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a b s t r a c t

In this work, the phenomenological viscoplastic DSGZ model (Duan et al., 2001 [13]), developed for
glassy or semi-crystalline polymers, is numerically implemented in a three-dimensional framework,
following an implicit formulation. The computational methodology is based on the radial return mapping
algorithm. This implicit formulation leads to the definition of the consistent tangent modulus which
permits the implementation in incremental micromechanical scale transition analysis. The extended
model is validated by simulating the polypropylene thermoplastic behavior at various strain rates (from
0.92 s�1 to 258 s�1) and temperatures (from 20 °C to 60 °C). The model parameters for the studied
material are identified using a heuristic optimization strategy based on genetic algorithm. The cap-
abilities of the new implementation framework are illustrated by performing finite element simulations
for multiaxial loading.

1. Introduction

Semi crystalline polymers are well known to exhibit a rate and
temperature dependent behavior. With the increase interest for
this kind of materials, in particular in the automotive industry,
many phenomenological models have been developed
[29,5,10,21,12,16,23,3,36,4,1] in order to take into account these
properties. Many studies have also been performed to identify the
evolution of damage in polymers and polymeric composites
[25,26,37,2].

Several researches have proposed models to account for the
viscoplastic behavior of polymers and they have developed
appropriate implementation techniques for numerical calculations
[32,28,31]. Some of the modeling efforts are focusing on semi-
crystalline [39], glassy [35] or amorphous polymers [15].

Among the modeling efforts, the DSGZ model developed initi-
ally by [13] shows very interesting features and capabilities for
viscoplasticity of polymers. Indeed, the DSGZ formulation is based
on four previous models and it is able to trace different types of
polymer behavior as the yielding and the hardening or softening of
polymers.

Its initial one-dimensional form has been extended in
3 dimensions and implemented numerically following an explicit
formulation [14]. The purpose of this paper is to propose for the
first time a new, numerically implicit, formulation of the three-
dimensional DSGZ phenomenological viscoplastic model and to
implement it in the finite element software ABAQUS. Such an
implementation allows us to use the DSGZ model as a constitutive
model for matrix material in an incremental micromechanical
analysis of glass fiber reinforced thermoplastic composites. Indeed,
such homogenization schemes require the expression of the tan-
gent modulus. This requirement is fulfilled using an implicit
numerical integration scheme to compute the consistent tangent
modulus at every step of the analysis by integrating the strain rate
and the temperature effect on the matrix.

To perform numerical studies, appropriate DSGZ model para-
meters are identified experimentally on a thermoplastic material,
namely polypropylene (PP), at different strain rates and tempera-
tures. Certain methodologies have been proposed in the literature
to identify viscoelastic/viscoplastic material parameters for poly-
mers [22,40]. In this work, the parameter identification is achieved
using a genetic algorithm coupled to gradient-based methods,
which was applied successfully for shape memory alloys [34,8].
The experimental identification and validation of the model are
based on thermomechanical tensile tests. Then its capability to
simulate multiaxial loading is demonstrated.
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This paper is structured as follows: the first part is dedicated to
a brief reminder of the background of this interesting model. The
second part presents the numerical implicit formulation and the
computation of the consistent tangent modulus, allowing the
formulation of an algorithm for the finite element code ABAQUS.
The next part focuses on two aspects: the identification of the
model parameters for polypropylene material (PP) and the
experimental validation by comparison with stress–strain curves
obtained at different strain rates and temperatures. The fourth part
of this paper is devoted to the application of the model by simu-
lating multiaxial tensile-shear loading cases. These simulations are
performed for 6 strain rates and 3 temperatures. Finally, the last
part is dedicated to the application of the model on a dynamic load
simulation. The aim of this part is to illustrate the capability of the
implemented implicit model to be utilized for structural FE
analysis.

