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Abstract

The aim of this paper is to study the ultrasonic response to a transient source that radiates ultrasonic waves in
a 3D embedded multilayered anisotropic and dissipative plate. The source can be inside the plate or outside, in
a fluid loading the plate for example. In the context of Non-Destructive Testing applied to composite materials,
our goal is to create a robust algorithm to calculate ultrasonic field, irrespective of the source and receiver
positions.

The principle of the method described in this paper is well-established. This method is based on time analysis
using the Laplace transform. In the present work, it has been customized for computing ultrasonic source
interactions with multilayered dissipative anisotropic plates. The fields are transformed in the 2D Fourier wave-
vector domain for the space variables related to the plate surface, and they are expressed in the partial-wave
basis. Surprisingly, this method has been very little used in the ultrasonic community, while it is a useful tool
which complements the much used technique based on generalized Lamb wave decomposition. By avoiding
mode analysis — which can be problematic in some cases — ezact numerical calculations (i.e., approximations
by truncating infinite series that may be poorly convergent are not needed) can be made in a relatively short
time for immersed plates and viscoelastic layers. Even for 3D cases, numerical costs are relatively low. Special
attention is given to separate up- and down-going waves, which is a simple matter when using the Laplace
transform.

Numerical results show the effectiveness of this method. Three examples are presented here to investigate the
quality of the model and the robustness of the algorithm: first, a comparison of experiment and simulation for
a monolayer carbon-epoxy plate, where the diffracted field is due to a source located on the first free surface of
the sample, for both dissipative and non-dissipative cases; second, the basic configuration of an aluminum plate
immersed in water has been chosen to study wave propagation in ZGV (Zero Group Velocity) conditions; finally,
a 2D plate consisting of 8 stacked carbon-epoxy layers immersed in water is treated, with a source located inside
the plate, distributed in depth and extending over four layers.
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Highlights
e Transient response computation of a 3D embedded multilayered anisotropic plate.
e Ultrasonic field calculation, irrespective of the source and receiver positions.
e Standard numerical integral transform may provide a fast and efficient tool.

e Up- and down-going waves are easily selected when using the Laplace transform.

Keywords

Embedded multilayered plate ; Transient ultrasonic response ; Partial-wave expansion ; Integral transform
domain ; Numerical inverse Laplace transform

PACS 43.20.Bi ; 43.20.Mv

1 Introduction

The study of diffraction of acoustic waves in laminated plates has interested the communities of geophysics,
underwater acoustics and non-destructive testing for several decades.

Numerous practical approaches exist today to calculate the response of these media to different sources. The
choice of method used is governed by the situation under consideration. For instance, the aim may be near-field
calculation or far-field calculation, the responses may be needed in the time or the frequency domain, the guides
may or may not be loaded, etc. Expanding the solution in terms of normal modes in the frequency domain is
one of the best-known methods. The modes correspond to generalized Lamb waves for laminated plates, and
can be obtained numerically in different ways, by searching for the roots of the determinant of a matrix [14], or
by obtaining the eigenvalues of a finite-element matrix (e.g., [13] §]).

This modal method is well-suited to deal with calculations in the far-field domain for guides in vacuum. This
is because in the far field the modes are well-built, and only a limited number of them, i.e., the propagative
modes, contribute, which makes modal theory very efficient. For plates in vacuum, the solution can also be
expanded in terms of modes in the time domain, after performing a Fourier transform with respect to the
horizontal coordinates (in the plane of the plate) [12| [7], assuming that the source is bounded and bandlimited
in horizontal wavenumber, according to the Nyquist-Shannon sampling theorem. This second method is more
suitable than the first one for 3D calculations in anisotropic media because it does not make use of an angular
integration variable, nor is the direction of propagation of the modes required [26].

However, for loaded plates (i.e., plates immersed or embedded in an unbounded medium), modes do not
constitute a complete basis, which makes modal expansion theoretically more delicate, if not impossible.
Furthermore, it is still a challenge to build a robust and accurate algorithm to obtain the modes numerically.
Indeed, exact eigenvalue statements have been proposed only in some restricted cases [9]. For more general
situations, PML [4] are sometimes chosen for modeling the unbounded layers, but are well-known to be
problematic in the case of backward propagative modes and may also lead to instabilities for anisotropic media.
So, in this case this modal technique must be used with some caution.

To avoid difficulties due to radiation into half-space(s), different approaches have been developed. Park and
Kausel [17, 18] have shown that, for loaded guides, it is possible to get an exact solution from the modal
basis obtained for guides in vacuum. The influence of the two semi-infinite media is taken into account by
two secondary source terms applied on both supposedly free surfaces. The amplitude of each mode is then

P. Mora, E. Ducasse & M. Deschamps Transtent elastodynamic field in layered plates



3 /MY

determined by solving a Volterra integral equation. However, this method, the so-called “Substructure Method”,
exhibits poor convergence and problems of instability [177, [18].

An alternative to the modal theory consists in conserving the initial integral instead of expressing it as a sum
of modes by using the residue theorem. The problem is then to calculate this integral correctly, knowing that
sampling the integration path, which is close to the poles, can produce numerical errors. To this end, in the
case of a stack of 3D isotropic plate layers, in 1965, Phinney [19] proposed to deform the integration path of the
Fourier integral on frequency in the complex plane by adding an arbitrary imaginary part to the frequency. The
choice of the arbitrary constant has been studied by Kausel and Roésset [I1] in order to increase the accuracy
of the numerical inverse transform involved to come back to the time domain. This method can be found
in the literature under the name of Exponential Window Method. Although it is never stated explicitly, all
the numerical inversions related to the Exponential Window Method give causal signals and correspond to the
inverse Laplace transform defined by the Bromwich contour. The same idea has been used to deal with wave
diffraction in 3D isotropic dissipative (or non-dissipative) plates [28]. This work has been extended to model
ultrasound generation by laser in 2D dissipative anisotropic plates by Audoin and Guilbaud [I].

