
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/10734

To cite this version :

Pierric MORA, Eric DUCASSE, Marc DESCHAMPS - Transient 3D elastodynamic field in an
embedded multilayered anisotropic plate - Ultrasonics - Vol. 69, p.106-115 - 2016

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/10734
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


1 / 19

Transient 3D elastodynami
 �eld in

an embedded multilayered anisotropi
 plate

Pierri
 Mora

1

pierri
.mora�u-bordeaux.fr

Eri
 Du
asse

1,3,4

eri
.du
asse�u-bordeaux.fr

Mar
 Des
hamps

1,2

mar
.des
hamps�u-bordeaux.fr

1

Univ. Bordeaux, I2M´APy, UMR 5295, F-33400 Talen
e, Fran
e.

2

CNRS, I2M´APy, UMR 5295, F-33400 Talen
e, Fran
e.

3

Arts et Metiers ParisTe
h, I2M´APy, UMR 5295, F-33400 Talen
e, Fran
e.

4

Corresponding author. Tel. +33(0)540003138. Fax +33(0)540006964.

Abstra
t

The aim of this paper is to study the ultrasoni
 response to a transient sour
e that radiates ultrasoni
 waves in

a 3D embedded multilayered anisotropi
 and dissipative plate. The sour
e 
an be inside the plate or outside, in

a �uid loading the plate for example. In the 
ontext of Non-Destru
tive Testing applied to 
omposite materials,

our goal is to 
reate a robust algorithm to 
al
ulate ultrasoni
 �eld, irrespe
tive of the sour
e and re
eiver

positions.

The prin
iple of the method des
ribed in this paper is well-established. This method is based on time analysis

using the Lapla
e transform. In the present work, it has been 
ustomized for 
omputing ultrasoni
 sour
e

intera
tions with multilayered dissipative anisotropi
 plates. The �elds are transformed in the 2D Fourier wave-

ve
tor domain for the spa
e variables related to the plate surfa
e, and they are expressed in the partial-wave

basis. Surprisingly, this method has been very little used in the ultrasoni
 
ommunity, while it is a useful tool

whi
h 
omplements the mu
h used te
hnique based on generalized Lamb wave de
omposition. By avoiding

mode analysis � whi
h 
an be problemati
 in some 
ases � exa
t numeri
al 
al
ulations (i.e., approximations

by trun
ating in�nite series that may be poorly 
onvergent are not needed) 
an be made in a relatively short

time for immersed plates and vis
oelasti
 layers. Even for 3D 
ases, numeri
al 
osts are relatively low. Spe
ial

attention is given to separate up- and down-going waves, whi
h is a simple matter when using the Lapla
e

transform.

Numeri
al results show the e�e
tiveness of this method. Three examples are presented here to investigate the

quality of the model and the robustness of the algorithm: �rst, a 
omparison of experiment and simulation for

a monolayer 
arbon-epoxy plate, where the di�ra
ted �eld is due to a sour
e lo
ated on the �rst free surfa
e of

the sample, for both dissipative and non-dissipative 
ases; se
ond, the basi
 
on�guration of an aluminum plate

immersed in water has been 
hosen to study wave propagation in ZGV (Zero Group Velo
ity) 
onditions; �nally,

a 2D plate 
onsisting of 8 sta
ked 
arbon-epoxy layers immersed in water is treated, with a sour
e lo
ated inside

the plate, distributed in depth and extending over four layers.
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1 Introdu
tion

The study of di�ra
tion of a
ousti
 waves in laminated plates has interested the 
ommunities of geophysi
s,

underwater a
ousti
s and non-destru
tive testing for several de
ades.

Numerous pra
ti
al approa
hes exist today to 
al
ulate the response of these media to di�erent sour
es. The


hoi
e of method used is governed by the situation under 
onsideration. For instan
e, the aim may be near-�eld


al
ulation or far-�eld 
al
ulation, the responses may be needed in the time or the frequen
y domain, the guides

may or may not be loaded, et
. Expanding the solution in terms of normal modes in the frequen
y domain is

one of the best-known methods. The modes 
orrespond to generalized Lamb waves for laminated plates, and


an be obtained numeri
ally in di�erent ways, by sear
hing for the roots of the determinant of a matrix [14℄, or

by obtaining the eigenvalues of a �nite-element matrix (e.g., [13, 8℄).

This modal method is well-suited to deal with 
al
ulations in the far-�eld domain for guides in va
uum. This

is be
ause in the far �eld the modes are well-built, and only a limited number of them, i.e., the propagative

modes, 
ontribute, whi
h makes modal theory very e�
ient. For plates in va
uum, the solution 
an also be

expanded in terms of modes in the time domain, after performing a Fourier transform with respe
t to the

horizontal 
oordinates (in the plane of the plate) [12, 7℄, assuming that the sour
e is bounded and bandlimited

in horizontal wavenumber, a

ording to the Nyquist-Shannon sampling theorem. This se
ond method is more

suitable than the �rst one for 3D 
al
ulations in anisotropi
 media be
ause it does not make use of an angular

integration variable, nor is the dire
tion of propagation of the modes required [26℄.

However, for loaded plates (i.e., plates immersed or embedded in an unbounded medium), modes do not


onstitute a 
omplete basis, whi
h makes modal expansion theoreti
ally more deli
ate, if not impossible.

Furthermore, it is still a 
hallenge to build a robust and a

urate algorithm to obtain the modes numeri
ally.

Indeed, exa
t eigenvalue statements have been proposed only in some restri
ted 
ases [9℄. For more general

situations, PML [4℄ are sometimes 
hosen for modeling the unbounded layers, but are well-known to be

problemati
 in the 
ase of ba
kward propagative modes and may also lead to instabilities for anisotropi
 media.

So, in this 
ase this modal te
hnique must be used with some 
aution.

To avoid di�
ulties due to radiation into half-spa
e(s), di�erent approa
hes have been developed. Park and

Kausel [17, 18℄ have shown that, for loaded guides, it is possible to get an exa
t solution from the modal

basis obtained for guides in va
uum. The in�uen
e of the two semi-in�nite media is taken into a

ount by

two se
ondary sour
e terms applied on both supposedly free surfa
es. The amplitude of ea
h mode is then
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determined by solving a Volterra integral equation. However, this method, the so-
alled �Substru
ture Method�,

exhibits poor 
onvergen
e and problems of instability [17, 18℄.

An alternative to the modal theory 
onsists in 
onserving the initial integral instead of expressing it as a sum

of modes by using the residue theorem. The problem is then to 
al
ulate this integral 
orre
tly, knowing that

sampling the integration path, whi
h is 
lose to the poles, 
an produ
e numeri
al errors. To this end, in the


ase of a sta
k of 3D isotropi
 plate layers, in 1965, Phinney [19℄ proposed to deform the integration path of the

Fourier integral on frequen
y in the 
omplex plane by adding an arbitrary imaginary part to the frequen
y. The


hoi
e of the arbitrary 
onstant has been studied by Kausel and Roësset [11℄ in order to in
rease the a

ura
y

of the numeri
al inverse transform involved to 
ome ba
k to the time domain. This method 
an be found

in the literature under the name of Exponential Window Method. Although it is never stated expli
itly, all

the numeri
al inversions related to the Exponential Window Method give 
ausal signals and 
orrespond to the

inverse Lapla
e transform de�ned by the Bromwi
h 
ontour. The same idea has been used to deal with wave

di�ra
tion in 3D isotropi
 dissipative (or non-dissipative) plates [28℄. This work has been extended to model

ultrasound generation by laser in 2D dissipative anisotropi
 plates by Audoin and Guilbaud [1℄.

