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Abstract

Measurements on vibrating structures has been a topic of interest since decades.
Vibrating structures are however generally assumed to behave linearly and in a
noise-free environment, which is not the case in practice. This paper thus pro-
vides a methodology that allows for the autonomous estimation of nonlinearities
and assessment of uncertainties by bootstrap on a given vibrating structure.
Nonlinearities are estimated by means of a block-oriented nonlinear model ap-
proach based on parallel Hammerstein models and on exponential sine sweeps.
Estimation uncertainties are simultaneously assessed using repetitions of the
input signal (multi-sine sweeps) as the input of a bootstrap procedure. Mathe-
matical foundations and practical implementation of the method are discussed
on an experimental example. The experiment chosen here consists in exciting
a steel plate under various boundary conditions with exponential sine sweeps
and at di�erent levels in order to assess the evolutions of nonlinearities and
uncertainties over a wide range of frequencies and input amplitudes.

Keywords

Nonlinear vibrating structure, nonlinear system identi�cation, parallel Hammer-
stein models, bootstrap procedure, uncertainty quanti�cation.

1 Introduction

Vibrating structures are generally assumed to behave linearly and in a noise-
free environment. This is in practice not perfectly the case. First, nonlinear
phenomena such as jump phenomenon, hysteresis or internal resonance appear
when the transverse vibration of a bi-dimensional structure exceeds amplitudes
in the order of magnitude of its thickness [1]. Second, the presence of plant noise
is a natural phenomenon that is unavoidable for all experimental measurements.
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In order to perform reliable measurements of vibrating mechanical structures
one should thus keep in mind these two issues and care about them. The �rst
one, respectively �nonlinearities�, can be considered as a deterministic process
in the sense that in the absence of noise the output signal depends only on
the input signal. The second one, respectively �noise�, is purely stochastic:
in the absence of an input signal, the output signal is not null and cannot be
predicted at any arbitrary instant. At �rst, these two issues can be thought of as
independent and solved by means of two distinct procedures. However, it turns
out that they are actually coupled. Indeed, all the noise that is not correctly
removed from the measurements could be misinterpreted as nonlinearities, thus
polluting measurements. And if nonlinearities are not accurately estimated,
they will end up within the noise signal and information about the structure
under study will be lost. In this paper, we thus try to estimate nonlinearities
while quantifying the uncertainties on these estimations that result from noise.
The underlying idea consists in extracting the maximum of available linear and
nonlinear deterministic information from measurements without misinterpreting
noise.

The �rst problem addressed here is related to the estimation of nonlinear
models of vibrating structures [2, 3]. Some approaches are based on a physical
modeling of the structure whereas some perform without any physical assump-
tion (black-box models). As nonlinear mechanisms in structures are complex
and various and as we do not intend to build a model for each case, we choose
to rely on black-box models. Among these black-box approaches, some assume
a given form for the selected model (block-oriented models [4, 5, 6, 7]) whereas
some do not put constraints on the model organization. Because block-oriented
models can be interpreted easily, this class of models has been retained. A class
of block-oriented models that is particularly interesting is the class of parallel
Hammerstein models (see Fig. 1). It belongs to the class of �Sandwich models� [4]
and is shown to possess a good degree of generality [2]. Moreover, thanks to
exponential sine sweeps [8, 9, 10], nonparametric versions of such models can
be very easily and rapidly estimated [11, 12]. The procedure developed recently
for the nonparametric estimation of parallel Hammerstein models [11, 12] will
thus be extended here in order to be able to take into account stochastic plant
noise. This procedure has already proven to be very useful to study vibrating
structures in various contexts [13, 14, 15].