Curiously, to our knowledge, this causal non-modal technique is used relatively infrequently by the mechanics
community, even though it is able to solve complex cases while insuring a perfect control and competitive
numerical cost towards the modal methods. This is probably because it is a purely numerical technique, for
which the physical meaning contained in modal theory is lost. If a precise physical interpretation of diffracted
wavefronts is needed, both modal and non-modal approaches are then necessary.

In this paper we propose to study the ultrasonic response to a transient source that radiates ultrasonic waves in
a 3D embedded multilayered anisotropic and dissipative plate. The source can be inside the plate or outside, in
a fluid loading the plate for example. In some way, the goal of this paper is to give to this well-established non-
modal method a larger diffusion among the ultrasonic community. The examples presented here are chosen to
cover a broad range of situations of Non-Destructive Testing (NDT) of plates, with a special focus on composite
plates, considering guided wave as well as bulk wave regimes. The formalism may be readily applied to write
a robust and versatile algorithm to calculate ultrasonic field, irrespective of the source and receiver positions.
The fields are transformed in the Laplace domain for the time variable and in the 2D Fourier wave-vector
domain for the space variables related to the horizontal plate surface, assuming that the source is bounded and
bandlimited in horizontal wavenumber, according to the Nyquist-Shannon sampling theorem. Working in the
Laplace domain gives access to all the general theorems associated to this transformation and specifically related
to causal signals. Beyond the specific interest of this paper, this can be useful for building solutions to many
other problems.

After a brief description of the basic equations (Section 3), described with our notations, the solution is obtained
in the 3D transformed-domain. Special attention is given to separate up- and down-going waves, which is a
simple matter when using the Laplace transform. Section 4 is devoted to numerical results. First, for a
monolayer carbon-epoxy plate, the diffracted field due to a source located on the first free surface of the sample
is calculated for both dissipative and non-dissipative cases. The waveforms are then successfully compared with
some experiments. Second, for an aluminum plate immersed in water: this very basic configuration has been
chosen to study wave propagation in ZGV (Zero Group Velocity) conditions. Finally, a 2D plate consisting
of 8 stacked carbon-epoxy layers immersed in water is treated to investigate the quality of the model and the
robustness of the algorithm. The 2D source is located inside the plate and extends over four layers.
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Time-domain ¢t | notation | Laplace-domain s | notation

Physical space x, z (x,2,1) u (x,2,8) U

Horizontal wave vector k N ~
Vertical position z (k,z,%) u (k, 2, 5) U

Horizontal wave vector k N
Vertical wavenumber £, (k. k= 1) (k, k2, 5) U

o>

Table 1: Notations

2 Notations

The vector x = (x,y) will denote spatial coordinates in the xy-plane. The associated planar wave-vector in the
Fourier space will be denoted by k = (k,, k,). In the time domain, all fields are denoted with lower case letters,
whereas in the Laplace domain capital letters are used. Symbols are added to indicate a Fourier transform
over the space variables. These conventions are summarized in Table [l The fields u, 0., n, f3, o5 that are
introduced later follow the same rules: they will be denoted U, ¥, H, ]‘_5‘5, 535 in the (k, z, s) dual space. The
dependence of these fields along the space and spectral variables will be made explicit only when necessary.
The mechanical properties pg and ciﬁjkm are constant in each layer. Notice that the z axis is taken positive
downwards, and that therefore an “upgoing” (resp. “downgoing”) wave propagates towards decreasing (resp.
increasing) z.

3 Equations and background

Let us consider a multilayered medium made of a plate system consisting of a number N of perfect flat layers
of normal n along z-axis, stacked together. The layers are labeled 5. The interface between layers g and 541,
also labeled £, is located at position z = zg, as illustrated in Fig. [[l Each layer is an anisotropic solid, with a
given thickness hg = 23— 23_1. The areas above and below this plate system can either be vacua or semi-infinite
half-spaces of solid (or fluid) media. The plate is assumed to be infinite in the zy-plane This stratified medium
is submitted to external forces that can be located anywhere. The first interface (8 = 0) is always located at
2z = 0.

0 infinite medium or vacuum

z=12
1
z

Z=ZB B AN Gﬁ,vf fB

Z=17y

N+1 infinite medium or vacuum

Figure 1: A multilayered infinite plate of N different layers.
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3.1 Basic equations in the physical space

With our notations, let us first state the wave equations in each layer. Combining Newton’s second law, the
causality principle and Hooke’s law, the displacement field u(x, z,t) is given, at any time ¢ and any location
(x, z), by the following system expressed in the medium f:

psd2u(x, 2,t) — (76 ) ulx, 2,t) = f5(x, 2, 1), fort >0,
z

u(x, z,t) =0, fort <0, (1)
0.(x, 2,1) = (02 7) u(x, 2, 1),
where the quantity o.(x, z,t) expresses the stress in the z-direction (normal to the interfaces) and psz stands for

the mass density. The bilinear product 8 has been defined in [6] by a three-by-three matrix (a<6>b) such that

(agb)im = ijkm a; by, with the Einstein summation convention. The above equations depend on each layer

through the values of the elastic constants ijkm, i.e. through the operator <ﬁ>. The field f5(x, z,t) denotes the
force per unit volume exerted by the part of the sources located in layer (.

Continuity equations at the interface 5 are given by the following system:

+ —
( u(x, 2 t) ) B < u(x, % t) > _ < 0 )’ ()
0.(x, 25, 1) 0.(x,25,1) os(x,1)
where z; and zg indicate the fact that the field under consideration is calculated in layers S—1 and [,
respectively. The interface source term oz(x,t) defines the normal stress jump at interface 3, and corresponds

to an applied force per unit surface if one of the media is a vacuum. Notice that if o5 = 0, then Eq. (2)) merely
expresses the continuity of displacement and normal stress.

