence substantially the dielectric constant [8,9]. McCarthy et al. [10] investigate the
importance of interfacial interactions between the nanoparticles and the matrix for dielectric
materials. Related works include e.g. [11] which detail the improvement of electrostrictive
properties of elastomers filled with conductive carbon black in thin films. With regard to
nanoporous materials, studies have shown that the dielectric constant is overpredicted by the
classical micromechanics approaches [12]. A possible explanation for such behaviour could
be the simplified approximations of the local electric field at the void surface [13]. Lombardo
[14] studied the electric properties of composites where spherical inclusions are embedded
by an interphase. In analogy to the electric problem, effective thermal conductivities of
composites accounting for interfaces have been studied e.g. in [15–19] and references
therein.



The aim of this research is to propose a micromechanics-based model for studying
the electrostatic behaviour of spherical particle (or porous) composites when the size of
the particle (or the pore) is in the range between nanometres and micrometres. The model
identifies the effective dielectric constant (relative electric permittivity) of the composite,
taking into account the independent behaviour of the interface between the particle and
the matrix, in the spirit of the surface electrostatic theory presented in [20]. In contrast to
the classical sphere’s assemblage method, this manuscript takes the interface into account
and therefore, the size effect is intrinsically inherited in this study. The paper is organized
as follows: In Section 2, we present the general concepts of surface electricity; and in
Section 3, we develop the micromechanics model, which is based on the composite spheres
assemblage theory [21,22]. In Section 4, we present examples motivated from experimental
results in porous media and particle composites and we compare the results obtained from
our model with existing micromechanics theories. In the last section, we discuss the main
conclusions of this work.

2. Theory of surface electricity

Here, we briefly summarize our work in [20], that recently presented a continuum mechanics
framework for surface electrostatics. The results of the theory are valid for closed material
interfaces, thus in the sequel we refer directly to composites with energetic interfaces.1

This approach does not simply consider an interface with zero thickness, but can rather
be viewed as a simplification of an intrinsically nonlocal continuum theory whereby the
interface captures the effective response of a thin interphase.

We consider a continuum body that occupies the open set B ⊂ R3 with boundary ∂B.
Inside the body there is a closed material interface, denoted by ∂I , with normal vector n.
The electric fields e in the bulk and ê on the interface are expressed in terms of a scalar
potential ϕ as

e = − gradϕ, ê = −ĝradϕ, (1)

where we have assumed that the scalar potential is continuous across the interface. In the
last expression, the surface gradient of an arbitrary vector {•} is given by

ĝrad {•} = grad {•} · [i − n ⊗ n],
and i is the second-order identity tensor. Variational principles allow us to express the
electric displacement in the bulk, d, and on the surface, d̂, in terms of the internal potential
energies in the bulk, V int(e), and on the surface, V̂ int(̂e), respectively, as [20]

d = − ∂V int

∂e
, d̂ = −∂ V̂ int

∂ê
. (2)

Under electrostatic conditions and ignoring any bulk and surface free charge density,
the Maxwell equations read as

curle = 0, divd = 0, (3)

in the bulk and

n × [[e]] = 0, [[d]] · n + d̂ivd̂ = 0, (4)



on the interface. The symbol [[{•}]] denotes jump of a vector {•} across the interface, while
the surface divergence is defined as

d̂iv {•} = ĝrad {•} : [i − n ⊗ n].

3. Generalized self-consistent composite spheres assemblage for particle composites
with electrically independent interfaces

In order to compute the effective electrical behaviour of isotropic spherical particle compos-
ites with isotropic material interfaces we employ the generalized self-consistent composite
spheres assemblage introduced by Christensen [22]. An analogous method has been pro-
posed in the past [23] for studying the effective mechanical behaviour of particle composites
with material interfaces, see also [18] for the thermal problem.