2. DSGZ model background

The DSGZ is a viscoplastic phenomenological model developed
for glassy or semi-crystalline polymers. It has the advantage to
take into account the effect of the strain ε, the strain rate _ε, the
temperature T, the softening and the hardening. According to the
initial DSGZ constitutive law, the stress, σ, is given by

σðε; _ε; TÞ ¼ K fðεÞþ qðε; _ε; TÞ�fðεÞ½ �rðε; _ε; TÞ½ �hð _ε; TÞ; ð1Þ

with

fðεÞ ¼ e�C1εþεC2
� �

1�e�αε� �
; hð _ε; TÞ ¼ _εmea=T ;

qðε; _ε; TÞ ¼ εe 1�ðε=C3hð _ε ;TÞÞ½ �
C3hð _ε; TÞ

; rðε; _ε; TÞ ¼ e lnðhð _ε ;TÞÞ�C4½ �ε; ð2Þ

where K, C1, C2, C3, C4, a, α and m are the model constants.
Eq. (1) is based on four previously developed models, namely

the Johnson–Cook, the G'Sell–Jonas, the Matsuoka, and the Brooks
models. The model proposed by [6] is a constitutive law for
dynamically recrystallizable materials. DSGZ model adopts a
similar structure to Brooks model but the functions f, q, h and r are
different. G’Sell and Jonas [17] developed a phenomenological
model for semi-crystalline polymers, which has the advantage of
integrating the effects of viscoelasticity and viscoplasticity in a
single equation. This aspect is taken into account in the DSGZ
model through the term hð _ε; TÞ. Johnson and Cook [27] proposed a
simple model to describe the plastic behavior of ductile materials.
Such behavior is integrated in Eq. (1) using the term f. Finally,
Matsuoka model [7] describes the behavior of glassy polymers. It
includes the effects of nonlinear viscoelasticity, elasticity and the
softening, but it does not account properly large deformations
mechanisms. The authors of the DSGZ model used a simplified
form of Matsuoka model to describe the behavior jump exhibited
at the yield point of glassy polymers.

It is worth mentioning that the main purpose of the present
paper is to provide a numerical formulation of a proper visco-
plastic model for polymers and the inherent tangent modulus
computation. Hence, the DSGZ model is chosen here as an illus-
trative implementation example. Further details and insights
about the mathematical formulation of the model (in particular
the strain rate, strain and temperature sensitivities of functions f,
q, h and r) and material parameters K, C1 to C4, a and α can be
found in [13,14].

3. 3D extension of the constitutive model

The one-dimensional version of the DSGZ model has been
extended to 3D by the same authors [14]. In this section the
essential points of the three-dimensional version are discussed.

In elasto-plasticity and elasto-viscoplasticity, it is customary to
separate the strain tensor, ε, into an elastic, εe, and a plastic, εp,
contribution and also to connect the stress tensor σ and the elastic
strain through the Hooke's law. In many cases, the nonlinear
nature of these materials motivates us to write these kinds of
relations in incremental or rate form [9], i.e.

_ε ¼ _εeþ _εp; ð3Þ

_σ ¼ C : ½ _ε� _εp�; ð4Þ
where C denotes the fourth order elastic stiffness tensor. This
formalism has two significant advantages:

1. It allows easier numerical implementation, since any compu-
tational scheme in elasto-plasticity and elasto-viscoplasticity
requires iterative solution (for instance, a return mapping
algorithm based on an elastic trial stress) and incremental
application of the applied loading.

2. The rate form is applicable not only in small deformation pro-
cesses but also in large strain problems. Many experimental
results in elasto-plastic materials are expressed in true (Cauchy)
stress versus true (logarithmic) strain. The expressions (3) and
(4) are very common in the case of hypoelastic materials, where
the _σ denotes an objective stress rate and _ε is the rate of
deformation [30]. Thus, the formulation (3) and (4) can be used
for the DSGZ model [13], which has been developed considering
large deformation processes.

When considering isotropic behavior for the elastic part, Eq. (4)
can be expressed as

_σ ¼ 2μ½ _ε� _εp�þ κ�2
3 μ

� �
tr _εI; ð5Þ

where tr �f g denotes the trace of a second order tensor, I is the
second order identity tensor, μ is the shear modulus and κ is the
bulk modulus. Alternatively, using Eq. (5), the deviatoric parts of
the stress and the strain

s¼ σ�1
3 trσI; e¼ ε�1

3 trεI; ð6Þ
are connected, in a rate form, using the following relation:

_s ¼ 2μ½ _e� _εp�: ð7Þ
The rate of plastic strains is defined by a relation of the form