For simplicity, the 8 index will be omitted below and will be reintroduced only when necessary to avoid ambiguity.
The volumic sources described by fs(x, z,t) in Eq. () can straddle two or more layers. In such case, the volumic
source term is considered as zero at each interface (z = z3).

Eq. (I) and (@) are to be solved using Fourier and Laplace transforms on invariant dimensions. In a first time
(see sections and B.3)), Eq. (@) is solved separately in each layer containing a source term. This defines an
incident field in each layer, which corresponds to the field that a source would radiate in this layer considered
to be unbounded. Then (see section B4)), the reflected field can be obtained, which is the contribution of all the
interfaces, and is calculated by taking into account the continuity relationships of Eq. (). In this article, the
so-called Global matriz (e.g., [14]) method is adopted to perform the latter operation. The total field is finally
obtained as the sum of the incident and reflected fields.

3.2 Separation of up- and down-going waves

The aim of this section is to emphasize that up- and down-going bulk waves, which are the solutions of
Christoffel’s equation, are easily separated in the Laplace domain. It may be skipped in a first reading.

Let us apply a 3D Fourier transform to the space variables to Eq. (Il). The space domain (x,z) is then
transformed into the spectral domain defined by K = (k, k), where K stands for the wave vector. This yields
the following differential equation: R

poia(t) + (KoeK)u(t) =f(t). (3)

If K = 0, which corresponds to the rigid body motion, then &1 = p~'r = f, where r denotes the ramp function
and the operator = is the time convolution product. If K # 0, the matrix (K ¢ K) is then real-valued symmetric

P. Mora, E. Ducasse & M. Deschamps Transtent elastodynamic field in layered plates



6 /IO

positive-definite, and therefore admits three positive eigenvalues p w? with associated eigenvectors P; such that:

(Ko K) = pP diag (w}) P", (4)

1<i<3

where the 3x3 polarization matrix is such that P = [Py, Py, P3]. Its transpose matrix is noted PT. The solution

is then expressed as follows:

1 h in(w; .

a(t) = - P diag (M> Pl .t (5)
P 1<i<3 wj

where h is the Heaviside unit step function. Let us now perform a Laplace transform (with parameter s) to the

solution (H). The Laplace transforms of the ramp and sine functions are s~ and (1 + s*)~!, respectively. They
are holomorphic on the half-plane Re(s)>0, with poles on the imaginary axis.

. . . T
If the 6D state vector H = ( Ut EZT ) is considered, the solution can be expressed in the dual space (K, s)

as follows: ( )
- 0 i(noK I
pr— _1 A pr—
H=M (F)’ where M (p5211+(K<>K) (D) , (6)

1 =+/—1, T and O are the 3-by-3 identity and zero matrices, respectively.

The study of the singularities of H leads to the Christoffel Equation det(M) = 0. According to the problem
geometry, the six solutions of this equation are to be found in terms of complex vertical wavenumbers k,; (i =
1...6). Thus, the state vector defined in Eq. (@) can be easily expressed in the (k,z,s) domain with the
notation fl(z) The six complex vertical wavenumbers are sorted by comparing their imaginary parts, such
that:

Im(k,;) >0, i=1,2,3;
(7)

Im(k,;) <0, i=4,56.

Since Re(s) > 0, it is proved in that the first three partial waves, of vertical wavenumbers
with positive imaginary parts, correspond to waves that propagate in the negative z direction, while the
others, of vertical wavenumbers with negative imaginary parts, correspond to waves that propagate in the
positive z direction. This is an important point because a simple consideration on the imaginary part of k. ;
unambiguously separates the fields into upgoing and downgoing waves. This is not the case for harmonic waves,
where Re(s) = 0 and Im(s) = iw, for which considerations on direction of energy propagation must be added.

3.3 Radiation of a source in an infinite medium: incident field

Incident field in medium

only up-going waves

both up- and down-going waves

only down-going waves

Figure 2: The three regions of space defined by a volume source, in which the incident field is calculated respectively

with Eq. @), () or (I2).

Let us first calculate the radiation of a given source located in the zone defined by 2gmin < 2 < 28 max, in the
layer (8 considered as an infinite space, as shown in Fig. 2 If the source extends beyond the interface 5 (or
B + 1), the actual source to be considered is the part of the source located between z = z3 and z = 2z,
although the medium in this section is assumed to be infinite.

P. Mora, E. Ducasse & M. Deschamps Transtent elastodynamic field in layered plates
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As detailed in the radiated field, represented by the state vector I:Iiﬁnc at the vertical position z in
the (k, z, s)-domain, depends on the position of the observation point with respect to the source. It is obtained
by convoluting the Green tensor of the unbounded medium by the source term.

As a matter of fact, three cases occur:

e If the observation point is inside the source area (zmin < 2 < Zmax),

HIHC Z Ozﬁ i E’ﬁ P (8)

where &3 ; is the polarization vector of the mode with vertical wavenumber k. g, , and ag;(2) represents the
contribution of this mode. For upgoing waves (i=1, 2, 3), only the part of the source below the observation
point is involved:

agi(z) = f U gl - OB(OAC (=123 and 2 < zw) | (9)

z

where the vector gg; is related to the Green tensor in the layer 3 (see [Appendix A)).

