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1. Introduction and state of art

Life-cycle cost can be influenced up to 70% by decisions taken
during conceptual and embodiment design stages [1]. The need of
supporting decision making by adequate theories and methodolo-
gies is thus greatest at these stages. For many years, design has
been mostly dependent on companies’ know-how and designers’
tacit knowledge [2]. Nowadays, a great part of development time
in design departments is spent on numerical calculation using
behaviour models. Given the multitude hypothesis and approx-
imations adopted in these models, their capacity to adequately
represent product behaviours has always been a critical issue for
designers. In addition, it is difficult to effectively qualify the
accuracy of results provided by these behaviour models. This
usually leads to a long ‘‘trial-and-error’’ process in which several
physical prototypes are realized and tested. This is a frequent cause
of cost overruns and schedule delays. Moreover, it provides no
guarantee of approaching the optimal solution. Within this work,
the objective is to propose a multi-criteria decision-making
method that aims to maximize the satisfaction of design objectives
with a consideration of the risk associated with the accuracy of
behaviour models.

Multi-criteria decision making is a very complex problem in
modern industry. As clearly explained by Krause and Golm [3] and
Elwany et al. [4], it is principally due to the heterogeneous and
contradictory nature of design objectives, and to data imprecision.
In the framework of decision making in engineering design, the
Method of Imprecision (MoI) proposed by Otto and Antonsson [5]
has demonstrated its efficiency. It allows designers to formalize
imprecision in Design Alternative (DA) evaluation using fuzzy
logic. Each DA is then evaluated using several preference values

which are finally aggregated into a generalized preference. In
addition, the MoI proposes axioms to provide a framework for
application to the field of engineering design, and the ability to use
different strategies to express the will of designers. MoI provides
solid theoretical basis in the field of decision making in engineering
design. However, the main limit of this approach, in our context
and for our point of view, is that the evaluation of DA does not take
into account the accuracy degree of behaviour models (or data)
used for the evaluation of DA. As an example, two DA may illicit the
same performance in term of achievement of design goals but
the risk related to the accuracy of behaviour models may be
different. The attitude of Decision Maker (DM) in this case will not
be the same.

Inaccuracy of behaviours models is due to: simplifying
hypotheses, uncertainty in the identification of model parameters
and, inaccuracy of digital resolution [6]. Evaluating the accuracy of
a behaviour model is a difficult task. In the absence of significant
background data, statistical tools such a case-based reasoning or
artificial neural network cannot be used. In the present context, we
suppose that reference points exist and correspond to results of
experimental tests on real scale 1 prototype. In this case, it is
recommended to measure accuracy as the distance between
behaviours model result and reference points [7,8]. According to
Vernat et al. [7], the accuracy estimation criteria can be local or
global criteria. A local error estimate can be given, for example,
through the maximum (Eq. (1)) or minimum of the absolute error
in the measured points, or simply by the error at a particular point.
A global error estimate can be given for example by the squared
error (Eq. (2)) allows for example to obtain a general trend of the
error on the entire design space. It is recommended to compare
the obtained distance with a threshold value or accuracy objective
[7,8].

EM ¼ maxi X̃i � Xi

�� �� (1)

Keywords:

Decision making

Design

Concepts maturity

A B S T R A C T

Rework tasks in collaborative development projects dealing with immature design concepts are very

frequent and are responsible of cost overruns and schedule delays. Taking into account uncertainty and

accuracy of models (and data) improves decision making according to strategic orientation for product

development. Based on a real design of light, slender but rigid solar collector supports, multiple tools have

been developed and tested to support decision making at different stages of development process. The

objective of this paper is to investigate the integration of these accuracy evaluations into the design

process. This proposal is validated by the industrial development and validation.
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The limit of such a measure of accuracy occurs when there are
very few reference points and a large design alternatives space to
explore. In this case, it is very difficult to justify the validity of this
accuracy measure in all design alternatives space.

2. Proposed approach

When exploring the set of possible design alternatives using the
results of behaviour models, decision maker’s preferences are
driven by two main considerations: (i) maximizing the satisfaction
of design objectives, and (ii) minimizing the risk associated to the
inaccuracy of behaviour models used. In the proposed approach,
these two considerations are represented by numerical indicators
that are respectively Overall Desirability Indicator (ODI) and,
Safety Indicator (SI).

2.1. Overall desirability indicator (ODI)

ODI quantify the general level of satisfaction achieved by a
DA. The model used for its calculation (Fig. 1) is similar to MoI
[5]. Starting from a given DA that is defined by the choice of
design parameters (structural dimensions, materials, etc.),
behaviours models are used to determine the set of quantities
needed to assess the achievement of design objectives (mass,
maximum stress, carbon footprint, etc.). The resulting quantities
are called Observation Variables (OV). For each OV, a Desirability
Index (DI) between 0 and 1 is then affected to express the level
of satisfaction of the corresponding design objective (Fig. 2). In
our approach, this process is made using the adjustable
desirability function proposed by Harrington’s [9] because of
its ease of parametrization and its appropriateness to the
different kinds of design objectives. The ODI is obtained by the
aggregation of DI of each design objectives. The aggregation
function used is Generalized Ordered Weighted Averaging
(GOWA) operator (Eq. (4)) proposed by Yager [10]. This
function was chosen since the aggregation strategy is complete-
ly adjustable by the choice of: (i) design objectives weights wi