Curiously, to our knowledge, this 
ausal non-modal te
hnique is used relatively infrequently by the me
hani
s


ommunity, even though it is able to solve 
omplex 
ases while insuring a perfe
t 
ontrol and 
ompetitive

numeri
al 
ost towards the modal methods. This is probably be
ause it is a purely numeri
al te
hnique, for

whi
h the physi
al meaning 
ontained in modal theory is lost. If a pre
ise physi
al interpretation of di�ra
ted

wavefronts is needed, both modal and non-modal approa
hes are then ne
essary.

In this paper we propose to study the ultrasoni
 response to a transient sour
e that radiates ultrasoni
 waves in

a 3D embedded multilayered anisotropi
 and dissipative plate. The sour
e 
an be inside the plate or outside, in

a �uid loading the plate for example. In some way, the goal of this paper is to give to this well-established non-

modal method a larger di�usion among the ultrasoni
 
ommunity. The examples presented here are 
hosen to


over a broad range of situations of Non-Destru
tive Testing (NDT) of plates, with a spe
ial fo
us on 
omposite

plates, 
onsidering guided wave as well as bulk wave regimes. The formalism may be readily applied to write

a robust and versatile algorithm to 
al
ulate ultrasoni
 �eld, irrespe
tive of the sour
e and re
eiver positions.

The �elds are transformed in the Lapla
e domain for the time variable and in the 2D Fourier wave-ve
tor

domain for the spa
e variables related to the horizontal plate surfa
e, assuming that the sour
e is bounded and

bandlimited in horizontal wavenumber, a

ording to the Nyquist-Shannon sampling theorem. Working in the

Lapla
e domain gives a

ess to all the general theorems asso
iated to this transformation and spe
i�
ally related

to 
ausal signals. Beyond the spe
i�
 interest of this paper, this 
an be useful for building solutions to many

other problems.

After a brief des
ription of the basi
 equations (Se
tion 3), des
ribed with our notations, the solution is obtained

in the 3D transformed-domain. Spe
ial attention is given to separate up- and down-going waves, whi
h is a

simple matter when using the Lapla
e transform. Se
tion 4 is devoted to numeri
al results. First, for a

monolayer 
arbon-epoxy plate, the di�ra
ted �eld due to a sour
e lo
ated on the �rst free surfa
e of the sample

is 
al
ulated for both dissipative and non-dissipative 
ases. The waveforms are then su

essfully 
ompared with

some experiments. Se
ond, for an aluminum plate immersed in water: this very basi
 
on�guration has been


hosen to study wave propagation in ZGV (Zero Group Velo
ity) 
onditions. Finally, a 2D plate 
onsisting

of 8 sta
ked 
arbon-epoxy layers immersed in water is treated to investigate the quality of the model and the

robustness of the algorithm. The 2D sour
e is lo
ated inside the plate and extends over four layers.
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Time-domain t notation Lapla
e-domain s notation

Physi
al spa
e x, z px, z, tq u px, z, sq U

Horizontal wave ve
tor k

Verti
al position z
pk, z, tq ũ pk, z, sq Ũ

Horizontal wave ve
tor k

Verti
al wavenumber kz
pk, kz, tq û pk, kz, sq Û

Table 1: Notations

2 Notations

The ve
tor x “ px, yq will denote spatial 
oordinates in the xy-plane. The asso
iated planar wave-ve
tor in the

Fourier spa
e will be denoted by k “ pkx, kyq. In the time domain, all �elds are denoted with lower 
ase letters,

whereas in the Lapla
e domain 
apital letters are used. Symbols are added to indi
ate a Fourier transform

over the spa
e variables. These 
onventions are summarized in Table 1. The �elds u, σz, η, fβ, σβ that are

introdu
ed later follow the same rules: they will be denoted Ũ, Σ̃z, H̃, F̃β , Σ̃β in the pk, z, sq dual spa
e. The
dependen
e of these �elds along the spa
e and spe
tral variables will be made expli
it only when ne
essary.

The me
hani
al properties ρβ and c
β
ijkm are 
onstant in ea
h layer. Noti
e that the z axis is taken positive

downwards, and that therefore an �upgoing� (resp. �downgoing�) wave propagates towards de
reasing (resp.

in
reasing) z.

3 Equations and ba
kground

Let us 
onsider a multilayered medium made of a plate system 
onsisting of a number N of perfe
t �at layers

of normal n along z-axis, sta
ked together. The layers are labeled β. The interfa
e between layers β and β`1,

also labeled β, is lo
ated at position z “ zβ, as illustrated in Fig. 1. Ea
h layer is an anisotropi
 solid, with a

given thi
kness hβ “ zβ ´zβ´1. The areas above and below this plate system 
an either be va
ua or semi-in�nite

half-spa
es of solid (or �uid) media. The plate is assumed to be in�nite in the xy-plane This strati�ed medium

is submitted to external for
es that 
an be lo
ated anywhere. The �rst interfa
e (β “ 0) is always lo
ated at

z0 “ 0.

Figure 1: A multilayered in�nite plate of N di�erent layers.
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3.1 Basi
 equations in the physi
al spa
e

With our notations, let us �rst state the wave equations in ea
h layer. Combining Newton's se
ond law, the


ausality prin
iple and Hooke's law, the displa
ement �eld upx, z, tq is given, at any time t and any lo
ation

px, zq, by the following system expressed in the medium β:

$
’’&
’’%

ρβ B2

tupx, z, tq ´ p▽ β˛ ▽qupx, z, tq “ fβpx, z, tq, for t ą 0,

upx, z, tq “ 0, for t ă 0,

σzpx, z, tq “ pn β˛ ▽qupx, z, tq,
(1)

where the quantity σzpx, z, tq expresses the stress in the z-dire
tion (normal to the interfa
es) and ρβ stands for

the mass density. The bilinear produ
t

β˛ has been de�ned in [6℄ by a three-by-three matrix pa β˛ bq su
h that

pa β˛ bqim “ c
β
ijkm aj bk, with the Einstein summation 
onvention. The above equations depend on ea
h layer

through the values of the elasti
 
onstants c
β
ijkm, i.e. through the operator

β˛. The �eld fβpx, z, tq denotes the

for
e per unit volume exerted by the part of the sour
es lo
ated in layer β.