Conversely, for downgoing waves (i=4,5,6), only the part of the source above the observation point
contributes:

agi(z) = Jz g5:(z — O fs(Q)d¢  (i=4,5,6 and 2z > zp) - (10)

Zmin

e If the observation point is above the source (z < z,,), only the upgoing waves contribute. Then, the
state vector takes the following form:

Hlnc 2@5, exp[ nkzgl ( Zmin)] E.ﬁ,z‘ ) (11)

i=1
with Qagi = Oég,i(zmin).

e If the observation point is below the source z > z,,,., only downgoing waves are received and the state
vector becomes:

Hmc Zam exp [— ik, s, (2 — Zmax) ] & (12)
=4

with ag; = g (Zmax)-

Of course, if there is no source in the layer g, the coefficients ag;(2) are all zero.

At this point, we consider that all the incident fields are known in all layers and characterized in the (k, 2, s)-
domain by HF(z).

3.4 Elastodynamic fields in a layer and interface conditions

Let us now remember that the medium under consideration is bounded (z3-1 < z < zg). The part of the source
located in each layer radiates an incident field characterized by the state vector I:Iiﬁnc(z). The total field in the
layer is the superposition of this incident field with the refiected field, resulting from the diffraction at each
interface. Consequently, the reflected field is completely characterized by six coefficients ag; and the total field
is expressed as follows:

6

Hp(2) = HY(2) + ) ag oxp [~ kopi (2= 200)] Epi s 28 < 2 < 2341 (13)
i=1

P. Mora, E. Ducasse & M. Deschamps Transtent elastodynamic field in layered plates
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where the vertical positions z; can be arbitrarily chosen [23], as detailed below.

In the upper layer, the reflected field contains only upgoing waves:

3
Ho(z) = H(2) + Zao,i exp [—1k.0, (2 — 20,)] &, 2<0, (14)

i=1
while in the lower layer, the reflected field contains only downgoing waves:

6

Hyii(2) = HYS,(2) + ) avin exp [—ikevans (2= 2ve10)] Evenis 2> 2n (15)
=4

The 6N +6 coefficients ag; will be determined by rewriting the boundary conditions ([2)) in the (k, z, s)-domain
at the N+1 interfaces (6 equations at each interface):

oo ()~ B ) = ) ) (16)

where the term f]g corresponds to the interface source term og(x,t) in this transformed domain.

The arbitrary vertical positions zg; defined in Eq. (I3) have been chosen such that: z3,; = z5 for upgoing waves
(i=1,2,3) and z3,; = z3_; for downgoing waves (i=4,5,6). In agreement with the definition [Eq. (7)], this choice
leads to computations only of decreasing exponentials in the layer under consideration. As a consequence,
computations are numerically stable irrespective of the frequency-thickness products. The incident wave field
radiated by the part of the source located in layer § is expressed by Eq. () at interface 5—1 (upgoing waves
over the layer) and by Eq. (I2) at interface 5 (downgoing waves under the layer).

The method presented here is known as the Global matriz approach (e.g., [I4]). However, it is most often stated
in the harmonic domain, whereas we are working in the Laplace domain. Note that only the case of elastic layers
embedded between two semi-infinite solids is presented above for clarity (giving an invertible linear system of
6N +6 equations with 6 N+6 unknowns ag; ). Other types of layer or half-space (fluid, vacuum, efc.) give similar
equations.

3.5 Expression of the solution in the physical domain

Let us first come back to the time domain. From a numerical point of view, this is the most delicate procedure
of this method, since an inverse Laplace transform is involved. As shown above, Hg (2) is holomorphic in the
complex half-plane Re(s) > 0. Consequently, all its singularities, i.e., poles, branch points and branch cuts, are
in the left part of the complex plane, including the imaginary axis. Purely imaginary poles s = 1wy correspond
to pure guided modes of angular frequency wy. Poles with a negative real part are associated to transient leaky
guided modes. In fact, although the horizontal wave vector k is real, the associated slowness vector, such that
S = is 'k, is complex since the modal frequency is complex, i.e., Re(s) # 0 (e.g., [20]). In such a description,
wave leakage in the upper and lower infinite media of this transient guided wave is described by the imaginary
part of the slowness vector, which come from transient effects, due to the real part of s.

Under these considerations, the inverse Laplace transform can be calculated, without difficulty, using the
Bromwich-Mellin formula:

Ns(z,t) = o exp(iwt) Hp(z) dw , 251 <2< 23, (17)
—0

exp(71) f@ -

where the parameter v is an arbitrary positive constant and where the function flg(z) is calculated for s = y+iw.
From a numerical point of view, the initial inverse Laplace transform is then replaced by a Fourier transform

P. Mora, E. Ducasse & M. Deschamps Transtent elastodynamic field in layered plates
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multiplied by a growing exponential function. In the literature this numerical Laplace inversion is sometimes
referred as the Exponential Window Method (e.g., [11]). The principle is to calculate the transient response
in the discretized time-interval [0, t;ax|. The use of discrete Fourier transform results in a periodization of the
signals (period t,.,). Following [IT], the usual way to define ~ is to take v = mlog(10) ¢! | which corresponds to
periodization effects less than 107"". The greater the parameter, the less the periodization effects. Nevertheless,
there is a counterpart in increasing m due to the exponential growing factor exp(vyt) in Eq. (). A good

compromise is obtained by taking m between 2 and 5.

At this stage, let us come back to the spatial domain, by applying the following 2D inverse Fourier transform:

1

775(X7 2 t) = 472

erxp(—ﬁk X) Ng(z,t) dk, dky ,  zp1 <2 <z2s. (18)
R2

A 2D inverse Fourier transform, computed by an FFT algorithm, is then used to do this transformation,
according to the Nyquist-Shannon sampling theorem. As long as this inverse transform is numerical, the
problem is spatially periodic and the solution is valid only as long as the fastest wave front, that propagates at
velocity ¢? in a fixed direction, has not reached the edges of the spatial domain. Therefore, the computational
effort is proportional to k2, xt3  (kmaxxt2,, for 2D computations), where k., denotes the maximum value
of the horizontal wave numbers of the source-term, assumed to be bandlimited in wavenumber.

max max max

3.6 Viscoelastic layers

To take the viscoelastic behavior of each layer into account, a Kelvin-Voigt dissipative model can be used [2].