Figure 1: Representation of parallel Hammerstein models
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The second problem addressed here is related to the estimation of uncertain-
ties caused by the presence of noise in the context of nonlinear system estima-
tion. Of prime importance for this issue is the design of the excitation signals.
The use of special types of periodic excitations has been proved particularly
advantageous in this respect [16]. A typical example is provided by multisines
(i.e. a Fourier series with random phases) where some harmonics are voluntary
removed. The detection of energy at the non-excited frequencies in the system
response then provides a clear evidence of the presence of nonlinearites and also
enables their quanti�cation and, to some extent, their quali�cation (e.g. whether
they correspond to odd or even orders). Another property of multisines is to al-
low the separation of nonlinearities from measurement noise. Several strategies
towards this aim are described in reference [16]. They usually require the use
of several multisine excitations with varying gains and/or randomly di�ering
phases. In a recent work, a fast method was proposed to identify nonlineari-
ties based on the use of a nonstationary excitation with an underlying periodic
structure [17]. The idea was to progressively stear the system outside its lin-
ear range and at the same time to bene�t from the properties of a multisine
excitation to quantify the emergence of nonlinearities and separate out plant
noise. The aim is here to demonstrate that the use of such a procedure based
on multiple exponential sine sweeps will allow for a more robust and e�cient
estimation of nonlinear models of vibrating structures.

The aim of this paper is thus to provide a methodology that allows for the
autonomous estimation of nonlinearities and uncertainties by bootstrap on a
given vibrating structure. Nonlinearities are estimated by means of a block-
oriented nonlinear model approach based on parallel Hammerstein models and
on exponential sine sweeps [11, 12]. Estimation uncertainties are simultaneously
assessed using repetitions of the input signal (multi exponential sine sweeps) as
the input of a bootstrap procedure. Mathematical foundations and practical
implementation of the method are discussed on an experimental example. The
experiment chosen here consists in exciting a steel plate under various boundary
conditions with exponential sine sweeps and at di�erent levels in order to assess
the evolutions of nonlinearities and to estimate uncertainties over a wide range
of frequencies and input amplitudes. The paper is organized as follows. The
original method developed for the nonparametric estimation of parallel Ham-
merstein models [11, 12] is �rst rapidly described in Sec. 2. Then, the bene�ts
of the use of multiple exponential sine sweeps for the estimation of nonlinear
models of vibrating structures is discussed in Sec. 3. Performances of the whole
method are then illustrated experimentally on a vibrating plate in Sec. 4.

2 Identi�cation of parallel Hammerstein models

This section aims at resuming the identi�cation of parallel Hammerstein models
by means of exponential sine sweeps, as initially proposed in Refs. [11, 12]. It
introduces the quantities and notations that will be used later in the paper.

2.1 Parallel Hammerstein models

Volterra series are a convenient and general tool that provides an analytical
expression of the relationship between the input e(t) and the output s(t) of a
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Figure 2: Schematic representation of the estimation procedure for parallel
Hammerstein models based on exponential sine sweeps models [11, 12]. A: Gen-
eration of an exponential sine sweep e(t) from parameters (f1, f2, Tm). B: Excitation of the
nonlinear system and recording of the output signal s(t). C: Generation of an inverse �lter
y(t) from parameters (f1, f2, Tm). D: Convolution of the inverse �lter y(t) with the output
signal s(t). E: Extraction of intermediate values {gn(t)} by means of temporal windowing.
Computation of {hn(t)} from {gn(t)} using the matrix C.

weakly non-linear system [18]. A system is considered here as �weakly� nonlinear
if it does not exhibit any discontinuous nonlinearity (such as a hard saturation
for example). The class of weakly nonlinear systems is thus rather general and
encompasses many real-life applications. Parallel Hammerstein models consti-
tute an interesting subclass of Volterra systems [19, 2]. This class of model is
very appealing as it is at the same time easy to estimate and to interpret as well
as being mathematically still rather general.

In a parallel Hammerstein models [19, 2], each branch is composed of one
nonlinear static polynomial element followed by a linear one, hn(t), as shown in
Fig. 1. Mathematically, the relation between the input e(t) and the output s(t)
of such a system is given by Eq. (1), where ∗ denotes the convolution product:

s(t) =

N∑
n=1

(hn ∗ e)n(t). (1)

In this model, each impulse response hn(t) is convolved with the input signal
raised to its nth power and the output s(t) is the sum of these convolutions. The
�rst impulse response h1(t) represents the linear response of the system. The
other impulse responses {hn(t)}n∈{2···N} model the nonlinearities. The family
{hn(t)}n∈{1···N} will be referred to as the kernels of the model. Any parallel
Hammerstein model is fully represented by its kernels.
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2.2 Exponential sine sweeps