Continuity equations at the interfa
e β are given by the following system:

ˆ
upx, z`

β , tq
σzpx, z`

β , tq

˙
´
ˆ

upx, z´
β , tq

σzpx, z´
β , tq

˙
“
ˆ

0

σβpx, tq

˙
, (2)

where z´
β and z`

β indi
ate the fa
t that the �eld under 
onsideration is 
al
ulated in layers β´1 and β,

respe
tively. The interfa
e sour
e term σβpx, tq de�nes the normal stress jump at interfa
e β, and 
orresponds

to an applied for
e per unit surfa
e if one of the media is a va
uum. Noti
e that if σβ “ 0, then Eq. (2) merely

expresses the 
ontinuity of displa
ement and normal stress.

For simpli
ity, the β index will be omitted below and will be reintrodu
ed only when ne
essary to avoid ambiguity.

The volumi
 sour
es des
ribed by fβpx, z, tq in Eq. (1) 
an straddle two or more layers. In su
h 
ase, the volumi


sour
e term is 
onsidered as zero at ea
h interfa
e (z “ zβ).

Eq. (1) and (2) are to be solved using Fourier and Lapla
e transforms on invariant dimensions. In a �rst time

(see se
tions 3.2 and 3.3), Eq. (1) is solved separately in ea
h layer 
ontaining a sour
e term. This de�nes an

in
ident �eld in ea
h layer, whi
h 
orresponds to the �eld that a sour
e would radiate in this layer 
onsidered

to be unbounded. Then (see se
tion 3.4), the re�e
ted �eld 
an be obtained, whi
h is the 
ontribution of all the

interfa
es, and is 
al
ulated by taking into a

ount the 
ontinuity relationships of Eq. (2). In this arti
le, the

so-
alled Global matrix (e.g., [14℄) method is adopted to perform the latter operation. The total �eld is �nally

obtained as the sum of the in
ident and re�e
ted �elds.

3.2 Separation of up- and down-going waves

The aim of this se
tion is to emphasize that up- and down-going bulk waves, whi
h are the solutions of

Christo�el's equation, are easily separated in the Lapla
e domain. It may be skipped in a �rst reading.

Let us apply a 3D Fourier transform to the spa
e variables to Eq. (1). The spa
e domain px, zq is then

transformed into the spe
tral domain de�ned by K “ pk, kzq, where K stands for the wave ve
tor. This yields

the following di�erential equation:

ρ B2

t û ptq ` pK ˛ Kq û ptq “ f̂ ptq . (3)

If K “ 0, whi
h 
orresponds to the rigid body motion, then û “ ρ´1
r ˚ f̂ , where r denotes the ramp fun
tion

and the operator ˚ is the time 
onvolution produ
t. If K ‰ 0, the matrix pK ˛ Kq is then real-valued symmetri
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positive-de�nite, and therefore admits three positive eigenvalues ρ ω2

i with asso
iated eigenve
tors Pi su
h that:

pK ˛ Kq “ ρP diag
1ďiď3

`
ω2

i

˘
PT, (4)

where the 3x3 polarization matrix is su
h that P “ rP1, P2, P3s. Its transpose matrix is noted PT
. The solution

is then expressed as follows:

ûptq “ 1

ρ
P diag

1ďiď3

ˆ
hp‚q sinpωi‚q

ωi

˙
PT ˚ f̂ , (5)

where h is the Heaviside unit step fun
tion. Let us now perform a Lapla
e transform (with parameter s) to the

solution (5). The Lapla
e transforms of the ramp and sine fun
tions are s´2
and p1 ` s2q´1

, respe
tively. They

are holomorphi
 on the half-plane Repsqą0, with poles on the imaginary axis.

If the 6D state ve
tor Ĥ “
´

ÛT Σ̂
T

z

¯T

is 
onsidered, the solution 
an be expressed in the dual spa
e pK, sq
as follows:

Ĥ “ M´1

ˆ
0

F̂

˙
, where M “

ˆ
i pn ˛ Kq I

ρ s2I ` pK ˛ Kq O

˙
, (6)

i “
?

´1, I and O are the 3-by-3 identity and zero matri
es, respe
tively.

The study of the singularities of Ĥ leads to the Christo�el Equation detpMq “ 0. A

ording to the problem

geometry, the six solutions of this equation are to be found in terms of 
omplex verti
al wavenumbers kz,i pi “
1 . . . 6q. Thus, the state ve
tor de�ned in Eq. (6) 
an be easily expressed in the pk, z, sq domain with the

notation H̃pzq. The six 
omplex verti
al wavenumbers are sorted by 
omparing their imaginary parts, su
h

that: #
Impkz,iq ą 0, i“1, 2, 3 ;

Impkz,iq ă 0, i“4, 5, 6 .
(7)

Sin
e Repsq ą 0, it is proved in Appendix A that the �rst three partial waves, of verti
al wavenumbers

with positive imaginary parts, 
orrespond to waves that propagate in the negative z dire
tion, while the

others, of verti
al wavenumbers with negative imaginary parts, 
orrespond to waves that propagate in the

positive z dire
tion. This is an important point be
ause a simple 
onsideration on the imaginary part of kz,i
unambiguously separates the �elds into upgoing and downgoing waves. This is not the 
ase for harmoni
 waves,

where Repsq “ 0 and Impsq “ iω, for whi
h 
onsiderations on dire
tion of energy propagation must be added.

3.3 Radiation of a sour
e in an in�nite medium: in
ident �eld

z

Figure 2: The three regions of spa
e de�ned by a volume sour
e, in whi
h the in
ident �eld is 
al
ulated respe
tively

with Eq. (8), (11) or (12).

Let us �rst 
al
ulate the radiation of a given sour
e lo
ated in the zone de�ned by zβ,min ď z ď zβ,max, in the

layer β 
onsidered as an in�nite spa
e, as shown in Fig. 2. If the sour
e extends beyond the interfa
e β (or

β ` 1), the a
tual sour
e to be 
onsidered is the part of the sour
e lo
ated between z “ zβ and z “ zβ`1,

although the medium in this se
tion is assumed to be in�nite.
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As detailed in Appendix A, the radiated �eld, represented by the state ve
tor H̃inc
β at the verti
al position z in

the pk, z, sq-domain, depends on the position of the observation point with respe
t to the sour
e. It is obtained

by 
onvoluting the Green tensor of the unbounded medium by the sour
e term.

As a matter of fa
t, three 
ases o

ur:

‚ If the observation point is inside the sour
e area (zmin ă z ă zmax),

H̃inc

β pzq “
6ÿ

i“1

αβ,ipzq ξβ,i , (8)

where ξβ,i is the polarization ve
tor of the mode with verti
al wavenumber kz,β,i , and αβ,ipzq represents the

ontribution of this mode. For upgoing waves (i“1, 2, 3), only the part of the sour
e below the observation

point is involved:

αβ,ipzq “
ż zmax

z

gT

β,ipz ´ ζq fβpζqdζ pi“1, 2, 3 and z ă zmaxq , (9)

where the ve
tor gβ,i is related to the Green tensor in the layer β (see Appendix A).