_εp ¼ _pΛp
; ð8Þ

where _p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3½ _εp

q
: _εp� and Λp defines the direction of the plastic

flow. In classical J2 viscoplasticity, the direction tensor is given by

Λp ¼ 3
2
s
σ
: ð9Þ

The scalar quantity σ denotes the Mises equivalent stress, given as
the second invariant of s per σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2½s : s�

p
. The DSGZ model

assumes for the yield criterion1

Φpðσ;p; _p; TÞ ¼ σ�σyðp; _p; TÞr0; ð10Þ
where σy is provided by (11) by substituting the strain and strain
rate with p and _p correspondingly

σyðp; _p; TÞ ¼ K fðpÞþ qðp; _p; TÞ�fðpÞ½ �rðp; _p; TÞ½ �hð _p; TÞ; ð11Þ

1 In the extended version of the model [14], the authors included the hydro-
static pressure in the yield criterion. In such case a generally formulated require-
ment Φpðσ; p; _p ; TÞr0 is needed.



with

fðpÞ ¼ e�C1pþpC2
� �

1�e�αp� �
; hð _p; TÞ ¼ _pmea=T ;

qðp; _p; TÞ ¼ pe 1�ðp=C3hð _p ;TÞÞ½ �
C3hð _p; TÞ

; rðp; _p; TÞ ¼ e lnðhð _p ;TÞÞ�C4½ �p: ð12Þ

4. Implicit numerical implementation

The numerical procedure discussed herein considers iso-
thermal processes. In the case of coupled thermomechanical
loading, one should also consider thermal strain and the correla-
tion between thermal and mechanical energy through the first law
of thermodynamics.

The computational implementation of a nonlinear material in a
structure and the numerical solution through a finite element
framework is usually based on the strain-driven return mapping
algorithm [38]. The procedure is described as follows:

1. In the first step, the plastic strains are considered not to evolve
and only generation of elastic strains occurs (elastic prediction
step). Thus, during this step the strain increment provided by
the finite element analysis is assumed to be elastic ( _ε ¼ _εe).

2. In the second step, the total strain is assumed fixed, and the
error in the stress is corrected by developing plastic strains
(plastic correction step). Thus, during this step _εp ¼ _pΛp.

The second step requires the numerical integration of the evolu-
tion equations for the plastic strains and the identification of the
tangent modulus that is necessary for the finite element frame-
work. Different implementation methodologies exist, and several
of these are discussed in detail in the literature of nonlinear
materials (see for instance [38] for plastic and viscoplastic materi-
als, or [41,19] for shape memory alloys). For generally anisotropic
material response, one could implement either the convex cutting
plane or the closest point projection algorithm. Here, due to the
isotropic material behavior, the radial return mapping is utilized for
the DSGZ model. This algorithm is robust, efficient and provides
the consistent tangent modulus [43].

4.1. Preliminaries

In a backward Euler fully implicit numerical scheme, the value
of a given quantity x is updated from the previous time step n to
the current nþ1 per xðnþ1Þ ¼ xðnÞ þΔxðnþ1Þ. Such an implicit rela-
tion is usually solved iteratively, and the current value is updated
for each iteration by xðnþ1Þðkþ1Þ ¼ xðnþ1ÞðkÞ þδxðnþ1ÞðkÞ until xðnþ1Þ

has converged. Obviously Δxðnþ1Þðkþ1Þ ¼Δxðnþ1ÞðkÞ þδxðnþ1ÞðkÞ.
Using the Backward Euler framework, Eq. (4) is written in

incremental form at time step nþ1 as

Δσðnþ1Þ ¼ C : Δεðnþ1Þ �Δεpðnþ1Þ� �
: ð13Þ

In an incremental-iterative form, the plastic prediction step states
that the stress during the current loading increment nþ1 and at
the end of each iteration kþ1 is given as

σðnþ1Þðkþ1Þ ¼ σðnÞ þC : Δεðnþ1Þ �Δεpðnþ1Þðkþ1Þ
h i

: ð14Þ

In the above expression, it is worth noticing that during the plastic
prediction step the iteration increment ðkþ1Þ of the total strain
does not evolve. Recall that for each loading step, the time incre-
ments ðnþ1Þ of the total strain and temperature are supplied by
the global solver and are thus known. This means that during the
iterative correction, the total current strain and the temperature

are kept constant, i.e.

δεðnþ1ÞðkÞ ¼ 0; δT ðnþ1ÞðkÞ ¼ 0: ð15Þ
It is the role of the plastic prediction algorithm to find the current
stress, which may require the integration of the evolution Eq. (8)
for εp. If Eq. (10) is satisfied for null effective plastic strain rate, the
elastic solution given by the elastic prediction step is accepted as
correct and is returned to the global finite element solver for the
next time increment. However, if this is not the case, evolution of
the applicable inelastic internal variables via the plastic prediction
is needed. The process completes when Φp is sufficiently close
to zero.