Estimating each kernel hn(t) of a parallel Hammerstein models is not a straight-
forward task. A simple estimation method that has been proposed previously
[11, 12] for this purpose is brie�y recalled here (see Fig. 2 for an overview of the
method). To experimentally cover the frequency range over which the system
under study has to be identi�ed, cosines with time-varying frequencies are com-
monly used. When the instantaneous frequency of e(t) = cos[φ(t)] is increasing
exponentially from f1 to f2 in a time interval T , this signal is called an �Expo-
nential Sine Sweep� (see Fig. 2.A). It can be shown [11, 12] that by choosing
Tm = (2mπ−π/2)ln( f2f1 )/2πf1 with m ∈ N∗ one obtains the following property:

∀n ∈ N∗, cos [nφ(t)] = cos [φ(t+ ∆tn)] with ∆tn =
Tm ln(n)

ln( f2f1 )
. (2)

Equation (2) states that for any exponential sine sweep of duration Tm,
multiplying the phase by a factor n yields the same signal, advanced in time by
∆tn.

2.3 Kernel recovery in the time domain

If an exponential sine sweep is presented at the input of parallel Hammerstein
models, by combining Eq. (1) and Eq. (2) and by using properties of Chebyshev
polynomials (see Appendix), one obtains the following relation (see Fig. 2.B):

s(t) =

N∑
n=1

(gn ∗ e)n(t+ ∆tn) with gn(t) =

N∑
n=1

c̃k,nhk(t) (3)

where gn(t) can be interpreted as the contribution of the di�erent kernels to the
nth harmonic and c̃k,n is the coe�cient (n, k) of the matrix C̃. Details of the

computation of the matrix C̃ are provided in the Appendix.
In order to identify each kernel hn(t) separately, a signal y(t) operating as

the inverse of the input signal e(t) in the convolution sense can be built as shown
in [11, 12] (see Fig. 2.C). After convolving the output of Parallel Hammerstein
models s(t) given in Eq. (3) with y(t), one obtains Eq. (4) (see Fig. 2.D) :

(y ∗ s)(t) =

N∑
n=1

gn(t+ ∆tn). (4)

Because ∆tn ∝ ln(n) and f2 > f1, the higher the order of nonlinearity
n, the more advanced is the corresponding gn(t). Thus, if Tm is chosen long
enough, the di�erent gn(t) do not overlap in time and can be separated by
simply windowing them in the time domain (see Fig. 2.E). Using Eq. (3), the
family {hn(t)}n∈{1···N} of the kernels of the parallel Hammerstein models under
study can then be fully extracted as

[h1(t) · · ·hN (t)]T = C̃[g1(t) · · · gN (t)]T . (5)
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2.4 Advantages and limitations of the method

The method described here [11, 12] thus easily provides a direct mathematical
access to all the kernels of a parallel Hammerstein model. The main advantage
of this exponential sine sweep based method is to be fast and simple: using
only one exponential sine sweep one can have direct access to the kernels of an
arbitrary vibrating device without the need of any complicated signal processing
procedure (see Fig. 2).

The method presented here is not exactly the same as the standard sine
sweep method [8, 9]. It can be thought as similar as the input signal being
used is still a sine sweep. However, the sine sweep used here has to satisfy
some speci�c additional requirements. First of all, the input sine sweep must
have its frequency varying exponentially with time. Secondly, the length of the
exponential sine sweep cannot be set arbitrarily and must be chosen among a
given set of admissible values. Finally, the two methods do not have the same
purpose. With the standard sine sweep method, the aim is to estimate the
linear impulse response of a given system while being robust to nonlinearities.
With the proposed method, the aim is to estimate a whole nonlinear model of
the system under study. The method presented here can thus be thought as an
extension of the standard sine sweep method.

However, this method still needs to be improved to some extent. The main
limitation lies in its unability to distinguish between nonlinearities and exper-
imental noise. This results in an overestimation of the nonlinear behavior as
estimated kernels also include some plant noise. Another limitation of this
method is related to the parameter N that denotes the number of kernels (or
equivalently the number of branches) to be estimated in the parallel Hammer-
stein models. For the moment this parameter is chosen arbitrarily or by using
some empirical rules and e�orts have to be done to estimate it automatically.
These questions constitute the main topics of this paper and will be addressed
in the following section.