Conversely, for downgoing waves (i“4, 5, 6), only the part of the sour
e above the observation point


ontributes:

αβ,ipzq “
ż z

zmin

gT

β,ipz ´ ζq fβpζqdζ pi“4, 5, 6 and z ą zminq . (10)

‚ If the observation point is above the sour
e (z ď zmin), only the upgoing waves 
ontribute. Then, the

state ve
tor takes the following form:

H̃inc

β pzq “
3ÿ

i“1

αβ,i exp r´i kz,β,i pz ´ zminqs ξβ,i , (11)

with αβ,i “ αβ,ipzminq.

‚ If the observation point is below the sour
e z ě zmax, only downgoing waves are re
eived and the state

ve
tor be
omes:

H̃inc

β pzq “
6ÿ

i“4

αβ,i exp r´i kz,β,i pz ´ zmaxqs ξβ,i , (12)

with αβ,i “ αβ,ipzmaxq.

Of 
ourse, if there is no sour
e in the layer β, the 
oe�
ients αβ,ipzq are all zero.

At this point, we 
onsider that all the in
ident �elds are known in all layers and 
hara
terized in the pk, z, sq-
domain by H̃inc

β pzq.

3.4 Elastodynami
 �elds in a layer and interfa
e 
onditions

Let us now remember that the medium under 
onsideration is bounded (zβ´1 ă z ă zβ). The part of the sour
e

lo
ated in ea
h layer radiates an in
ident �eld 
hara
terized by the state ve
tor H̃inc

β pzq. The total �eld in the

layer is the superposition of this in
ident �eld with the re�e
ted �eld, resulting from the di�ra
tion at ea
h

interfa
e. Consequently, the re�e
ted �eld is 
ompletely 
hara
terized by six 
oe�
ients aβ,i and the total �eld

is expressed as follows:

H̃βpzq “ H̃inc

β pzq `
6ÿ

i“1

aβ,i exp r´i kz,β,i pz ´ zβ,iqs ξβ,i , zβ ă z ă zβ`1 , (13)
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where the verti
al positions zβ,i 
an be arbitrarily 
hosen [23℄, as detailed below.

In the upper layer, the re�e
ted �eld 
ontains only upgoing waves:

H̃0pzq “ H̃inc

0
pzq `

3ÿ

i“1

a0,i exp r´i kz,0,i pz ´ z0,iqs ξ0,i , z ă 0 , (14)

while in the lower layer, the re�e
ted �eld 
ontains only downgoing waves:

H̃N`1pzq “ H̃inc

N`1
pzq `

6ÿ

i“4

aN`11,i exp r´i kz,N`1,i pz ´ zN`1,iqs ξN`1,i , z ą zN . (15)

The 6N`6 
oe�
ients aβ,i will be determined by rewriting the boundary 
onditions (2) in the pk, z, sq-domain

at the N`1 interfa
es (6 equations at ea
h interfa
e):

H̃β`1 pzβq ´ H̃β pzβq “
ˆ

0

Σ̃β

˙
, (16)

where the term Σ̃β 
orresponds to the interfa
e sour
e term σβpx, tq in this transformed domain.

The arbitrary verti
al positions zβ,i de�ned in Eq. (13) have been 
hosen su
h that: zβ,i “ zβ for upgoing waves

(i“1, 2, 3) and zβ,i “ zβ´1 for downgoing waves (i“4, 5, 6). In agreement with the de�nition [Eq. (7)℄, this 
hoi
e

leads to 
omputations only of de
reasing exponentials in the layer under 
onsideration. As a 
onsequen
e,


omputations are numeri
ally stable irrespe
tive of the frequen
y-thi
kness produ
ts. The in
ident wave �eld

radiated by the part of the sour
e lo
ated in layer β is expressed by Eq. (11) at interfa
e β´1 (upgoing waves

over the layer) and by Eq. (12) at interfa
e β (downgoing waves under the layer).

The method presented here is known as the Global matrix approa
h (e.g., [14℄). However, it is most often stated

in the harmoni
 domain, whereas we are working in the Lapla
e domain. Note that only the 
ase of elasti
 layers

embedded between two semi-in�nite solids is presented above for 
larity (giving an invertible linear system of

6N`6 equations with 6N`6 unknowns aβ,i ). Other types of layer or half-spa
e (�uid, va
uum, et
.) give similar

equations.

3.5 Expression of the solution in the physi
al domain

Let us �rst 
ome ba
k to the time domain. From a numeri
al point of view, this is the most deli
ate pro
edure

of this method, sin
e an inverse Lapla
e transform is involved. As shown above, H̃β pzq is holomorphi
 in the


omplex half-plane Repsq ą 0. Consequently, all its singularities, i.e., poles, bran
h points and bran
h 
uts, are

in the left part of the 
omplex plane, in
luding the imaginary axis. Purely imaginary poles s “ iω0 
orrespond

to pure guided modes of angular frequen
y ω0. Poles with a negative real part are asso
iated to transient leaky

guided modes. In fa
t, although the horizontal wave ve
tor k is real, the asso
iated slowness ve
tor, su
h that

S “ i s´1k, is 
omplex sin
e the modal frequen
y is 
omplex, i.e., Repsq ‰ 0 (e.g., [20℄). In su
h a des
ription,

wave leakage in the upper and lower in�nite media of this transient guided wave is des
ribed by the imaginary

part of the slowness ve
tor, whi
h 
ome from transient e�e
ts, due to the real part of s.

Under these 
onsiderations, the inverse Lapla
e transform 
an be 
al
ulated, without di�
ulty, using the

Bromwi
h-Mellin formula:

rηβpz, tq “ exppγ tq
2 π

ż `8

´8

exppiω tq H̃βpzqdω , zβ´1 ă z ă zβ , (17)

where the parameter γ is an arbitrary positive 
onstant and where the fun
tion H̃βpzq is 
al
ulated for s “ γ`iω.

From a numeri
al point of view, the initial inverse Lapla
e transform is then repla
ed by a Fourier transform
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multiplied by a growing exponential fun
tion. In the literature this numeri
al Lapla
e inversion is sometimes

referred as the Exponential Window Method (e.g., [11℄). The prin
iple is to 
al
ulate the transient response

in the dis
retized time-interval r0, tmaxs. The use of dis
rete Fourier transform results in a periodization of the

signals (period tmax). Following [11℄, the usual way to de�ne γ is to take γ “ m logp10q t´1

max
, whi
h 
orresponds to

periodization e�e
ts less than 10´m
. The greater the parameter, the less the periodization e�e
ts. Nevertheless,

there is a 
ounterpart in in
reasing m due to the exponential growing fa
tor exppγ tq in Eq. (17). A good


ompromise is obtained by taking m between 2 and 5.

At this stage, let us 
ome ba
k to the spatial domain, by applying the following 2D inverse Fourier transform:

ηβpx, z, tq “ 1

4π2

ĳ

R

2

expp´ik ¨ xq rηβpz, tq dkx dky , zβ´1 ă z ă zβ . (18)

A 2D inverse Fourier transform, 
omputed by an FFT algorithm, is then used to do this transformation,

a

ording to the Nyquist-Shannon sampling theorem. As long as this inverse transform is numeri
al, the

problem is spatially periodi
 and the solution is valid only as long as the fastest wave front, that propagates at

velo
ity cθmax in a �xed dire
tion, has not rea
hed the edges of the spatial domain. Therefore, the 
omputational

e�ort is proportional to k2

max
ˆt3

max
(kmaxˆt2

max
for 2D 
omputations), where kmax denotes the maximum value

of the horizontal wave numbers of the sour
e-term, assumed to be bandlimited in wavenumber.