In this methodology, the actual composite (matrix and particle with material interface)
is represented as an assemblage of three concentric spheres (Figure 1). The initial idealized
representative volume element (particle with radius r1 and matrix material between the radii
r1 and r2) is connected with an external third layer which represents the effective medium
and is extended to infinity (r3 → ∞). The interface at r = r1 between the particle and the
matrix is considered to have its own independent electric behaviour. Considering random
distribution of particles inside the matrix, the isotropy of all constituents leads to isotropic
behaviour for the effective medium. The constitutive laws of the materials in this case are
written

di = − εv εi gradϕi at ri−1 ≤ r ≤ ri with r0 = 0. (5)

The dielectric constants (relative electric permittivity) are denoted by εi and εv is the electric
permittivity of vacuum. In a similar manner, the isotropic interface is characterized by a
constitutive law of the form

d̂ = − εv ε̂ ĝradϕ at r = r1. (6)

Figure 1. (colour online) Illustration of generalized self-consistent composite spheres assemblage
for particle composites with electrically independent interfaces. The index (i) denotes the material
layer: i = 1 for the particle, i = 2 for the matrix and i = 3 for the effective medium. εv denotes
the electric permittivity of the vacuum (free space) and ε̂ the interface dielectric constant with the
unit of length which leads to a more pronounced interface effect on the overall response of the body
at small scales. Introducing an independent interfacial dielectric constant is the key feature of the
current work.



It is important to mention that, in contrast to the dimensionless dielectric constant εi , the
interface material constant ε̂ must have unit of length.

In the sequel, all the equations will be expressed in spherical coordinates (r , θ , φ). As
boundary conditions we choose

ϕ → βr cos θ at r → ∞. (7)

The sign of β can be either positive or negative, since, as we show later, the overall dielectric
constant is independent of β. Under these conditions, the Maxwell Equation (3)2 for each
material reduces to a two-dimensional problem in terms of r and θ ,

1

r2

∂

∂r

(
r2 ∂ϕi

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕi

∂θ

)
= 0 at ri−1 ≤ r ≤ ri . (8)

It can be shown that this equation has an analytical solution of the form

ϕi =
[

Air + Bi

r2

]
cos θ, at ri−1 ≤ r ≤ ri , (9)

where Ai , Bi (i = 1, 2, 3) are six constants. The computation of these six unknowns and
of the dielectric constant of the effective medium, ε̄ = ε3, is achieved with the following
procedure:

The existence of a finite ϕ at the centre of the particle (r = 0) leads to the conclusion
that B1 = 0. The boundary condition (7) defines the value of A3 as A3 = β. For the rest
of the constants and the effective relative permittivity we have the continuity conditions on
the scalar potential

ϕ1 = ϕ2 at r = r1,

ϕ2 = ϕ3 at r = r2, (10)

the jump condition (4), which in spherical coordinates is written

−ε2
∂ϕ2

∂r
+ ε1

∂ϕ1

∂r
− ε̂

r2
1

[
∂2ϕ1

∂θ2
+ ∂ϕ1

∂θ

cos θ

sin θ

]
at r = r1 , (11)

and the electric flux continuity condition on the interface between the matrix and the effective
medium

−ε3
∂ϕ3

∂r
+ ε2

∂ϕ2

∂r
= 0 at r = r2. (12)

The last necessary equation is derived from a similar energy principle with the one that is
expressing the mechanical problem in the composite spheres assemblage [see [22], Equation
(4.10) on p.56]. This last condition leads to the simple result B3 = 0. Thus, from the system
of equations (10)1,2–(12) we compute the effective relative permittivity

ε̄ = ε2

⎡
⎢⎢⎣1 +

f

[
1 + 2

ε̂/r1

ε1 − ε2

]
1 − f

3

[
1 + 2

ε̂/r1

ε1 − ε2

]
+ ε2

ε1 − ε2

⎤
⎥⎥⎦ , (13)

where f = [r1/r2]3 is the volume fraction of the particles in the matrix.



Figure 2. (colour online) Effective dielectric constant versus void radius for various surface dielectric
constants ε̂ for two volume fractions of f = 20% and 40%. The effective dielectric constant is
calculated from the analytical solution (13) assuming ε1 = 1 and ε2 = 10 and is normalized with
the effective dielectric constant corresponding to ε̂ = 0. Therefore, the value 1 on the vertical axis
indicates the effective response using classical homogenization and clearly, missing the size effect.
Taking the surface dielectric constants ε̂ into account, introduces a size effect. Positive values for
the surface dielectric constant lead to an increasing effective response for decreasing size. Negative
surface dielectric constant shows an opposite behaviour. Interestingly, for ε̂ < 0 there will be a critical
size at which the effective dielectric constant vanishes indicated red circles on the graphs.