Finally, recent studies [20, 21] have shown that distortion artifacts can ap-
pear in the causal part of the impulse responses estimated by means of expo-
nential sine sweep when the system under study is not perfectly modeled by
parallel Hammerstein blocks. Indeed, in practical applications one will never
face a system that is exactly a parallel Hammerstein model as this kind of sys-
tem corresponds to a mathematical idealization. In this situation the method
proposed here will thus unavoidably return some sort of artefact present in
the causal part of the estimated impulse responses. However, as mentioned by
references [20, 21] those artifacts remain of very small amplitude.

3 Estimation uncertainties

The identi�cation method described in the previous section originally used a
single sweep for the excitation signal, as described by Eq. (2). Although this is
enough to decompose the system output into nonlinear contributions of di�er-
ent orders, it does not allow for the estimation of uncertainties. This may be
troublesome when weak nonlinearities � typically related to higher-order kernels
� are highly contaminated by plant noise. Inspired from Refs. [16, 17], a simple
solution to alleviate this situation is to repeat the same exponential sine sweep
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several times so as to excite the system with a periodic signal. By taking advan-
tage of repeated experiments, it is then possible to estimate the contribution of
plant noise by synchronous averaging. The use of the synchronous average on
repeated experiments is not a novel contribution as such; yet, when combined
in a certain manner with the exponential sine sweep method, it provides rather
unique and simple ways 1) to automatically test for the determination of the
e�ective number of kernels to estimate and 2) to assess estimation uncertainties
on the nonlinear kernels by use of the bootstrap. These issues are discussed in
the following subsections.

3.1 Noise estimation by synchronous averaging

The principle is to repeatedly excite the system with the same sine sweep e0(t).

The input signal then reads e(t) =
∑K−1
k=0 e0(t − kTm), with K periods of du-

ration Tm indexed by k (see Sec. 2.2 for the de�nition of Tm). A property of
non-linear systems described by parallel Hammerstein branches is to respond
with a periodic output sharing the same period T as the input (PISPO sys-
tem: Period In Same Period Out). The same property obviously holds for the
deconvolved signal. Speci�cally, let

x(t) = g(t) + n(t) (6)

denote the noisy counterpart of Eq. (4) where g(t) = (y ∗ s)(t) =
∑N
n=1 gn(t+ ∆tn)

has now been periodized such that g(t) = g(t − Tm) and n(t) stands for plant
noise.

The aim is now to separate g(t) from n(t). Since the system output is
theoretically periodic in the absence of noise, a natural estimate of it is provided
by the synchronous average

ĝ(t) =
1

K

K−1∑
k=0

x(t− kTm) (7)

and, by subtraction, an estimate for plant noise is

n̂(t) = x(t)− ĝ(t). (8)

Note that these estimates hold whatever the probability and power spectral
distributions of the noise provided that it is uncorrelated from one period to
another. In addition, it is readily checked that they are unbiased. Given a
number K of periods of the same sweep, the variance of ĝ(t) can be shown to
be equal to σ2

n/K with σ2
n the variance of plant noise of which an estimate at

time t is returned by

σ̂2
n(t) =

1

K

K−1∑
k=0

n̂(t− kTm)2. (9)

Therefore, the noise-to-signal ratio (NSR) of the synchronous average de-
creases proportionally with K. Speci�cally, by de�ning

NSR(K) = 20 log10

(
RMS(ĝ − g)

RMS(ĝ)

)
, (10)
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the NSR based on K averages (wherein RMS(z) stands for the Root-Mean-
Square value of signal z(t)), one has the simple relationship

NSR(K) = NSR(1)− 3 · log2(K) (11)

where NSR(1) = RMS(n)/RMS(x) is the initial NSR. Therefore, the NSR de-
creases by 3 dB when doubling the number of averages. However, even if this
formula may suggest that noise disappears when increasing the number of av-
erages, one should keep in mind that noise will never be completely eliminated
from �nite-length measurements.

Using the synchronous average ĝ(t) in place of g(t) in the identi�cation
method of section 2 will obviously decrease the uncertainties on the estimation
of the non-linear kernels hn(t). However, despite the NSR being decreased, the
complete removal of noise is not possible (as long as K <∞) and it still remains
to assess the limit where weak nonlinearities can be statistically distinguished
from noise and the corresponding uncertainties estimated. These two issues are
addressed in the following two subsections.