3.6 Vis
oelasti
 layers

To take the vis
oelasti
 behavior of ea
h layer into a

ount, a Kelvin-Voigt dissipative model 
an be used [2℄.

As a result, the bilinear produ
t

β˛, introdu
ed in Eq. (1), is repla
ed by

β˛ ` β
˛Bt in the time domain. In the

Lapla
e domain, this 
hanging is noted as follows:

β˛ ÞÑ β˛ ` s
β
˛ . (19)

The new bilinear operator

β
˛ de�nes a 3-by-3 matrix pa β

˛ bq, su
h that pa β
˛ bqim “ η

β
ijkm aj bk, where the


onstants η
β
ijkm 
onstitute the vis
osity tensor. This model is 
ausal. In addition, in the spe
trum domain,

i.e., waveve
tor/frequen
y domain, it leads to a vis
ous damping of waves proportional to the square of

the frequen
y [2℄. It des
ribes 
orre
tly the behavior of polymers in the usual frequen
y range of NDT and

NDE appli
ations. However, it is not a

urate for modeling 
omposite materials. Indeed, it has been shown

experimentally [10℄ that wave damping is proportional to frequen
y in the domain of interest.

In the Lapla
e domain, su
h behavior 
an be des
ribed by the following simplisti
 
hange:

β˛ ÞÑ
#

β˛ ` i signpImpsqq β
˛ , Impsq ‰ 0 ;

β˛ , Impsq “ 0 .
(20)

Note that the simplisti
 model (20) 
annot be 
orre
t be
ause it does not lead to a holomorphi
 expression

with respe
t to the 
omplex variable s and does not 
orrespond to a 
ausal model, 
ontrary to the Kelvin-Voigt

dissipative model. More re�ned models 
an be used but these will be dis
ussed in future arti
les. Nevertheless,

the simplisti
 model gives a

eptable results for the numeri
al 
ases presented here. The 
onsequen
es of su
h

non-physi
al behavior on the waveform 
omputations will be seen below (see Se
tion 4.3).

Of 
ourse in this 
ase, the 
onstants η
β
ijkm do not have the same rheologi
al meaning, or the same unit, as those

de�ned in Eq. (19). However, the same variables will be used to de�ne the operator

β
˛.
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4 Numeri
al results

This se
tion reports some numeri
al results based on the numeri
al s
hemes des
ribed above. Three typi
al

plates are analyzed. First, a plate in va
uum 
onsisting of a single layer of a unidire
tional �ber 
omposite is


onsidered. Se
ond, the e�e
ts of negative propagation in an aluminum plate immersed in water are analyzed.

Third, the 
ase of a stru
ture made of 8 unidire
tional �ber 
omposite layers sta
ked together and immersed

in water is presented. For all the examples, the 
omputation time will be given for a C++ language and the


omputer will be a 1.66ˆ2GHz 64-bit dual 
ore pro
essor with a 2Go RAM, whi
h is a mid-performan
e

personal 
omputer. Using a newer 
omputer, 
omputation times 
an easily be divided by ten.

4.1 Monolayer plate of 
arbon-epoxy in va
uum

Within the frequen
y range of 
al
ulations, su
h a 
omposite material 
an be 
onsidered as an orthotropi


homogeneous medium for whi
h the equivalent density is ρ“1560 kg¨m´3
. The 
rystallographi
 dire
tions 71,

72 and 73 
orrespond to the x, y and z-axis, respe
tively. The dire
tion of �bers 
oin
ides with the x-axis.

This 
omposite material has been 
hosen be
ause it has already been used in some experiments [16, Table 2.3℄.

Plate thi
kness is 3.6mm. The homogenized sti�ness 
onstants are: c11“86.65, c22“14.00, c33“14.00, c44“3.00,

c55“4.06, c66“4.70, c12“7.50, c13“7.50, c23“7.00 rGPas. The sour
e is lo
ated on the �rst interfa
e z “ 0. In

agreement with the experiments, the normal for
e at this surfa
e, de�ned in Eq. (1), is modeled by a Gaussian

distributed amplitude in the xy-plane and 
oupled to a tone burst signal, su
h that:

σ0px, tq “ exp

ˆ
´x2 ` y2

2 σ2

˙
sinpω0 tq exp

ˆ
´ω2

0
t2

2n2
c

˙ `
0 0 1

˘T
, (21)

with ω0 “ 2 π f0. The other new variables are: the Gaussian aperture σ “ 2.4mm, the 
entral frequen
y f0 “
150 kHz and the number of 
y
les nc “ 6.5. First of all, let us examine displa
ement on the plate surfa
e, i.e., at

z “ 0, for a �xed time t “ 120µs. This is a relatively long time for guided waves to propagate over long distan
es.

The mat
hed surfa
e of 
al
ulation is su
h that: x P p´1.12 .. 1.12m, 1030s and y P p´0.39 .. 0.39m, 360s, where
pvmin .. vmax, ns denotes a half-
losed dis
retized interval of n linearly spa
ed values from vmin to vmax. This

notation will be used for all sampled variables introdu
ed later on. Thus, the waveforms are observed for

t P r´22 .. 228µs, 150q. For this 3D problem and for this large plane of analysis, the 
omputation time is 251
,

whi
h is a relatively short time that 
ould be 
onsiderably redu
ed by using a faster 
omputer. As an illustration,

Fig. 3-a represents the verti
al displa
ement uz for a non-dissipative plate. In the frequen
y range of the emitter

and for a 
omposite sample, only four propagating modes 
an exist. The three fundamental modes A0 (�exural

wave), SH0 (horizontal shear wave) and S0 (
ompressional wave), and the �rst anti-symmetri
 mode, usually


alled A1. The three fastest fronts 
orrespond to the three fundamental modes A0, SH0 and S0. It 
an be seen

in [7℄ that there is good agreement between the ray theory and the �eld 
al
ulation by using a time-domain

modal approa
h. In this paper, the waveforms have been obtained without modal de
omposition but, of 
ourse,

they 
orrespond exa
tly to the waveforms obtained in [7℄, sin
e both are exa
t solutions of the same problem.

The theory is now 
ompared with experiments reported in [16℄. For this, two waveforms are 
al
ulated at two

di�erent positions on the surfa
e, p15, 0, 0q and p21.05, 17.68, 0q, whi
h are identi�ed by the two dots in Fig. 3-a.