As a result, the bilinear product g, introduced in Eq. (D), is replaced by <6>+ é&t in the time domain. In the
Laplace domain, this changing is noted as follows:
B B B
OO .

>

+se. (19)

The new bilinear operator o defines a 3-by-3 matrix (a A b), such that (aéb)im = nfjkm a; by, where the
constants nfjkm constitute the viscosity tensor. This model is causal. In addition, in the spectrum domain,
i.e., wavevector/frequency domain, it leads to a viscous damping of waves proportional to the square of
the frequency [2]. Tt describes correctly the behavior of polymers in the usual frequency range of NDT and
NDE applications. However, it is not accurate for modeling composite materials. Indeed, it has been shown
experimentally [10] that wave damping is proportional to frequency in the domain of interest.

In the Laplace domain, such behavior can be described by the following simplistic change:

8., { S+i signﬁ(lm(s)) .. Im(s) # 0 ; (20)
> , II’I](S) = 0 .

Note that the simplistic model (20) cannot be correct because it does not lead to a holomorphic expression
with respect to the complex variable s and does not correspond to a causal model, contrary to the Kelvin-Voigt
dissipative model. More refined models can be used but these will be discussed in future articles. Nevertheless,
the simplistic model gives acceptable results for the numerical cases presented here. The consequences of such
non-physical behavior on the waveform computations will be seen below (see Section 3.

Of course in this case, the constants nfjkm do not have the same rheological meaning, or the same unit, as those

defined in Eq. (I9). However, the same variables will be used to define the operator :.
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4 Numerical results

This section reports some numerical results based on the numerical schemes described above. Three typical
plates are analyzed. First, a plate in vacuum consisting of a single layer of a unidirectional fiber composite is
considered. Second, the effects of negative propagation in an aluminum plate immersed in water are analyzed.
Third, the case of a structure made of 8 unidirectional fiber composite layers stacked together and immersed
in water is presented. For all the examples, the computation time will be given for a C++ language and the
computer will be a 1.66x2 GHz 64-bit dual core processor with a 2 Go RAM, which is a mid-performance
personal computer. Using a newer computer, computation times can easily be divided by ten.

4.1 Monolayer plate of carbon-epoxy in vacuum

Within the frequency range of calculations, such a composite material can be considered as an orthotropic
homogeneous medium for which the equivalent density is p=1560 kg-m 3. The crystallographic directions #1,
12 and £3 correspond to the z, y and z-axis, respectively. The direction of fibers coincides with the z-axis.
This composite material has been chosen because it has already been used in some experiments [16, Table 2.3].
Plate thickness is 3.6 mm. The homogenized stiffness constants are: ¢;1=86.65, c99=14.00, c33=14.00, c44=3.00,
c55=4.06, cg6=4.70, c1o="7.50, ¢13=7.50, co3=7.00 [GPa]. The source is located on the first interface z = 0. In
agreement with the experiments, the normal force at this surface, defined in Eq. (dI), is modeled by a Gaussian

distributed amplitude in the zy-plane and coupled to a tone burst signal, such that:

a2+ 7\ wy t* T
oo(x,t) = exp(— 202y ) sin(wg t) exp <— 20n2) (00 1), (21)

with wy = 27 fy. The other new variables are: the Gaussian aperture o = 2.4 mm, the central frequency fy =
150 kH z and the number of cycles n. = 6.5. First of all, let us examine displacement on the plate surface, i.e., at
z = 0, for a fixed time t = 120 ps. This is a relatively long time for guided waves to propagate over long distances.
The matched surface of calculation is such that: x € (—1.12..1.12m, 1030] and y € (—0.39..0.39 m, 360], where
(Umin -- Umax, 1] denotes a half-closed discretized interval of n linearly spaced values from vy, t0 Umax. This
notation will be used for all sampled variables introduced later on. Thus, the waveforms are observed for
t € [—22..228 us, 150). For this 3D problem and for this large plane of analysis, the computation time is 25,
which is a relatively short time that could be considerably reduced by using a faster computer. As an illustration,
Fig.Bla represents the vertical displacement u, for a non-dissipative plate. In the frequency range of the emitter
and for a composite sample, only four propagating modes can exist. The three fundamental modes A, (flexural
wave), SHy (horizontal shear wave) and Sy (compressional wave), and the first anti-symmetric mode, usually
called A;. The three fastest fronts correspond to the three fundamental modes Ag, SHy and Sy. It can be seen
in [7] that there is good agreement between the ray theory and the field calculation by using a time-domain
modal approach. In this paper, the waveforms have been obtained without modal decomposition but, of course,
they correspond exactly to the waveforms obtained in [7], since both are exact solutions of the same problem.

The theory is now compared with experiments reported in [I6]. For this, two waveforms are calculated at two
different positions on the surface, (15,0,0) and (21.05,17.68,0), which are identified by the two dots in Fig. Ba.
The associated waveforms are shown in Figs. Blb and Blc. Clearly, the agreement between experimental and
theory wavefront arrival times is correct, while the amplitudes differ drastically. This is due to wave damping, as
is well-known in such composites [10]. To take this effect into account, in agreement with experiments performed
in the frequency range associated with the source described by Eq. (ZI), the viscoelastic model, defined by
Eq. 20), is used. The associated viscosity constants of the homogenized solid are: 7;; = 2.00, 7y = 0.30,
T33 = 030, Nag = 0085, M55 = 0085, Nee = 0055, Mo = 013, ms = 013, T3 = 0.106 [k:Pwrad_l]. The values
of these constants differ from those given in [I6]. This is because the values obtained from experiments in this
paper, as mentioned, include not only viscosity absorption, but also wave attenuation due to beam diffraction.
These two attenuation effects cannot be differentiated experimentally, which is not the case in the present work,
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Figure 3: 3D response (vertical displacement) of a monolayer plate of carbon-epoxy to a source located at the top
interface (z = 0). (a) Non-dissipative medium. (b) Dissipation considered through the hysteretic model. Figures (a)-1
and (b)-1 are views from the top of the plate after a long time, with non-linear gray scale in order to show the low
amplitude SHy and A; modes. In figures (a)-2,3 and (b)-2,3 the numerical computations (red signals) are compared
to the experimental data (black signals) [16].