The scalar-valued internal variable upon which the return
mapping algorithm is based is iteratively written as

_pðnþ1Þðkþ1Þ ¼ _pðnþ1ÞðkÞ þδ _pðnþ1ÞðkÞ;

δpðnþ1ÞðkÞ ¼ δ _pðnþ1ÞðkÞΔt;

Δpðnþ1Þðkþ1Þ ¼ _pðnþ1Þðkþ1ÞΔt ¼Δpðnþ1ÞðkÞ þδ _pðnþ1ÞðkÞΔt; ð16Þ
where Δt is the increment of time.

4.2. Radial return mapping

Using the backward Euler method, the necessary system of
equations for the plastic prediction at time step nþ1 is written as

Δpðnþ1Þ ¼ _pðnþ1ÞΔt; Λp ¼ 3
2
η;

Δεpðnþ1Þ ¼ 3
2
_pðnþ1ÞΔtηðnþ1Þ; ηðnþ1Þ ¼ sðnþ1Þ

σ ðnþ1Þ;

Δsðnþ1Þ ¼ 2μ Δeðnþ1Þ �Δεpðnþ1Þ� �
;

Δσðnþ1Þ ¼Δsðnþ1Þ þκtrðΔεðnþ1ÞÞI;
Φpðnþ1Þ ¼ σ ðnþ1Þ �σðnþ1Þ

y r0: ð17Þ

In order to solve numerically Eqs. (17), the known trial quantities

Δstrialðnþ1Þ ¼ 2μΔeðnþ1Þ; Δσtrialðnþ1Þ ¼Δstrialðnþ1Þ þκtrðΔεðnþ1ÞÞI;
ð18Þ

and

Φptrialðnþ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
½strialðnþ1Þ : strialðnþ1Þ�

r
�σðnÞ

y ¼ σ trialðnþ1Þ �σðnÞ
y ; ð19Þ

are defined. Combining Eqs. (17) and (18) and given that strialðnÞ ¼
sðnÞ and σtrialðnÞ ¼ σðnÞ, it can be easily demonstrated that

strialðnþ1Þ ¼ sðnÞ þ2μΔeðnþ1Þ ¼ sðnþ1Þ þ2μΔεpðnþ1Þ

¼ σ ðnþ1Þ þ3μ _pðnþ1ÞΔt
h i

ηðnþ1Þ;

σðnþ1Þ ¼ σtrialðnþ1Þ �3μ _pðnþ1ÞΔtηðnþ1Þ: ð20Þ
From (20) and (17), it becomes clear that strialðnþ1Þ and sðnþ1Þ have
the same direction. This leads to the identification of ηðnþ1Þ as

ηðnþ1Þ ¼ strialðnþ1Þ

σ trialðnþ1Þ; ð21Þ

where

σ trialðnþ1Þ ¼ σ ðnþ1Þ þ3μ _pðnþ1ÞΔt: ð22Þ
When plastic strains are developed,Φpðnþ1Þ ¼ 0. Using Eq. (22), the
yield criterion and the evolution equation presented in (17) pro-
duce the nonlinear system of equations

Φpðnþ1Þ ¼ σ trialðnþ1Þ �3μ _pðnþ1ÞΔt�σðnþ1Þ
y ¼ 0;

pðnþ1Þ ¼ pðnÞ þ _pðnþ1ÞΔt: ð23Þ
Eqs. (23) are solved using the Newton–Raphson scheme. In the
Newton–Raphson an additional incremental step mn is introduced



and the equation

_pðnþ1Þðmn þ1ÞΔt ¼ _pðnþ1ÞðmnÞΔt�Φpðnþ1ÞðmnÞ

Φp0 ðnþ1ÞðmnÞ;

with

Φpðnþ1ÞðmnÞ ¼ σ trialðnþ1Þ �3μ _pðnþ1ÞðmnÞΔt�σðnþ1ÞðmnÞ
y ;