The asso
iated waveforms are shown in Figs. 3-b and 3-
. Clearly, the agreement between experimental and

theory wavefront arrival times is 
orre
t, while the amplitudes di�er drasti
ally. This is due to wave damping, as

is well-known in su
h 
omposites [10℄. To take this e�e
t into a

ount, in agreement with experiments performed

in the frequen
y range asso
iated with the sour
e des
ribed by Eq. (21), the vis
oelasti
 model, de�ned by

Eq. (20), is used. The asso
iated vis
osity 
onstants of the homogenized solid are: η11 “ 2.00, η22 “ 0.30,

η33 “ 0.30, η44 “ 0.085, η55 “ 0.085, η66 “ 0.055, η12 “ 0.13, η13 “ 0.13, η23 “ 0.106 rkPa¨rad´1s. The values

of these 
onstants di�er from those given in [16℄. This is be
ause the values obtained from experiments in this

paper, as mentioned, in
lude not only vis
osity absorption, but also wave attenuation due to beam di�ra
tion.

These two attenuation e�e
ts 
annot be di�erentiated experimentally, whi
h is not the 
ase in the present work,
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Figure 3: 3D response (verti
al displa
ement) of a monolayer plate of 
arbon-epoxy to a sour
e lo
ated at the top

interfa
e (z “ 0). (a) Non-dissipative medium. (b) Dissipation 
onsidered through the hystereti
 model. Figures (a)-1

and (b)-1 are views from the top of the plate after a long time, with non-linear gray s
ale in order to show the low

amplitude SH0 and A1 modes. In �gures (a)-2,3 and (b)-2,3 the numeri
al 
omputations (red signals) are 
ompared

to the experimental data (bla
k signals) [16℄.

sin
e beam di�ra
tion is, of 
ourse, taken into a

ount by the model. The 
omparison between theoreti
al

waveforms obtained for a vis
oelasti
 plate and experimental signals is presented in Fig. 3. For the two angles

of observation, note the very good agreement between theory and experiment.

4.2 Aluminum plate immersed in water

To illustrate the e�
ien
y of the method, it is of interest to 
al
ulate the response near the sour
e. To this

end, let us 
onsider an aluminum plate immersed in water, whi
h is insoni�ed by a transdu
er near a ZGV

(Zero Group Velo
ity) 
ondition. Re
ently, new methods of NDT have been developed taking advantage of the

sensitivity to the interfa
e parameters of waves generated in ZGV 
onditions (e.g., [21℄). In our 
ase, the sample

thi
kness is 1mm and the density is ρ1“2780 kg¨m´3
. Using the isotropy relations, all the sti�ness 
onstants

are dedu
ed from the two independent sti�ness 
onstants: c11“112.0 and c66“27.0 rGPas. The water density

is ρ0 “ 1000 kg¨m´3
and the sound velo
ity in water is 1500m¨s´1

. To observe the ZGV phenomenon 
learly, it

is important to minimize the wave di�ra
tion e�e
ts and to generate a spe
i�
 Lamb wave pre
isely at a single

frequen
y. To do this, the simulation of the transdu
er, whi
h is lo
ated in the upper semi-in�nite layer, i.e.,

β “ 0 in Eq. (1), is given by the following fun
tion:

f0 px, y, z, tq “ Π

„
2 pz ´ zf q
l sin θ


exp

#
´rx ´ x0pzqs2

2 σ2
x

´ y2

2 σ2
y

+
sinpω0tq exp

ˆ
´ω2

0
t2

2n2
c

˙ ¨
˝

sinpθq
0

cospθq

˛
‚, (22)

where fun
tion Π is the re
tangular fun
tion su
h that Πpξq “ 1 if |ξ| ď 1{2, and Πpξq “ 0 otherwise. The

quantity x0pz, θq, given by x0pz, θq “ pz ´ zf q cotpθq ´ zf tanpθq, expresses the transdu
er rotation around

its 
enter at position zf , with an additional lateral shift to make the transdu
er 
entral axis 
ross the �rst
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θ f0
2.6° 3.0MHz

6.0° 2.87MHz

12.7° 3.0MHz

Table 2: The three pθ, f0q pairs used in formula (22) to sele
t the ba
kward propagative, zero energy velo
ity and

propagative regimes.

interfa
e at the referen
e origin de�ned in Fig. 4. The variable l stands for the length of the transdu
er. The

other variables are the same as those de�ned in Eq. (21). The parameter values are su
h that: σx “ 0.5mm,

σy “ 10.0mm, l “ 20.0mm, zf “ ´6.0mm and nc “ 30. Be
ause the sour
e f0px, y, z, tq is not proportional to
a Gaussian fun
tion rotated by the angle θ, it does not model exa
tly a �xed transdu
er that is rotated in a

�uid. However, results are very 
lose to a unique rotated transdu
er, and the analyti
al 
al
ulations are simpler.

These values 
orrespond to a 3D transdu
er that generates a quasi-plane wave in θ-dire
tion. For the three


ases under 
onsideration, the values of θ and f0 are given in Table 2. As the angle of in
iden
e in
reases, these


ases 
orrespond to a negative group velo
ity, the ZGV 
ondition asso
iated to S1 mode, and a positive group

velo
ity respe
tively. The 
onvolution expressed by Eq. (A.12) is 
al
ulated analyti
ally.
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Figure 4: Verti
al displa
ement uz at the surfa
e of the aluminum plate for the three in
iden
e angles (see Table 2):

(a) for t “ 19µs with respe
t to x and y; (b) for y “ 0 with respe
t to x and t ; the bold signal 
orresponds to

t “ 19µs. From left to right: the ba
kward propagative, zero energy velo
ity and propagative regimes.

To perform 
al
ulations by satisfying the Nyquist 
riterion, the plate surfa
e has been sampled with x P
p´60 .. 60mm, 270s and y P p´60 .. 60mm, 16s. A zero padding pro
edure is then applied to the 
al
ulated �eld

spe
trum to in
rease the de�nition of the a
ousti
 �elds. The time sampling is su
h that: t P r0 .. 20µs, 200q.
For this quasi 2D problem, the 
al
ulation time is 52

. Results are presented in Fig. 4-a, where the verti
al

displa
ements at the plate surfa
e, i.e. at z “ 0, are plotted in gray s
ale, for a �xed time t “ 19µs, for the

three spe
i�ed 
ases. In Fig. 4-b, the same displa
ement, obtained for y “ 0 and z “ 0, is shown for some

observation times versus x-positions. These graphs start at 12µs, sin
e this time is approximately when the

in
ident wave vanishes and the free regime appears. The bold 
urves 
orrespond to the �xed time of 19µs. As

expe
ted, it is 
learly observed that for the ZGV angle the guided wave does not propagate along the plate, but

the transmitted beam is 
on
entrated in the plate under the in
ident beam, whi
h insoni�es the plate around

x “ 0. For the other two angles, the guided waves propagate to the left or to the right in agreement with the
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dire
tion of the group velo
ity. Of 
ourse for any angle of in
iden
e, as time in
reases, the wave amplitude

de
reases more or less due to radiation leakage into the water.

4.3 Plate made of 8 sta
ked 
arbon-epoxy layers immersed in water

As a �nal example, let us inspe
t the response of a multilayered plate immersed in water. The plate 
onsists of

eight sta
ked 
arbon-epoxy layers. Ea
h layer is made of the 
arbon-epoxy 
omposite des
ribed in se
tion 4.1,

for whi
h vis
oelasti
ity is taken into a

ount by Eq. (20). Its thi
kness is 3.6mm. The rotation sequen
e is as

follows: [0°/135°/90°/45°/0°/135°/90°/45°℄.