since beam diffraction is, of course, taken into account by the model. The comparison between theoretical
waveforms obtained for a viscoelastic plate and experimental signals is presented in Fig. Bl For the two angles
of observation, note the very good agreement between theory and experiment.

4.2 Aluminum plate immersed in water

To illustrate the efficiency of the method, it is of interest to calculate the response near the source. To this
end, let us consider an aluminum plate immersed in water, which is insonified by a transducer near a ZGV
(Zero Group Velocity) condition. Recently, new methods of NDT have been developed taking advantage of the
sensitivity to the interface parameters of waves generated in ZGV conditions (e.g., [2I]). In our case, the sample
thickness is 1 mm and the density is p;=2780 kg-m 3. Using the isotropy relations, all the stiffness constants
are deduced from the two independent stiffness constants: ¢;;=112.0 and cgs=27.0 [GPa]. The water density
is po = 1000kg-m 2 and the sound velocity in water is 1500 m-s~t. To observe the ZGV phenomenon clearly, it
is important to minimize the wave diffraction effects and to generate a specific Lamb wave precisely at a single
frequency. To do this, the simulation of the transducer, which is located in the upper semi-infinite layer, i.e.,
B =0 in Eq. (D), is given by the following function:

in(6)
2=z [ —20(x)]” 42 | .. Wy [
fo (z,y,2,1) = Hl S0 ] exp{ 52 552 sin(wpt) exp 52 0 : (22)
@ v ¢ cos(0)

where function II is the rectangular function such that II(§) = 1 if [¢| < 1/2, and II(§) = 0 otherwise. The
quantity xo(z,6), given by zo(z,0) = (2 — zf) cot(f) — z; tan(f), expresses the transducer rotation around
its center at position z, with an additional lateral shift to make the transducer central axis cross the first
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0 fo
2.6° | 3.0 MHz
6.0° | 2.87 MHz
12.7° | 3.0MHz

Table 2: The three (0, fp) pairs used in formula ([22) to select the backward propagative, zero energy velocity and
propagative regimes.

interface at the reference origin defined in Fig. @l The variable [ stands for the length of the transducer. The
other variables are the same as those defined in Eq. (2I). The parameter values are such that: o, = 0.5mm,
o, = 10.0mm, [ = 20.0mm, zy = —6.0mm and n, = 30. Because the source fy(x,y, z,t) is not proportional to
a Gaussian function rotated by the angle 6, it does not model exactly a fixed transducer that is rotated in a
fluid. However, results are very close to a unique rotated transducer, and the analytical calculations are simpler.
These values correspond to a 3D transducer that generates a quasi-plane wave in f-direction. For the three
cases under consideration, the values of # and f; are given in Table[2l As the angle of incidence increases, these
cases correspond to a negative group velocity, the ZGV condition associated to S; mode, and a positive group
velocity respectively. The convolution expressed by Eq. (A.12)) is calculated analytically.

2.6° 6.0° 12.7°

y [em]

-4 -2 0 2 4 -4 =2 0 2 4 -4 -2 0 2 4
x [em)] x [em] x [em]

Figure 4: Vertical displacement u, at the surface of the aluminum plate for the three incidence angles (see Table [2]):
(a) for t = 19 us with respect to = and y; (b) for y = 0 with respect to « and ¢ ; the bold signal corresponds to
t = 19 us. From left to right: the backward propagative, zero energy velocity and propagative regimes.

To perform calculations by satisfying the Nyquist criterion, the plate surface has been sampled with z €
(=60 ..60 mm, 270] and y € (—60..60 mm, 16]. A zero padding procedure is then applied to the calculated field
spectrum to increase the definition of the acoustic fields. The time sampling is such that: ¢ € [0..20 us, 200).
For this quasi 2D problem, the calculation time is 5”. Results are presented in Fig. @la, where the vertical
displacements at the plate surface, i.e. at z = 0, are plotted in gray scale, for a fixed time t = 19 us, for the
three specified cases. In Fig. Etb, the same displacement, obtained for y = 0 and z = 0, is shown for some
observation times versus x-positions. These graphs start at 12 us, since this time is approximately when the
incident wave vanishes and the free regime appears. The bold curves correspond to the fixed time of 19 us. As
expected, it is clearly observed that for the ZGV angle the guided wave does not propagate along the plate, but
the transmitted beam is concentrated in the plate under the incident beam, which insonifies the plate around
x = 0. For the other two angles, the guided waves propagate to the left or to the right in agreement with the
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direction of the group velocity. Of course for any angle of incidence, as time increases, the wave amplitude
decreases more or less due to radiation leakage into the water.

4.3 Plate made of 8 stacked carbon-epoxy layers immersed in water

As a final example, let us inspect the response of a multilayered plate immersed in water. The plate consists of
eight stacked carbon-epoxy layers. Each layer is made of the carbon-epoxy composite described in section 4.1,
for which viscoelasticity is taken into account by Eq. (20). Its thickness is 3.6 mm. The rotation sequence is as
follows: [0°/135°/90°/45°/0°/135°/90°/45°].