3.2 Autonomous determination of the number of kernels

The principle of the exponential sine sweep based method is rooted on the
detection of the nth order harmonic contributions gn(t), n = 1, ..., N in the time-
domain. As illustrated in Fig. 2.E, it might not be obvious at �rst to determine
how many gn(t)'s have been excited when higher-order ones are likely to be
masked by noise.

However, the determination of the correct number N of harmonic contri-
butions is crucial to return unbiased estimates [11]. This is due to the fact
that the kernels hn(t) to be estimated are depending on all identi�ed harmonic
contributions gk(t), k = 1, ..., N , as seen by inverting the second formula in
Eq. (3). Too small a number would result in underestimating the nonlinearities
in the system. On the contrary, too large a number would considerably increase
estimation noise.

An autonomous procedure is proposed that determines the e�ective number
of kernels which can be distinguished from plant noise. It is based on the
following statistical F-test. Let's consider the synchronous average ĝ(t) in a
short time interval In centered around the expected occurrence of the n-th
kernel, i.e. t ∈ In = [tn,1, ..., tn,2] with ∆tn ≤ tn,1 and tn,2 < ∆tn−1. The
question is whether ĝ(t) signi�cantly protrudes from background noise in that
interval � and therefore originates from a n-th nonlinearity � or whether it is
mainly noise (see Fig. 6). This corresponds to two alternative hypotheses:

� H0: ĝ(t), t ∈ In is plant noise only

� H1: ĝ(t), t ∈ In contains an nth order harmonic contribution gn(t).

Following the analysis of section 3.1 and making use of Eq. (9), an estimate of
the variance in interval In under H0 is returned by

σ̂2
In|H0 =

1

tn,2 − tn,1 + 1

tn,2∑
t=tn,1

1

K
σ̂2
n(t) (12)
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(note the division by K since the level of noise on the synchronous average is
K times as small as on the initial signal according to formula (11)). Therefore,
assumption H0 is to be rejected if the current �variance�

σ̂2
In =

1

tn,2 − tn,1 + 1

tn,2∑
t=tn,1

ĝ(t)2 (13)

is found statistically greater than σ̂2
In|H0. This can be easily formalized with a

F-test for the equality of two variances: H0 is rejected if the ratio σ̂2
In/σ̂

2
In|H0 is

greater than F (α)K−1,K−1, the critical value of the F distribution with K − 1
and K − 1 degrees of freedom and a signi�cance level of α.

The highest-order harmonic contribution gN (t) that is found signi�cant through
this procedure then determines the model order N .

3.3 Bootstrap assessment of uncertainties

Eventually, the use of repeated exponential sine sweeps also gives access to the
uncertainties on the non-linear kernels hn(t). Even if a full analytic treatment
of the question is possible in the case of Gaussian noise, a resampling strategy
based on the bootstrap is preferred due to its simplicity and versatility with
respect to unknown noise properties [22].

The bootstrap is a technique to arti�cially produce random repetitions of the
experiment from the available data. The aim is to obtain an histogram for the
estimated kernels hn(t) from which con�dence intervals (or any other measure
of statistical dispersion related to uncertainties) can easily be constructed. This
is achieved by producing a series of virtual repetitions of the same experiment.
Let xk(t) = x(t − kTm), 0 ≤ t < Tm, denote the k-th cycle of signal x(t) (as
de�ned in Eq. (6)) and π a random draw of the integers 0, ...,K − 1 (i.e. each
element π(i), i = 0, ...,K − 1, is randomly assigned a value of set 0, ...,K − 1
with uniform probability 1/K). A new virtual measurement x(b)(t) (where (b)

denotes the bootstrap index and is not to be confused with an exponentiation)
is then produced by concatenating K random draws with replacement,{

xπ(0)(t); ...;xπ(K−1)(t)
}
. (14)

from which the synchronous average

ĝ(b)(t) =
1

K

K−1∑
k=0

xπ(k)(t) (15)

is computed. By means of an example with K = 3, one possible bootstrap draw,
say b = 1, would return {π(0);π(1);π(2)} = {2, 1, 1} and therefore ĝ(1)(t) =
1
3 (x2(t)+x1(t)+x1(t)); another draw would return {π(0);π(1);π(2)} = {0, 2, 0}
and therefore ĝ(2)(t) = 1

3 (x0(t) + x2(t) + x0(t)), etc . . .