Φp0 ðnþ1ÞðmnÞ ¼ 1
Δt

∂Φpðnþ1ÞðmnÞ

∂ _pðnþ1ÞðmnÞ ¼ � 3μþhðnþ1ÞðmnÞ
h i

;

and

hðnþ1ÞðmnÞ ¼ ∂σðnþ1ÞðmnÞ
y

∂pðnþ1ÞðmnÞ þ
∂σðnþ1ÞðmnÞ

y

∂ _pðnþ1ÞðmnÞ
1
Δt

;

is solved iteratively. The internal variable p is also updated at each
increment, using the formula

pðnþ1Þðmn þ1Þ ¼ pðnÞ þ _pðnþ1Þðmn þ1ÞΔt:

When jΦpðnþ1ÞðmnÞ j is less than a tolerance the iterative scheme
ends, the stresses are computed from (20)2 and the plastic strains
from the relation

εpðnþ1Þ ¼ εpðnÞ þ3
2
_pðnþ1ÞΔtηðnþ1Þ:

4.3. Consistent tangent modulus

The consistent elasto-viscoplastic tangent modulus is now
computed by linearizing the return mapping algorithm detailed in
the previous subsection. At time nþ1 it can be shown [11] that

∂Δσðnþ1Þ

∂Δεðnþ1Þ ¼ λnI � Iþμn I� IþI� I
� �

þ h

1þ h
3μ

�3μn

2
664

3
775ηðnþ1Þ � ηðnþ1Þ; ð24Þ

with

μn ¼ μ
σðnþ1Þ
y

σ trialðnþ1Þ; λn ¼ κ�2
3
μn; h¼ ∂σðnþ1Þ

y

∂pðnþ1Þ þ
∂σðnþ1Þ

y

∂ _pðnþ1Þ
1
Δt

: ð25Þ

Moreover, the symbols I� I and I� I are fourth order tensors and
express the two special dyadic products of the identity tensor,
defined in indicial notation as

½I� I�ijkl ¼ δikδjl; ½I� I�ijkl ¼ δilδjk; ð26Þ
where δij is the Kronecker delta tensor. Details on the derivation of
(24) are given in Appendix A. The computational algorithm for the
radial return mapping is provided in Table 1.2

In the described algorithm, the derivatives of the yield stress σy
with regard to the scalar plastic quantities p and _p are required.
For the DSGZ model given by (11), these derivatives are expressed
as

∂σy

∂p
¼ K

∂f
∂p

þ q

p
� q

C3h
� ∂f
∂p

� �
rþ½q�f�r

p
ln r

� �
h;

∂σy

∂ _p
¼ Km

_p
q

p
C3h

�1þp
� �

�fp
� �

rhþmσ
_p
; ð27Þ

where

∂f
p
¼ �C1e�C1pþC2pC2 �1� �

1�e�αp� �þ e�C1pþpC2
� �

αe�αp: ð28Þ

Remark The numerical stability of the radial return mapping
algorithm is guaranteed if the yield criterion Φp is convex with
regard to its arguments [43]. In the DSGZ model however the
convexity could not be ensured for specific choice of material
parameters. Nevertheless, in all the analyses performed in this
work no numerical convergence issues raised.

5. Experimental identification and validation for poly-
propylene material

The radial return mapping algorithm presented above has been
implemented in the finite element program ABAQUS standard
using a user defined subroutine UMAT (details for developing such
routines can be found in [42]).

Experimental tensile tests have been performed to identify the
model parameters. Simulations with the developed ABAQUS sub-
routine are compared with the experimental tests and with the
analytical results using the 1-D model.

5.1. Experimental procedure and material description

Tensile tests at different strain rates and temperatures were
conducted upon a servo hydraulic test machine on a thermoplastic
polymer, namely polypropylene, which has glass transition tem-
perature Tg¼0 °C and Young modulus at room temperature
E¼ 1680 MPa. The high-speed test machine can reach a crosshead
speed range from 10�3 m s�1 (quasi-static) to 20 m s�1. A high
speed camera (FASTCAM-APX RS), with the capacity 250,000 frames
per second, is utilized to follow the deformation of the specimens
surface. Strain is measured using the high speed camera through a
contactless technique: two points are marked on the surface of the
specimens defining the initial gauge length which is about 10 mm.
Image analysis is then performed in order to follow the displacement
of the centroid of each marker point and compute the evolution of
the strain between these two points. Using the procedure described
in [33], the true (Cauchy) stress and true (logarithmic) strain can be
determined by the engineering stress, σn, and strain, εn, respectively
as follows:

ε¼ lnð1þεnÞ; σ ¼ σnð1þεnÞ: ð29Þ

Additionally, strain rate can be easily determined from the slope of
the linear part of the strain evolution vs. time diagram. The dimen-
sions of the test specimens used are shown in Fig. 1.