Figure 2 provides a parametric study to better understand the behaviour of the effec-
tive response (13) versus the void radius or equivalently, the characteristic length of the
microstructure. The graphs pertain to a porous material with ε1 = 1 indicating vacuum
response for the voids and ε2 = 10 is arbitrarily chosen for the matrix motivated by the
fact that the relative permittivity for most materials exceeds that of the vacuum. This study
is carried out for two different volume fractions of f = 20% and 40%. The vertical axis
on Figure 2 represents the normalized effective dielectric constant. The effective dielectric
constant is normalized by its value corresponding to ε̂ = 0. Therefore, the value 1 on the
vertical axis indicates the effective dielectric constant of the porous material when surface
effects are neglected, i.e. the effective response corresponding to classical homogenization.
Note, size effect can be only observed if the surface effects are taken into account.

Positive values for the surface dielectric constant lead to an increasing effective response
for decreasing size leading to a “smaller is stronger” behaviour. In contrast, a “smaller
is weaker” response is obtained for negative surface dielectric constant. However, the
surface dielectric constant cannot be arbitrarily small when it assumes negative values
since stability analysis requires the effective dielectric constant to be positive. That is, for a
given microstructure there exists a critical value of the surface dielectric constant. In other
words, for any negative surface dielectric constant there exists a critical microstructure size
where the overall dielectric constant vanishes. These critical values are indicated by red
circles on the graphs of Figure 2.

4. Examples

In this section, we study certain cases from the literature in which the dielectric constant
of composites has been obtained from experimental tests. Our intention is to simulate the
composites behaviour using our proposed micromechanics framework and also to compare
our results with other available models, see [24] for a review of available models.

4.1. Dielectric constant of porous media

In Figure 3, we present experimental results for two different porous media, sintered alumina
[25] and nanofoam samples [12]. Apart from the Voigt upper and Reuss lower bounds, we
can find in the literature certain micromechanics models for estimating the dielectric constant
of porous media, like in [26–28]. In all these models, it is assumed that the pores have
spherical shape and dielectric constant equal to 1. We also note that the Maxwell-Garnett
method provides exactly the same solution as the classical composite spheres assemblage
method without independent interface response.

(1) In the case of sintered alumina [25] the authors do not report specific pore size,
but they have studied sintered alumina with grain size between 1 and 7 µm. The
dielectric constant of almost nonporous polycrystalline alumina is close to 10. In
Figure 3(a), we observe that the classical micromechanics techniques predict quite
well the experimental results and the best behaviour is observed for the Heidinger
and Nazare model. Our micromechanics method with interface (current model)
presents good agreement with the experimental results for ε̂/r1 = −0.45.

(2) In the case of nanofoams [12] the authors mention that the produced pores are in
the nanometre dimension regime and the polymer matrix dielectric constant is close



(a) (b)

Figure 3. Effective dielectric constant versus porosity for (a) alumina [25] and (b) nanofoam samples
[12].

to 2.85. As it is illustrated in Figure 3(b), the classical micromechanics approaches
overpredict the electrical behaviour of the nanofoam samples and this can be due
to local effects in the surface of the pores. In our simulation (current model) the
obtained effective response agrees quite well with the experimental observations
for ε̂/r1 = −0.2775.

4.2. Dielectric constant of BaTiO3 particle composites

In Figure 4, we present experimental results for barium titanate particle composites [7,29,30]
and their simulations using different micromechanics models.Apart from the current model,
we also present results obtained using the theories of [26,27,31]. All the models consider
that the particles have spherical shape and they are applicable for electrostatic conditions,
thus all the examined experimental cases are conducted under low frequency. With regard
to the barium titanate, it has been experimentally observed that the grain size influences its
electrical behaviour [32].

(1) In the first case of Figure 4 [29], the examined barium titanate powder has grain size
of approximately 1 µm. The authors report the dielectric constants of the particles
(barium titanate) and the matrix (polyvinylidene fluoride [PVDF]) to be 3,000
and 8.5, respectively. The performed tests indicate that for barium titanate volume
fraction above 50% the composite dielectric constant decreases due to pores caused
by the high concentration of ceramic fillers, and thus we do not consider these cases
in the present analysis. Figure 4(a) shows that the Jayasundere and Smith model
predicts quite well the composite’s behaviour. Our model has good agreement with
the experimental results when we consider ε̂ = −768.6 µm.