Next, for each bootstrapped synchronous average ĝ(b)(t) a new estimate

h
(b)
n (t) is obtained by following the procedure of Sec. 2. This is repeated B times

such as to collect B estimates h
(b)
n (t), b = 1, ..., B, from which a histogram can

�nally be calculated. Similarly, histograms are available on any transform of
the estimated kernels, in particular on their Fourier transforms as displayed in
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Sec. 4. Speci�cally, by denoting H
(b)
n (f) the Fourier transform of the bootstrap

estimate of the n-th kernel h
(b)
n (t) from a random draw b, the uncertainties in

the frequency domain are evaluated by the di�erence

U (b)
n (f) = H(b)

n (f)− 1

B

B−1∑
b=0

H(b)
n (f). (16)

The mean square uncertainty on the n-th kernel based on K averages may
then be de�ned as

MSUn(f,K) =
1

B

B−1∑
b=0

|U (b)
n (f)|2. (17)

Finally, the uncertainty-to-signal ratio (USR) can be de�ned as:

USRn(K) =

∫
MSUn(f,K)df∫

1
B

∑B−1
b=0 |H

(b)
n (f)|2df

(18)

where the integrals are taken over the full frequency band of interest.
This index can be interpreted as a compact way to assess the quality of

the estimated kernels and can be compared to NSR(K) as de�ned in Eq. (11).
NSR(K) stands for the ratio of the energy of the noise versus the energy of
the estimated signal for K repetitions of the exponential sine sweep. USRn(K)
denotes the ratio of the energy of the uncertainty on the nth kernel versus the
energy of the estimated nth kernel for K repetitions of the exponential sine
sweep. As the uncertainty on the nth kernel may be linked with the variance of
noise, a correlation between both indexes is to be expected.

Note that the bootstrap is a computer intensive method. Yet it was found
reasonably fast to run for values of B up to the order of a few hundreds.

4 Application to a vibrating plate

4.1 Experimental setup

In order to illustrate the performance of the proposed extended exponential sine
sweep method, vibratory measurements have been done on a simple mechanical
system. The chosen structure is a thin rectangular steel plate of 540 × 640 ×
1 mm3 dimensions. An electrodynamic mini-shaker (B&K Type 4810) is used
to excite the plate at a point chosen arbitrarily (see Fig. 3). Acceleration of the
plate is measured at two positions: at the driving point through an impedance
head (PCB Type 288D01) and at several centimeters from it using a second
accelerometer (B&K Type 4508). Two con�gurations have been tested:

� in the �rst one (see Fig. 3(a)) the plate is clamped at edges with four
metal bars (of 2 cm width) screwed to the top ledges of a cavity of 500×
600× 700 mm3 dimensions.

� in the second con�guration (see Fig. 3(b)) the plate is suspended (bound-
ary conditions can be supposed as free) and highly damped by adding a
porous material glued on one face of the plate.
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(a) (b)

Figure 3: Overview of the experimental setup. (a) First con�guration: steel
plate coupled to a cavity (clamped boundary conditions). (b) Second con�gu-
ration: suspended damped plate (free boundary conditions).

The extended exponential sine sweep method presented here has been ap-
plied to these two di�erent con�gurations. The aim is not to compare the
amount of nonlinearities for di�erent test cases or to discuss the relative results
of di�erent experimental con�gurations, but simply to show how the methodol-
ogy can be easily applied to examples of common engineering problems which
may arise in the vibroacoustic community: a typical lightly damped clamped
structure and a highly damped �free-free� one. These two systems with di�erent
boundary conditions and di�erent amounts of damping exhibit di�erent levels of
nonlinearities from di�erent origins (geometrical nonlinearities, contacts, . . . ).

For each con�guration the plate is excited with 20 exponential sine sweeps
of 30 sec each, repeated periodically. The instantaneous frequency of the sweep
increases from 20 Hz to 1 kHz. The sampling frequency is �xed at 25.6 kHz in
order to allow for the estimation of high order kernels. Several measurements
at di�erent gains have been performed in order to assess the evolutions of non-
linearities and of the signal to noise ratio over a wide range of frequencies and
input amplitudes.