1.44 T T T T T T 1.0
Layer H#5
0.8
1.8
Layer H6 ] 0.6
5 2461
™ Layer H#7 0.4
2.52
0.2
Layer H8
2.88 T T T T T T 0.0
-1.0 -0.5 0.0 0.5 1.0 1.5

x [em]

Figure 5: Relative amplitude of the radial source defined by Eq. (23), distributed in length and depth.

To analyze the method possibilities in a new context, the source now represents a line radial impulse located
inside the plate. It is distributed horizontally and with depth, as shown in Fig. Bl and is invariant in the
y-direction. It is centered at depth zg = 21.6 mm and has a half width of about the thickness of one layer, and
therefore extends over four layers.

Although partial waves can exhibit three non-zero components, the problem is then reduced to a 2D space
problem. The source expression, in agreement with the definition given in Eq. (), is such that:

fﬁ(%y’Z,t):eXp[_M] exp(_i> (20 2-2)7, (23)

202 207

with 0 = 1.5 mm and o; = 0.25 us. The value of the parameter o has been chosen to expand the initial force only
on the four layers identified by 5 = 5,6,7,8. The lateral position is sampled with z € (=250 .. 250 mm, 370]. The
convolution (A.12)) is calculated by using a trapezoidal rule with the following sampling z € [15.6 .. 27.6 mm, 101].
From a numerical point of view, because the excitation contains null frequency in this case, it is crucial to deal
with viscoelasticity correctly. As a matter of fact, non-respect of causality can provide errors in calculating
waveform. The two proposed models do not exhibit the same behavior in this regard, since the model defined
by Eq. (20) is not causal, while using Eq. (I9) ensures causality. This non-causality comes from the model
behavior at low frequencies. Let us sample time by ¢ € [0..40 us, 240). This sampling is optimal to respect the
Nyquist-Shannon theorem, using the same rule as before. The waveforms must therefore be well calculated.
However, this is not the case for the non-causal model, as shown in Fig. [G-b-1, where waveforms are acquired
at position (0,0.6) in the zz-plane. Comparing the non-dissipative plate (solid line) to the dissipative plate
(dashed line), reveals substantial differences. Indeed, adverse effects appear for long times, where the signal
amplitude increases exponentially. Let us give the explanation. Non respect of causality generates nonzero
signal amplitude for low negative times. Consequently, the periodization inherent in spectral discretization
creates a copy of this signal at times close to the end of the observation window. After processing with the
Laplace inversion algorithm, this contribution is converted to an exponential increase that starts after 30 us. To
avoid this problem, it is then necessary to increase the observation window as well as the number of points. As
a consequence, time is now sampled with ¢ € [0..60 us,360). The corrected waveform, for which the last 20 us
are ignored, is plotted in Fig. Bb-1 (pointed line). This curve is not identifiable because the observation point
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Figure 6: (a) Vertical displacement u, for t = 2, 6, 10 and 35 us, for a hysteretic dissipation law and computed with
the "increased" time window. (b)-2,3 Signals for the dissipative plate (solid line) and for the non-dissipative plate
(dashed line); these signals are computed at the positions indicated by light (yellow) dots in the corresponding figures
(a). (b)-1 A third signal plotted with a half-dashed line corresponds to the dissipative plate and the "non-increased"
time window, and reveals the behavior of the numerical artifact growing exponentially over time. (b)-4 Vertical
displacement uz at ¢ = 35 us, computed using the "non-increased" time window: a numerical artifact can be observed
due to non-respect of causality; it is maximal at the location of the source term and at the end of the time window.

is very close to the source, and there is therefore no difference between dissipative and non-dissipative plate
responses.

Let us now examine all the results for this dissipative case. They are presented in Figs. [Ba-1 to [BFa-4, where
images of vertical displacement u, are shown at four fixed times (t=2,6,10,35 us). As time increases, leaky
Lamb waves are seen to form. These guided waves create line wavefronts that radiate energy in water. In
addition, for the longest time, the displacement field u,, calculated with the non-matched sampling, is shown
in fig. [Bb-4. The artifact mentioned above appears at the location of the source. In order to appreciate
the viscoelastic effects better, three waveforms acquired at three fixed positions in the zy-plane are plotted
in Figs. [6Fb-1 to [BFb-3. The three positions are located at: (0,0.6), (2.72,1.25) and (6.66,2.75) and they are
identified by light (yellow) dots in Figs. Bla-1 to [Bra-4. The waveforms obtained for non-dissipative plate (solid
line) are compared with those calculated for dissipative plate (dotted line). Clearly, the viscoelastic effects are
not really important in comparison with results described in section 4.1. This is because the spectral content is
mainly concentrated at low frequencies.

Beyond these expected physical observations, this study illustrates the efficiency of the method which computes,
in a reasonable time, the exact acoustic response to an extended source in a multilayered immersed plate. This
plate may or may not be viscoelastic. Indeed, with this sampling, to calculate the acoustic field in the xy-plane
and at any time, 25” (38" for viscoelastic plate) are necessary. To conclude this section, it is of great interest to
note that, by setting a low value for o, the spatial Green tensor can be calculated without any special efforts.
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In future work, this possibility will be used to study the diffraction of guided waves by defects.

5 Conclusion and prospects

We have adapted an existing method, too little used in ultrasonics, for computing ultrasonic source interactions
with multilayered plates, based on time analysis using the Laplace transform. This method provides a useful tool
which complements the much used technique based on generalized Lamb wave decomposition. By avoiding mode
analysis — which can be problematic in some cases — exact numerical calculations can be made in a relatively
short time for immersed plates and viscoelastic layers. Even for 3D cases, numerical costs are relatively low.

These calculations will be used to develop the topological imaging of defects deeply hidden at sub-source positions
in multilayered structures. The topological imaging method is based on interactions between two calculated
fields, derived from the so-called direct and adjoint problems (e.g., [3, Bl 22], and [25] 27] in geophysics). The
tool that we develop will be of prime interest to image defects in 3D composite materials in quasi-real-time,
both along the plate and normal to the surface.