Figure 5: Relative amplitude of the radial sour
e de�ned by Eq. (23), distributed in length and depth.

To analyze the method possibilities in a new 
ontext, the sour
e now represents a line radial impulse lo
ated

inside the plate. It is distributed horizontally and with depth, as shown in Fig. 5, and is invariant in the

y-dire
tion. It is 
entered at depth z6 “ 21.6mm and has a half width of about the thi
kness of one layer, and

therefore extends over four layers.

Although partial waves 
an exhibit three non-zero 
omponents, the problem is then redu
ed to a 2D spa
e

problem. The sour
e expression, in agreement with the de�nition given in Eq. (1), is su
h that:

fβpx, y, z, tq “ exp

«
´x2 ` pz ´ z6q2

2 σ2

ff
exp

ˆ
´ t2

2 σ2
t

˙ `
x 0 z ´ z6

˘T
, (23)

with σ “ 1.5mm and σt “ 0.25µs. The value of the parameter σ has been 
hosen to expand the initial for
e only

on the four layers identi�ed by β “ 5, 6, 7, 8. The lateral position is sampled with x P p´250 .. 250mm, 370s. The

onvolution (A.12) is 
al
ulated by using a trapezoidal rule with the following sampling z P r15.6 .. 27.6mm, 101s.
From a numeri
al point of view, be
ause the ex
itation 
ontains null frequen
y in this 
ase, it is 
ru
ial to deal

with vis
oelasti
ity 
orre
tly. As a matter of fa
t, non-respe
t of 
ausality 
an provide errors in 
al
ulating

waveform. The two proposed models do not exhibit the same behavior in this regard, sin
e the model de�ned

by Eq. (20) is not 
ausal, while using Eq. (19) ensures 
ausality. This non-
ausality 
omes from the model

behavior at low frequen
ies. Let us sample time by t P r0 .. 40µs, 240q. This sampling is optimal to respe
t the

Nyquist-Shannon theorem, using the same rule as before. The waveforms must therefore be well 
al
ulated.

However, this is not the 
ase for the non-
ausal model, as shown in Fig. 6-b-1, where waveforms are a
quired

at position p0, 0.6q in the xz-plane. Comparing the non-dissipative plate (solid line) to the dissipative plate

(dashed line), reveals substantial di�eren
es. Indeed, adverse e�e
ts appear for long times, where the signal

amplitude in
reases exponentially. Let us give the explanation. Non respe
t of 
ausality generates nonzero

signal amplitude for low negative times. Consequently, the periodization inherent in spe
tral dis
retization


reates a 
opy of this signal at times 
lose to the end of the observation window. After pro
essing with the

Lapla
e inversion algorithm, this 
ontribution is 
onverted to an exponential in
rease that starts after 30µs. To

avoid this problem, it is then ne
essary to in
rease the observation window as well as the number of points. As

a 
onsequen
e, time is now sampled with t P r0 .. 60µs, 360q. The 
orre
ted waveform, for whi
h the last 20µs

are ignored, is plotted in Fig. 6-b-1 (pointed line). This 
urve is not identi�able be
ause the observation point
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Figure 6: (a) Verti
al displa
ement uz for t “ 2, 6, 10 and 35µs, for a hystereti
 dissipation law and 
omputed with

the "in
reased" time window. (b)-2,3 Signals for the dissipative plate (solid line) and for the non-dissipative plate

(dashed line); these signals are 
omputed at the positions indi
ated by light (yellow) dots in the 
orresponding �gures

(a). (b)-1 A third signal plotted with a half-dashed line 
orresponds to the dissipative plate and the "non-in
reased"

time window, and reveals the behavior of the numeri
al artifa
t growing exponentially over time. (b)-4 Verti
al

displa
ement uz at t “ 35µs, 
omputed using the "non-in
reased" time window: a numeri
al artifa
t 
an be observed

due to non-respe
t of 
ausality; it is maximal at the lo
ation of the sour
e term and at the end of the time window.

is very 
lose to the sour
e, and there is therefore no di�eren
e between dissipative and non-dissipative plate

responses.

Let us now examine all the results for this dissipative 
ase. They are presented in Figs. 6-a-1 to 6-a-4, where

images of verti
al displa
ement uz are shown at four �xed times (t“2, 6, 10, 35µs). As time in
reases, leaky

Lamb waves are seen to form. These guided waves 
reate line wavefronts that radiate energy in water. In

addition, for the longest time, the displa
ement �eld uz, 
al
ulated with the non-mat
hed sampling, is shown

in �g. 6-b-4. The artifa
t mentioned above appears at the lo
ation of the sour
e. In order to appre
iate

the vis
oelasti
 e�e
ts better, three waveforms a
quired at three �xed positions in the xy-plane are plotted

in Figs. 6-b-1 to 6-b-3. The three positions are lo
ated at: p0, 0.6q, p2.72, 1.25q and p6.66, 2.75q and they are

identi�ed by light (yellow) dots in Figs. 6-a-1 to 6-a-4. The waveforms obtained for non-dissipative plate (solid

line) are 
ompared with those 
al
ulated for dissipative plate (dotted line). Clearly, the vis
oelasti
 e�e
ts are

not really important in 
omparison with results des
ribed in se
tion 4.1. This is be
ause the spe
tral 
ontent is

mainly 
on
entrated at low frequen
ies.

Beyond these expe
ted physi
al observations, this study illustrates the e�
ien
y of the method whi
h 
omputes,

in a reasonable time, the exa
t a
ousti
 response to an extended sour
e in a multilayered immersed plate. This

plate may or may not be vis
oelasti
. Indeed, with this sampling, to 
al
ulate the a
ousti
 �eld in the xy-plane

and at any time, 252
(382

for vis
oelasti
 plate) are ne
essary. To 
on
lude this se
tion, it is of great interest to

note that, by setting a low value for σ, the spatial Green tensor 
an be 
al
ulated without any spe
ial e�orts.
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In future work, this possibility will be used to study the di�ra
tion of guided waves by defe
ts.

5 Con
lusion and prospe
ts

We have adapted an existing method, too little used in ultrasoni
s, for 
omputing ultrasoni
 sour
e intera
tions

with multilayered plates, based on time analysis using the Lapla
e transform. This method provides a useful tool

whi
h 
omplements the mu
h used te
hnique based on generalized Lamb wave de
omposition. By avoiding mode

analysis � whi
h 
an be problemati
 in some 
ases � exa
t numeri
al 
al
ulations 
an be made in a relatively

short time for immersed plates and vis
oelasti
 layers. Even for 3D 
ases, numeri
al 
osts are relatively low.

These 
al
ulations will be used to develop the topologi
al imaging of defe
ts deeply hidden at sub-sour
e positions

in multilayered stru
tures. The topologi
al imaging method is based on intera
tions between two 
al
ulated

�elds, derived from the so-
alled dire
t and adjoint problems (e.g., [3, 5, 22℄, and [25, 27℄ in geophysi
s). The

tool that we develop will be of prime interest to image defe
ts in 3D 
omposite materials in quasi-real-time,

both along the plate and normal to the surfa
e.