(2) In the second case of Figure 4 [30], the barium titanate powder produced by TAM
Ceramics Inc. has grain size of approximately 1 µm. The authors consider that the



Figure 4. Composites with barium titanate (BT) particles: (a) experiments conducted by [29] using
PVDF as matrix, (b) experiments conducted by [30] using epoxy as matrix and BaTiO3 powder
produced by TAM Ceramics Inc., (c) experiments conducted by [30] using epoxy as matrix and self-
synthesized BaTiO3 powder, (d) experiments conducted by [7] using PVDF as matrix and untreated
barium titanate particles.

dielectric constant of the epoxy matrix is equal to 5.7. Kuo et al. [30] mention that for
grain size of 1 µm the barium titanate powder presents maximum dielectric constant
of 5,000–6,000. From their parametric analysis, the authors show that for particle
dielectric constant above 1,000, the effective response does not present significant
change. For comparison reasons with the case of Figure 4(a), in the current analysis
we assume that the dielectric constant of the barium titanate powder is 3,000 and we
also choose for our model the surface dielectric constant to be ε̂ = −768.6 µm. As



it is observed in Figure 4(b), our model has better agreement with the experimental
results compared to the other methods.

(3) In the third case of Figure 4 [30], the barium titanate powder is self-synthesized and
has grain size of approximately 1 µm. The authors use the same matrix properties
as in the previous case (dielectric constant equal to 5.7). Since for particle dielectric
constant above 1,000 the effective response does not present significant change,
we assume that the barium titanate powder has dielectric constant 3,000 and the
experimentally different results between the second and the third case are due to
different surface behaviour between the self-synthesized and the TAM-BT powder.
In this case, we choose for our model the surface dielectric constant to be ε̂ =
−758.3 µm and we observe that we can capture quite well the experimental data,
while the other models underpredict the effective dielectric constant (Figure 4(c)).

(4) In the fourth case of Figure 4 [7], the barium titanate particles have an average
size of about 100 nm. The authors report the dielectric constants of the particles
(barium titanate) and the matrix (PVDF) to be 3,500 and 12.3, respectively. The
experimental results for 60% volume fraction have been excluded, since the models
do not account for agglomerations and air voids. We choose for our model the surface
dielectric constant to be equal to one for the cases 1 and 2 (̂ε = −768.6 µm), thus
we assume that the change in particles size and electric behaviour does not influence
the surface properties. In this case, most of the micromechanical models and the
one we propose capture quite well the experimental data (Figure 4(d)).

The four examined cases in this subsection indicate that the surface dielectric constant for
particle composite seems to depend only on the particle and not on the matrix.

Remark (Negative interface dielectric constant is admissible) In the present model, neg-
ative values for the dielectric constant are admissible, in general. From a mathematical
point of view, the admissible range for the interface dielectric constants could be calculated
from Equation (13) by imposing overall response to be positive. The negative dielectric
constant shall be compared to the negative magnetic permeability in diamagnetic materials,
for instance. Furthermore, we recall the analogy of this problem to the well-established
surface elasticity theory [33–36] in the mechanical case. It is known that the admissible
range for the surface material parameters can differ from those in the bulk. In particular,
surface material parameters can be negative where the analogous bulk material parameters
are strictly positive. This can be justified by the fact that the surface cannot exist independent
of the bulk and the overall response of the bulk together with the surface need to be positive
definite [37–39].

5. Conclusion

In order to study the electrostatic behaviour of composites and porous materials, a mi-
cromechanical model is proposed that endows the interface between the particle (or the
pore) and the matrix with its own independent behaviour. The model employs the well-
established composite spheres assemblage method and enhances the interface with its own
dielectric constant. It is shown that the current model has an excellent agreement with
experiments and embraces better capabilities to predict realistic material behaviour. It is
also observed that using different experimental data leads to the same interface dielectric



constant depending only on the particle and not the matrix. Finally, it shall be mentioned that
in all the examined cases the current model simulated quite well the experimental results
for one interface dielectric constant.
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Note

1. The label energetic denotes that the interface possesses electrical and constitutive structures.
These structures are independent from those of the bulk.
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