Table 1
Return mapping algorithm (radial return mapping) for the DSGZ model.

(1) At time n all the quantities are known.
(2) At time nþ1 use the equilibrium equations and the constitutive relations

to identify the total strains εðnþ1Þ .
(3) Compute the elastic stiffness tensor, the trial stresses σtrialðnþ1Þ , the trial

elastic strains εe trialðnþ1Þ ¼ εeðnÞ þΔεðnþ1Þ and the trial plastic strains
εp trialðnþ1Þ ¼ εpðnÞ .

(4) Check the trial yield criterion Φp trialðnþ1Þ .
If Φp trialðnþ1Þr0, exit.
If Φp trialðnþ1Þ40, proceed to the next step.

(5) (a) Initialize by setting _p ðnþ1Þð0Þ ¼ _p ðnÞ .

(b) Identify _p ðnþ1Þðmn þ1ÞΔt and update pðnþ1Þðmn þ1Þ .

(c) Evaluate σðnþ1Þðmn þ1Þ
y and its derivatives with respect to p and _p .

(d) If Φpðnþ1Þðmn Þ�� ��otol then proceed to step 6, else set mn ¼mnþ1 and
return to b.

(6) Update the elastic strains, the plastic strains and the stresses.
(7) Compute the consistent elasto-viscoplastic tangent modulus.

2 For the consideration of large structural rotations, the discussion of [24,20] in
the case of shape memory alloys is applicable. In this case, a computation is added
at the third step in Table 1, in which the tensorial internal variables (i.e. the elastic
and plastic strains) are properly rotated into a current reference frame for each
loading step, using a rotator tensor Q.



5.1.1. Experimental identification
The model has 8 material parameters. These parameters can be

obtained by two ways:

� By exploiting specific points on 3 different stress-strain curves
of tensile tests as presented in [13].

� By identifying through an optimization method.

In this study, the material parameters are identified by an inverse
method based on a Matlab routine that utilizes a genetic algorithm
coupled with the Levenberg–Marquart algorithm [8]. The principal
advantage of using this algorithm is to avoid local minima.

The considered cost function is expressed as follows:

CðpÞ ¼
Pnp

i ¼ 1 ðσi
thðpÞ�σi

expÞ2Pnp
i ¼ 1 ðσi

expÞ2
ð30Þ

where σth and σexp are the theoretical and the experimental stress
respectively. (p) is the parameter vector to be identified and (np) is
the number of experimental data. The identification procedure
exploits all the experimental points (200 points for each stress-
strain curve) in the plastic regime of three stress-strain curves
corresponding to quasi-static and high speed tensile tests per-
formed at two different temperatures (20 °C and 60 °C) and three
different strain rates (0.92 s�1, 24.5 s�1 and 64.77 s�1). In this
work, all part of the σ�ϵ curve are considered to be of equal
importance. Table 2 summarizes the identified parameters.

With the increase of the engineering strain, a drop on the
engineering stress is observed after the maximum stress, which is
attributed to the reduction of the specimen cross-section. Under
the assumption of material incompressibility due to viscoplastic
strains, this overall phenomenon is corrected by using the true
stress and true strain expressions (29). Nevertheless, during the
performed experiments, up to 0.3 strain level, no localization in
the deformation occurred. For larger strain levels, where local
necking is important, a different approach needs to be followed for
estimating the true stress–strain curve (see for instance [17,18] for
cylindrical specimens).

In Fig. 2, simulated curves obtained for several strain rates and
temperatures are compared to the corresponding ones from ana-
lytical 1D calculations and experiments.

The analytical results agree well with the simulated ones from
the ABAQUS computations using the proposed implicit imple-
mentation. Moreover, the simulations show good agreement with
the experimental results. Nevertheless, for higher strain rates or at
lower temperatures, an overshot appears experimentally in the
transition between the elastic and the plastic regime. This stress–
strain transition after yielding is not considered properly by the
numerical simulation. However, in the worst case, the maximum

relative difference between experimental and simulated curves
does not exceed 8% in terms of stress. The DSGZ model is funda-
mentally able to capture the softening after yielding for semi-
crystalline polymers [13,14]. In the parameter identification pro-
cedure, bigger weights for the first points of the plastic regime
would allow us to identify parameters that describe properly this
phenomenon, but would not capture accurately the overall hard-
ening response.