There are no spe
i�
 restri
tions 
on
erning the size and the spe
trum width of sour
es, ex
ept, of 
ourse,

Shannon's sampling 
onditions. As a result, the Green tensor 
an be 
al
ulated without additional e�orts and


an be used to build a Boundary Element Method. This possibility has been su

essfully 
onsidered for modeling

the intera
tion of planar defe
ts in layered waveguides with a transient in
oming wave [15℄. An extension is now

underway to build a Diri
hlet-to-Neumann operator that will enable this tool to be 
oupled with a 
ommer
ial

Finite Elements software.
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Appendix A On the use of the Green tensor of an in�nite anisotropi


medium, in the pk, z, sq-domain

A.1 General 
onsiderations

A sour
e emitting in the medium labeled β and lo
ated between z “ zmin and z “ zmax is represented by the

following term:

fβpx, z, tq “
ż zmax

zmin

δpz ´ ζq fβpx, ζ, tq dζ . (A.1)

In the pk, z, sq-domain, the response of the medium, 
onsidered as an in�nite spa
e, is expressed as follows:

Ũpzq “
ż zmax

zmin

G̃pz ´ ζq F̃βpζq dζ . (A.2)

where G̃ denotes the Green tensor.

In the pk, kz, sq-domain, the Green tensor is simply expressed as follows:

Ĝ “ Â´1 , where Â “
“
ρ s2I`pK˛Kq

‰
“
 
ρ s2I ` pk˛kq ` kz

“
pn˛kq`pk˛nq

‰
`k2

z pn˛nq
(
, (A.3)

and is ne
essarily holomorphi
 on the 
omplex half-plane Repsq ą 0.

A.2 Green tensor in the pk, z, sq-domain

The following Fourier transform yields the Green tensor in the pk, z, sq-domain:

G̃pzq “ 1

2 π

ż `8

´8

expp´i kz zq Âpk, kz, sq´1
dkz, (A.4)

The determinant of the matrix Âpk, kz, sq de�ned by Eq. (A.3) is a polynomial fun
tion of s2 (third degree)

and kz (sixth degree) with real 
oe�
ients and is usually named the �Christo�el polynomial �. Consequently,

the Green tensor Ĝpk, ‚, sq has exa
tly six poles kz,ipk, sq in the 
omplex plane, whi
h are 
ontinuous fun
tions

of the Lapla
e variable s.

If Repsq ą 0, kz,ipk, sq 
an never be a real number be
ause the matrix Âpk, kz, sq´ρ s2I is real-valued symmetri


positive-de�nite if kz is also a real number.

If s is a positive real number, the matrix Âpk, kz, sq is real-valued symmetri
 positive-de�nite, and the verti
al

wavenumbers kz,ipk, sq ne
essarily appear in 
omplex 
onjugate pairs. Thus, there are three wavenumbers with

a positive imaginary part (i“1, 2, 3), and three with a negative imaginary part (i“4, 5, 6).
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This latter property 
an be extended to s values in the half-plane Repsq ą 0 be
ause the imaginary part of

kz,ipk, sq is a 
ontinuous fun
tion of s whi
h 
annot be zero on the 
omplex half-plane Repsq ą 0.

Furthermore, Ĝpk, kz, sq ∼

kzÑ˘8
k´2

z pn ˛ nq´1
.

A

ordingly, by applying the residue theorem on an half-disk of radius tending to in�nity, the Green tensor 
an

be expressed as follows:

G̃pzq “

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

3ÿ

i“1

expp´i kz,i zq B̃i if z ă 0 pupgoing wavesq

6ÿ

i“4

expp´i kz,i zq B̃i if z ą 0 pdowngoing wavesq
(A.5)

Furthermore, if the Green tensor asso
iated to the verti
al stress is introdu
ed as follows:

T̃pzq “ ´i pn ˛ kq G̃pzq ` pn ˛ nq BzG̃pzq ; (A.6)

it 
an be demonstrated that G̃ and T̃ satisfy the following ordinary di�erential system:

Bz

„
G̃pzq
T̃pzq


“
„

i pn˛nq´1pn˛kq pn˛nq´1

ρ s2 I ` pk˛kq ´ pk˛nq pn˛nq´1pn˛kq i pk˛nq pn˛nq´1



looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon
S

„
G̃pzq
T̃pzq


´ δpzq

„
O

I


(A.7)

Consequently, the six 
omplex verti
al wavenumbers kz,i are the eigenvalues of the matrix iS, proportional to

the so-
alled �Stroh Matrix � [24℄. They are asso
iated to eigenve
tors ξi su
h that:

„
G̃pzq
T̃pzq


“

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

3ÿ

i“1

expp´i kz,i zq ξi q
T

i if z ă 0 pupgoing wavesq

6ÿ

i“4

expp´i kz,i zq ξi q
T

i if z ą 0 pdowngoing wavesq
(A.8)

where the 3D ve
tors qi satisfy the following invertible linear system of 18 equations with 18 unknowns:

3ÿ

i“1

ξi q
T

i ´
6ÿ

i“4

ξi q
T

i “
„
O

I


. (A.9)

A.3 Response to an extended sour
e

The response to an extended sour
e lo
ated between z “ zmin and z “ zmax is obtained by 
ombining Eqs. (A.2)

and (A.8):

H̃pzq “
„
Ũpzq
Σ̃zpzq


“
ż zmax

maxpz,zminq

3ÿ

i“1

expr´i kz,i pz ´ ζqs ξi q
T

i F̃βpζq dζ`
ż

minpz,zmaxq

zmin

6ÿ

i“4

expr´i kz,i pz ´ ζqs ξi q
T

i F̃βpζq dζ .

(A.10)

An observation point between zmin and zmax re
eives both upgoing waves from the part of the sour
e below the

point and downgoing waves from the part of the sour
e above the point:

H̃pzq “
6ÿ

i“1

αipzqξi , zmin ă z ă zmax , (A.11)
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where

αipzq “

ˇ̌
ˇ̌
ˇ̌
ˇ̌

qT

i

ż zmax

z

expr´i kz,i pz ´ ζqs F̃βpζq dζ , i“1, 2, 3 ;

qT

i

ż z

zmin

expr´i kz,i pz ´ ζqs F̃βpζq dζ , i“4, 5, 6 .

(A.12)

The αipzq term represents the 
ontribution to the wave number i of the part of the sour
e either below the

observation point (upgoing waves, i“1, 2, 3) or above the observation point (downgoing waves, i“4, 5, 6).

For an observation point above the sour
e (z ď zmin), only upgoing waves 
ontribute to the radiated �eld:

H̃pzq “
3ÿ

i“1

αipzminq expr´i kz,i pz ´ zminqs ξi , (A.13)

while for an observation point below the sour
e (z ě zmax), only downgoing waves 
ontribute:

H̃pzq “
6ÿ

i“4

αipzmaxq expr´i kz,i pz ´ zmaxqs ξi . (A.14)
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