4.2 Assessment of estimation uncertainties

This subsection illustrates the assessment of estimation uncertainties by means
of the bootstrap technique described in Sec. 3.3. The signal under study corre-
sponds to the second accelerometer (glued on the plate several centimeters away
from the impedance head) for the �rst con�guration where the plate is clamped
(see Fig. 3(a)). It contains a maximum of Kmax = 20 repetitions of the response
of the system to exponential sine sweeps. During the �rst repetition the sys-
tem is considered to exhibit a transient response while it reaches its stationary
regime when the second repetition of the sweep is starting up. For that reason,
the �rst repetition has been removed from the analysis. The objective is here
to demonstrate the USR (see Eq. (18)) improvement caused by the synchronous
averaging process.

Figures 4(a) and 4(b) display the e�ect of the synchronous average over
K = 19 repetitions of the exponential sine sweep � as compared to K = 1
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(a)

(b)

Figure 4: Illustration of the USR improvement implied by synchronous aver-
aging. a) Frequency gains of kernels estimated on one period of the excitation
signal together with the mean square uncertainty obtained classically. b) Fre-
quency gains of kernels estimated by synchronously averaging K = 19 periods
of the excitation signal together with the mean square uncertainty MSUn(f, 19)
obtained by bootstrap (B = 150 random draws with replacement).
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� for the estimation of non-linear kernels up to order N = 6. The estimated
kernels are displayed in each �gure together with the corresponding mean square
uncertainty MSU(f,K) of Eq. (17) as obtained from bootstrap. One can clearly
see the bene�t of reducing the noise by synchronous averaging, especially for
the high-orders kernels for which the initial USR without averaging is very low
(−11 dB for the 6th order kernel for example) and becomes acceptable after
averaging (−23 dB for the 6th order kernel). Moreover, comparison of Figs. 4(a)
and 4(b) displays a reduction of ' 13 dB of the estimation uncertainties for each
kernel order, which is very close to the value predicted by Eq. (11). Figure 5
then illustrates the improvement with respect to K of both the NSR as given by
Eq. (11) and the USR as given by Eq. (18). As expected, the curves evidence
an excellent correlation between both indexes.

Figure 5: Improvement with respect to K of both the NSR as given by Eq. (11)
and the USR as given by Eq. (18).

4.3 Determination of the e�ective number of kernels

This section illustrates the automatic determination of the e�ective number
of kernels Nopt as explained in Sec. 3.2. Measurements are now performed
on the second con�guration (suspended damped plate, see Fig. 3(b)). The
signal studied here corresponds to the second accelerometer, after synchronous
averaging on all periods except the �rst one (transient regime). Four gains for
the excitation signal are successively tested G = 0.1 − 1 − 5 and 10 in order
to study the robustness of the determination method to predict the proper
number of kernels to estimate. For the fourth gain (G = 10), the excitation force
delivered from the shaker is one hundred times higher than for the �rst gain (G =
0.1). For example, in terms of displacement, at a resonance frequency around
130 Hz and at the point of measurement of the second accelerometer (several
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centimeters away from the shaker), the gain G = 0.1 creates a displacement
of about 5 µm whereas the gain G = 10 generates a displacement of about
0.5 mm, that is half the plate thickness (1 mm). It is obvious that with such
large-amplitude vibration motions, geometrical nonlinearities appear strongly
with high order kernels being excited.

Figure 6: Illustration of the determination of the e�ective number of kernels
for the second con�guration (suspended damped plate, see Fig.3(b)) for four
di�erent excitation gains (G = 0.1− 1− 5− 10). The signal |g(t)| = |(y ∗ s)(t)|
(output signal after deconvolution, see Eq. (4)) in the time domain is displayed
in dB in blue and the selection thresholds in red. Retained kernels are displayed
with green windows, and rejected ones with red windows.