that express their relatives importance and, (ii) the parameter s
that reflects the level of compensation between design
objectives. Scott [11] proves that any DA in Pareto front can
be reached by adjusting wi and s. The interpretation of the given
weights is not absolute but depends on the level of compensa-
tion (expressed by s). In other way, the method used for the
determination of weight must take into account the value of
s. In order to respect this constraint, we use in this work
the method of indifference points [11] that is based on the
definition of indifference design alternatives that elicit the same

performance, to determine simultaneously a unique value for
the trade-off strategy and for the weight ratio.

ODI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j

ðw jðDI jÞsÞ
s

vuut (2)

The step of defining desirability functions and aggregation
function constitute a mean for capitalizing on knowledge
associated with decision making. It also allows the automation
the calculation process via the formalization of decision maker
preferences. This facilitates the treatment of several DA. Another
advantage of aggregation process is that it represents a mean of
negotiating different and usually conflicting design objectives,
which facilitate information exchange, mutual understanding, and
joint decision-making in collaborative development [12].

2.2. Safety indicator (SI)

A recognized principle in engineering design decisions is that of
annihilation [5,13,14]. It states that a minimum threshold is
required for each design objective, and if also one of these
thresholds is unmet, the DA is rejected regardless of the
satisfaction level of the other design objectives. So, one of the
main concerns of decision makers is to ensure the satisfaction of
these minimum thresholds. The proposed Safety Indicator (SI)
aims to assess the risk of not meeting the corresponding
acceptance threshold due to the inaccuracy of behaviour models
used. Given a design alternative, a Safety Indicator (SI) is calculated
for each design objective and its value is to be maximized. In order
to be conservative, the minimum value is considered between the
different SI. The procedure to calculate SI is inspired from FMEA
(Failure Mode Effects Analysis). Three factors are taken into
account: the occurrence of the risk (O), the gravity of not satisfying
the acceptance threshold (G) and, the detectability (C). As the
classic FMEA, gravity is estimated using a numerical scale (from

Fig. 1. Evaluation model of Overall Desirability Indicator.

Fig. 2. Desirability and confidence functions.
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0.2 to 1) associated with semantic expressions. The methods of
calculation of O and C are explained below. SI is calculated by the
relation:

SI ¼ O � G � D (3)

2.2.1. Occurrence of the risk (O)

This factor is obtained by the relative distance between
Observation Variables (OV) calculated by behaviour model and
the acceptance threshold. It is considered that the greater this
distance is, the lower is the risk of not respecting acceptance
threshold due to the low accuracy of behaviour model. In order to
take into account the vagueness of acceptance threshold, a mean
distance was calculated using two values OV1

t and OV2
t (Eq. (4)).

O ¼ 1

2
� ðDðOVm0OV1

t Þ þ DðOVm0OV2
t ÞÞ (4)

where D is the distance defined by:

Dða; bÞ ¼
a � bj j

b
if a > b

0 if a < b

8<
: (5)

2.2.2. Detectability (D)

In our case, it is assumed that at least one design alternative has
been prototyped and tested. It is considered as a reference point to
evaluate the accuracy of behaviour model. For a given observation
variable, the accuracy of the model is given by the distance
between the value given by behaviour model (OVi) and the value
given by experimental measures on physical prototype ÕṼi. The
distance used is:

D0ðOVi; ÕṼiÞ ¼ OV � ÕṼi

ÕṼi

�����

����� (6)

The conditions in which experimental tests on prototype was
performed may be different of real environment. Moreover,
measuring instruments always exhibit a certain imprecision.
Experimental measures ÕṼi are thus subject to imprecision.
Assuming that experimental measure is comprised between ÕṼ

1

i

and ÕṼ
2

i , we consider an average distance E obtained by the
following equations:

E ¼ 1 � ðD
0ðOVi; ÕṼiÞÞ

D0s
if D0ðÕṼi; OViÞ < D0s

0 if D0ðÕṼi; OViÞ > D0s

8><
>:

(7)

D0ðOVi; ÕṼiÞ
D E

¼ D0ðOVi; ÕṼ
1

i Þ þ D0ðOVi; ÕṼ
2

i Þ
2

(8)

D0s is a threshold distance over which the model is considered
unusable by the designer. In our case study, we adopt a value of
0.20 for each observation variable.

The distance E is calculated for the design alternative
corresponding to the prototype. For a different design alternative,
in which different design parameters are used, this accuracy
measure is no longer valid. In order to correct this indicator, it is
multiplied by a second term (Eq. (9)) that represents the
degradation of behaviour model exactness related to the distance
of the evaluated design alternative from the physical prototype.

D ¼ E �
Yn

i

CDi ¼
Yn

i

giðDPi � DPoÞ (9)

n is the number of design parameters and CIi is a parameter
comprised between 0 and 1 and express the degradation of
measured accuracy E. It is calculated using confidence functions gi

(Fig. 2) that express CDi as a function of the distance between the
design parameter of the reference solution CDo and that of
candidate solution CDi. As shown in Fig. 2, this function is
parametrized using two points that are estimated by designers

involved in the development of the product. This additional
information allows extending the use of initial accuracy assess-
ment to all design alternatives space.