5.1.2. Validation
Once the parameters are identified, the validation of the model

is achieved using additional experimental results at different
strain rates and temperatures. The comparison between experi-
mental results, analytical calculations and numerical simulations is
presented in Fig. 3.

For the model validation, experimental tensile tests have been
conduced at three different temperatures (20 °C, 23 °C and 40 °C)
and three different strain rates (24 s�1, 27 s�1 and 258 s�1). The
analytical calculations and the numerical simulations exhibit the
same stress-strain response and they are both very close to the
experimental results. As expected, the model cannot capture
accurately the stress softening response which appears during the
transition between the elastic and the plastic regimes. As

Fig. 1. Specimens dimensions.

Table 2
Parameter values identified by the Matlab genetic algorithm.

C1 (–) C2 (–) α (–) m (–) a [Kelvin] K (MPa sm) C3ðsmÞ C4 (–)

0.435 1.661 201.926 0.056 1085.935 0.84 0.1 94.863

Fig. 2. Comparison between experiments utilized for material parameters identi-
fication, analytical calculations and numerical simulations.

Fig. 3. Model validation through the comparison between additional experiments,
analytical calculations and numerical simulations.



mentioned in the identification part, the DSGZ model is funda-
mentally able to capture such softening characteristic for semi-
crystalline polymers [13,14], but the parameter identification
procedure followed here reduced this characteristic due to the
equal weighting of all the points of the plastic regime. However,
the maximum relative difference between the experimental and
the simulated curves remains small and it is less than 8% in terms
of stress in the worst case.

6. Numerical applications and model implementation
capabilities

6.1. Application for tension-shear loading

In the previous section, the identification and the validation of
the constitutive law are achieved using high speed tensile tests. In
order to illustrate the capability of the developed numerical fra-
mework for multiaxial loading conditions, the proposed implicit
implementation is applied to simulate tension-shear proportional
loading paths at different rates and temperatures. Fig. 4 presents
the influence of the temperature and the strain rate on the stress
evolution of these tension-shear loading tests.

Simulations have been conducted at 6 strain rates (from 1:10�4

s�1 to 10 s�1) and 3 temperatures (20 °C, 40 °C and 60 °C). All the
test cases have been performed above the glass transition tem-
perature. For each curve, six tension/shear stress ratios have been
chosen (0, 0.2, 0.4, 0.6, 0.8 and 1). The actual stress values are
measured at 7% of total strain, which corresponds to a point in the
plastic area. In Fig. 4, the shear stress is represented as a function
of the tensile stress at different strain rates (Fig. 4a) and at dif-
ferent temperatures (Fig. 4b). The obtained curves form a load
surface as a quarter ellipse in the range of positive tensile and
shear stresses. The results are consistent and reflect the estab-
lished effects of strain rate and temperature. Indeed, as expected,
the load surface increases as the strain rate increases or the tem-
perature decreases. Thus the numerical simulations show that the
model is able to capture the multiaxial material behavior.

6.2. Structural FE analysis with the implicit implementation: impact
loading

In the previous section, the capability of the DSZG model
implementation to simulate a multiaxial behavior was demon-
strated. The present section deals with an example of FE structural
analysis using the implicit formulation to simulate the dynamic
multiaxial response of a polymer disc subjected to an impact load.
The simulation is performed according to the geometry defined in
the ASTM D3763 standard for multiaxial impact test. The latter
consists in dropping a cylindrical striker with hemispherical end
onto a clamped polymer disc [14]. Fig. 5 shows the FE model of the
multiaxial impact simulation used in ABAQUS/standard.

The striker is simulated using a rigid surface associated to a
rigid body reference point. It moves along the vertical axis with a
velocity of 2 m/s while the other degrees of freedom are set to
zero. The polymer disc is considered as a viscoplastic solid and is
discretized using 17,007 twenty-nodes quadratic brick elements
with reduced integration (C3D20R). The external edge of the disc

Fig. 4. Strain rate (a) and temperature (b) influence on stress evolution for tension-
shear loading numerical tests.

Fig. 5. FE model for ASTM D3763 multiaxial impact test.