In Fig. 6, the determination of the e�ective number of kernels (using the
methodology presented in Sec. 3.2) is illustrated in the time-domain on the signal
g(t) = (y ∗s)(t) (output signal after deconvolution, see Eq. (4)). The thresholds
de�ned in Sec. 3.2 (through F-test at 0.995 and with a security parameter chosen
equal to 6) is displayed in red lines in Fig. 6 together with the intervals In which
are materialized by the vertical shaded areas. These thresholds allow estimation
of the e�ective number of kernels to retain for each excitation level. Green
windows are displayed for retained kernels and red windows for rejected ones.
As expected, the optimal model order Nopt of retained kernel increases with the
level of excitation: Nopt = 1−3−8 and 12 respectively. These estimated kernels
are presented in Fig. 7 for each gain. One can note that the level of the kernels

14



increases with the excitation gain. Moreover, the frequency content of the �rst
kernel (corresponding to the linear part) is very similar for each measurement,
thus assessing the reproducibility and precision of the measurements. To sum
it up, the methodology presented here is a useful tool to select the proper
model order Nopt and a major improvement of such nonlinearity estimation
methodologies.

Figure 7: Estimated kernels for the second con�guration (suspended damped
plate, see Fig.3(b)) after determination of the e�ective number of kernels for
each of the four excitation levels.

5 Conclusion

The aim of this paper is to provide a methodology that allows for the au-
tonomous estimation of nonlinearities and of uncertainties by bootstrap on a
given vibrating structure. Nonlinearities are estimated by means of a block-
oriented nonlinear model approach based on parallel Hammerstein models and
on exponential sine sweeps. Estimation uncertainties are simultaneously as-
sessed using repetitions of the input signal (multi-sine sweeps) as the input of
a bootstrap procedure. Mathematical foundations and practical implementa-
tion of the method are discussed on an experimental example. The experiment
chosen here consists in exciting a steel plate under various boundary conditions
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with exponential sine sweeps and at di�erent levels, in order to assess the evo-
lutions of nonlinearities and of the signal-to-noise ratios over a wide range of
frequencies and input amplitudes.

The major improvements provided in this article are:

� the fact that the synchronous average allows the design of a simple sta-
tistical test to automatically determine the e�ective number of non-linear
kernels in the exponential sine sweep method (in a manner that is actually
quite unique to this method),

� the fact that the synchronous average is combined with the bootstrap
to propose a versatile technique for assessing the uncertainties on any
quantity of interest by taking advantage of repeated measurements.
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Appendix: Computation of the matrix C̃

Chebyshev polynomials {Tk[cos(φ)]}k∈N are de�ned by Eq. (19).

∀k ∈ N, cos(kφ) = Tk[cos(φ)] (19)

Subsequently, it can easily be shown that they satisfy the recurrence relation
given in Eq. (20).

k = 0 T0(x) = 1 (20a)

k = 1 T1(x) = x (20b)

k > 1 Tk+1(x) = 2xTk(x)− Tk−1(x) (20c)

Then, by writing the polynomials as in Eq. (21) , one can obtain Eq. (22),
using Eq. (20), and �nd the coe�cients of the matrix A.

Tk(x) =

k∑
i=0

A(i, k)xi (21)

i = 0 A(0, k + 1) = −A(0, k − 1) (22a)

0 < i < k A(i, k + 1) = 2A(i− 1, k)−A(i, k − 1) (22b)

i > k A(i, k + 1) = 2A(i− 1, k) (22c)

The linearisation of the polynomials can now be rewritten in a matrix form,
as in Eq. (23).
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1

cos(x)
...

cos(Nx)

 = A


1

cos(x)
...

cosN (x)

 (23)

Inverting Eq. (23) results in Eq. (24) which gives explicitly the C matrix.

C = A−1 (24)

The matrix C̃, necessary to access to {hn(t)}n∈[1,N ], is the matrixA without
the �rst column and the �rst row, as seen in Eq. (5). To avoid the implementa-
tion of the recurrence, the C̃ matrix of order 8, which is su�cient for practical
use, is given in Eq. (25).

C̃ =



1 0 −3 0 5 0 −7 0
0 2 0 −8 0 18 0 −32
0 0 4 0 −20 0 56 0
0 0 0 8 0 −48 0 160
0 0 0 0 16 0 −112 0
0 0 0 0 0 32 0 −256
0 0 0 0 0 0 64 0
0 0 0 0 0 0 0 128


(25)
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