3. Application to the industrial case

In a concentrated solar power (CSP) plant, the main function of
solar collectors is to concentrate and redirect sunlight onto
absorber tubes to heat up the working fluid. The solar collector is
composed of reflective plates (reflective glasses plates or polished
aluminium plates) and a supporting structure whose function is to
give and maintain reflective plates shape (Fig. 3). A mounting
device is placed between the reflecting surface plates and the
supporting structure to ensure the connection between them. In
our study, only supporting structure is considered. The concept
selected in conceptual design phase is truss structure. The cost of
raw material for the manufacturing of solar collectors represents
50% of investment cost for a CSP plant [15]. It is thus important to
reduce the structure mass (objective DI3). In addition, in order to
maintain a good optical performance, elastic deformation of the
structure must remain as low as possible (objective DI1). Finally, it
must resist a high wind pressure to be usable for a multitude of
implementation sites (objective DI2). More details about the
product are given in [14].

A first behaviour model based on bars-type finite element
analysis has been proposed to evaluate OV. Using this model, a
design of experiment of design parameters has been performed and
a first DA has been selected for prototyping (Fig. 3). The comparison
between mechanical tests and behaviours model OV reveals major
discrepancies (until 35% of error). The first behaviour model is not
adapted to this structure since it does not correctly reproduce
physique phenomena in nods connexions, which are strongly
involved in the evaluation observation variables. A second
behaviour model has been proposed using shell-type finite element
analysis with a highly refined meshing in nods connexions. The
prototype testing results were used as a reference point to test the
accuracy of the improved behaviour model and a second design of
experiment procedure has been performed by varying design
parameters in the established ranges. Each of DA has been tested in
term of ODI and SI. Fig. 4 shows the results of design of experiment.

At this stage of development, decisions are required on the
evolution of actual DA (prototyped alternative) and on the

Fig. 3. Structure of solar collector and related design parameters.



development tasks needed to this decision. Trade-off must be done
between ODI and SI. Many elements are to be taken into account. In
this paragraph, general guidelines are derived. In the case where
the deadline of validating the product is approaching, decision
would prefer a solution in Zone 1 (Fig. 4) since having a feasible
solution is a pressing issue in this case. In other circumstances, DM
would prefer to explore DA with higher ODI (Zone 2 or Zone 3)
even with a low SI. But such a decision implies further
investigations and further time to improve SI of chosen DA. These
could be done either by improving behaviour models so that the
accuracy compared with reference point will better or by realizing
other prototypes and other mechanical tests for the selected DA. In
our case, we can observe in Fig. 4 that an important gap between
ODI of the reference point and the maximum ODI achievable during
the second design of experiment. Such a potential of improvement
cannot be ignored. Design alternatives with high ODI elicit a low SI
which prevents their direct validation. Further development tasks
must be done in our case to improve this SI.

Alternative structure that has already been developed and
tested in an experimental CSP plant has to be taken into account in
reasoning. Its ODI is estimated to 0.53 but its main advantage is its
high maturity level. It represents a guarantee for decision makers
since it can be directly introduced to the system. In this case, it is
more acceptable for the case of truss structure to explore DA with
low SI. This scenario is very common in design departments. They
are usually encouraged to have a feasible solution with high
maturity degree to reduce risk.

In our industrial case, the strategic decision is to adopt a low-
cost CSP plant. In the proposed approach, it is expressed by
assigning high weight to the objective of structure mass reduction

compared with the other design objectives. In many situations, the
decision maker wishes to know the effect of giving more
importance to some design objectives compared to others.
Thereby, we have considered a second scenario in which more
importance is given to optical performance (which impacts energy
efficiency of the CSP plant) compared to structure mass. Fig. 5
shows the results of ODI and SI calculation for this scenario. It can
be seen that the cartography of ODI and SI changed. Such a
modification in development strategy can be done at early phases
of development process and imply having a holistic view of the
global system by trying to understand how individual design
decisions impact high-level attributes of the system [16].

4. Conclusion and future works

In this work, a multi-criteria decision making model is proposed
and tested for the selection of design parameters. It is based on the
maximization of the satisfaction of design objectives and
minimization of the risk associated with the low accuracy of
behaviours models. The construction of proposed indicators passes
through the formalization of preferences associated with the
achievement of design objectives as well as the decision maker
attitude towards risk. The development cost of this multi criteria
decision model is counterbalanced by the capitalization on
knowledge associated with decision making and the ability to
treat a broad spectrum of design alternatives. The strength of
proposed accuracy measure (detectability) is to combine on the
one hand an objective measure that is the error from reference
point and on the other hand a subjective measure that express the
degradation of the initial accuracy measure in function of the
distance of DP from reference point. This combination allows
having an accuracy measure that covers all design space. A future
step is to provide thresholds for SI in order to identify a design
alternative that can be directly introduced to the system and to
treat other case studies.
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