Fig. 6. Evolution of the number of iteration with the time increment.



is clamped. The general contact model of ABAQUS uses finite
sliding with a friction coefficient between the striker and the disc.
This coefficient is set equal to 0.0001. The material parameters for
the polypropylene disc are given in Table 2. Computations are

carried out for a total time of 0.002 s split in 100 equal time
increments.

As shown in Fig. 6, the number of local iterations decreases
with the time very quickly to reach a minimum of 2 iterations for
each time increment. Fig. 9 illustrates the computed equivalent
Mises-stress distribution on the bottom of the polymer disc. The
maximum stress is located at the center of the structure, as
expected. Fig. 7 shows the evolution of the impact load as a
function of the striker displacement. Fig. 8 gives the evolution of
the viscoplastic dissipation with respect to time. Both these curves
exhibit similar trend with the results obtained by Duan et al. [14]
using explicit formulation.

7. Concluding remarks

In this paper a new, numerically implicit, three-dimensional
formulation of the DSGZ model has been proposed. It has been
implemented on the basis of the radial return mapping algorithm
as an ABAQUS User Material. The material parameters of the
model are identified on thermoplastic polypropylene. Three ten-
sile tests at different rates and temperatures allows us to find the
model parameters of this material using a Matlab genetic algo-
rithm coupled with the Levenberg–Marquardt method. The
simulation results are compared to the tensile tests at a range of
strain rates from 0.92 s�1 to 258 s�1 and temperatures from 20 °C
to 60 °C. A good agreement is observed between experiments and
simulations. However, due to the parameter identification proce-
dure (iso-weighting of all points in the plastic regime), the model
does not capture accurately the stress softening response which
appears during the transition between the elastic and the plastic
regimes. Nevertheless, the maximum relative difference between
the experimental and the simulated curves remains small (less
than 8%), which is acceptable. The model has also been applied to
simulate multiaxial proportional loading paths and to predict the
material behavior under tension-shear loading at different strain
rates and temperatures.

The advantage of the validated implicit formulation compared
to previous explicit formulations in the literature is the determi-
nation of the consistent tangent modulus that allows multiscale
modeling using an incremental micromechanical scale transition
analysis, for instance the Mori–Tanaka scheme, where the con-
stituents (matrix or inclusions) could have a thermoviscoplastic
behavior. Finally, the model capability for structural computations
has been illustrated through an impact loading numerical exam-
ple. It has been shown that, at each time step, the implicit

Fig. 7. Evolution of the impact load depending to the displacement.

Fig. 8. Evolution of the viscoplastic dissipation.

Fig. 9. Stress distribution on the bottom of the polymer disc.



formulation requires only a few iterations to achieve numerical
convergence. In a future paper, this implementation will be
included into a micromechanics scheme to predict the overall
behavior of a composite consisting of a viscoplastic polypropylene
as a matrix phase that behaves according to DSGZ model and short
glass fibers as reinforcement.

Appendix A. Consistent tangent modulus for radial return
mapping algorithm

The approach presented here for obtaining the consistent tan-
gent modulus is similar to the one presented in [43] for elasto-
plastic materials. For simplicity in the calculations, the indicial
notation and the Einstein summation are utilized. The constitutive
law is expressed in this way as

Δσðnþ1Þ
ij ¼ 2μΔεðnþ1Þ

ij þ κ�2
3
μ

� �
Δεðnþ1Þ

kk δij�2μΔεpðnþ1Þ
ij

¼ 2μΔεðnþ1Þ
ij þ κ�2

3
μ

� �
Δεðnþ1Þ

kk δij�3μηðnþ1Þ
ij

_pðnþ1ÞΔt:

ðA:1Þ
Taking the derivative with respect to Δεðnþ1Þ
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Eq. (20)1 gives
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Using Eqs. (A.4) and (A.5), Eq. (A.3) is written
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The final result of Eq. (A.6) holds, because the term ηðnþ1Þ
ij ηðnþ1Þ

pp δkl
is zero. Differentiating the numerical form of the yield criterion Eq.
(23)1 with respect to the total strain increment, yields
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From Eq. (23)2 holds
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Moreover, using Eqs. (20)1 and (A.4) yields
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Finally, using Eqs. (A.6) and (A.8), the consistent tangent modulus
Eq. (A.2) is written
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and using Eq. (23)1, the final form Eq. (24) is obtained.
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