There are no specific restrictions concerning the size and the spectrum width of sources, except, of course,
Shannon’s sampling conditions. As a result, the Green tensor can be calculated without additional efforts and
can be used to build a Boundary Element Method. This possibility has been successfully considered for modeling
the interaction of planar defects in layered waveguides with a transient incoming wave [I5]. An extension is now
underway to build a Dirichlet-to-Neumann operator that will enable this tool to be coupled with a commercial
Finite Elements software.
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Appendix A On the use of the Green tensor of an infinite anisotropic
medium, in the (k, z, s)-domain

A.1 General considerations

A source emitting in the medium labeled § and located between z = z,;, and z = z,., is represented by the
following term:

Zmax

f5(x, 2, t) = J 3z — Q) fs(x, ¢, t) dC . (A.1)

Zmin

In the (k, z, s)-domain, the response of the medium, considered as an infinite space, is expressed as follows:

Zmax

U(z) = G(z = ) Fs(¢) d¢ . (A.2)
where G denotes the Green tensor.
In the (k, k., s)-domain, the Green tensor is simply expressed as follows:

G = A", where A = [ps°1+(KoK)| = {ps’I + (kok) + k.[ (nok)+(kon) |+k2 (non)} | (A.3)

and is necessarily holomorphic on the complex half-plane Re(s) > 0.

A.2 Green tensor in the (k, z, s)-domain
The following Fourier transform yields the Green tensor in the (k, z, s)-domain:
- 1 (t% N
G(z) = —J exp(—ik. z) Ak, k., s)" ! dk., (A.4)
2w J_

The determinant of the matrix A(k, k., s) defined by Eq. (A3) is a polynomial function of s2 (third degree)
and k. (sixth degree) with real coefficients and is usually named the “Christoffel polynomial”. Consequently,
the Green tensor G(k, e, s) has exactly six poles k. ;(k, s) in the complex plane, which are continuous functions
of the Laplace variable s.

If Re(s) > 0, k. ;(k, s) can never be a real number because the matrix A (k, k., s) — p s°T is real-valued symmetric
positive-definite if &, is also a real number.

If s is a positive real number, the matrix A(k, k., s) is real-valued symmetric positive-definite, and the vertical
wavenumbers k., ;(k, s) necessarily appear in complex conjugate pairs. Thus, there are three wavenumbers with
a positive imaginary part (i=1,2,3), and three with a negative imaginary part (i=4, 5, 6).
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This latter property can be extended to s values in the half-plane Re(s) > 0 because the imaginary part of
k..i(k, s) is a continuous function of s which cannot be zero on the complex half-plane Re(s) > 0.

Furthermore, G(k, k.,s) ~ k;2 (non)”'

k,—+w0

Accordingly, by applying the residue theorem on an half-disk of radius tending to infinity, the Green tensor can
be expressed as follows:

exp(—ik.;2) B; if 2<0 (upgoing waves)

-

~ i=1
G(z) = . ) (A.5)
Z exp(—ik,;2) B, if z>0 (downgoing waves)
i=4
Furthermore, if the Green tensor associated to the vertical stress is introduced as follows:
T(2) = —1(nok)G(2) + (non) 0,G(z) ; (A.6)

it can be demonstrated that G and T satisfy the following ordinary differential system:

o [28 ] - [ ps?l + (kjk()n in()l;r(lr)l?iln)‘l(nok) ﬁ(kiﬁ;?r)l;;)_l ] [(T;((;) } —9(2) [?] (A7)

"

S

Consequently, the six complex vertical wavenumbers k,; are the eigenvalues of the matrix 1S, proportional to
the so-called “Stroh Matriz” [24]. They are associated to eigenvectors &; such that:

exp(—ik,;2) &q; if 2<0 (upgoing waves)

—
= Q)
—~
N
S~—
[
|
e
—
b=
oo
S—

6
Z exp(—ik,;2) &q; if 2>0 (downgoing waves)

~
Il
W~

where the 3D vectors q; satisfy the following invertible linear system of 18 equations with 18 unknowns:

Sea-Yua=| 0] (A9

A.3 Response to an extended source

The response to an extended source located between z = 2y, and z = 2z, is obtained by combining Eqs. (A.2))

and (A3):
)

M: ch

f(z) - [

max(z,Zmin) j—

J*mm(z ,Zmax)
Zmin

An observation point between z.;, and z,., receives both upgoing waves from the part of the source below the
point and downgoing waves from the part of the source above the point:

(A.10)

Zmax 3 .

:J Z [~k (2= Q)] & q; Fs(¢) d(+
6

Z [~ik. (= — Q)] & af F4(C) dC .

6
H(Z) = Zai(2> Ez ) Zmin < 2 < Zmax 5 (All)

i=1

P. Mora, E. Ducasse & M. Deschamps Transtent elastodynamic field in layered plates



19 /I

where -
al [ emloih (- OIFAQ A, 112,34
Oél'(Z) = Zz B (A12)
q f exp[—ik.; (z — )] Fs(¢) d(, i=4,5,6.

Zmin
The «a;(z) term represents the contribution to the wave number i of the part of the source either below the
observation point (upgoing waves, i=1,2,3) or above the observation point (downgoing waves, i=4, 5, 6).

For an observation point above the source (z < 2y, ), only upgoing waves contribute to the radiated field:

H(z) = ) 0i(2min) exp[—ik.; (z — zmin)] &, , (A.13)

i=1
while for an observation point below the source (z = zya.x), only downgoing waves contribute:

H(2) = ) 0i(2max) exp[—i k. (z — zmax)] & . (A.14)

i=4
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