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Abstract: In a previous investigation (Bigerelle and Iost, 2004), the authors have proposed a physical
interpretation of the instability λ = ∆t/∆x2 > 1/2 of the parabolic partial differential equations when
solved by finite differences. However, our results were obtained using integration techniques based on
erf functions meaning that no statistical fluctuation was introduced in the mathematical background.
In this paper, we showed that the diffusive system can be divided into sub-systems onto which a
Brownian motion is applied. Monte Carlo simulations are carried out to reproduce the macroscopic
diffusive system. It is shown that the amount of information characterized by the compression ratio
of information of the system is pertinent to quantify the entropy of the system according to some
concepts introduced by the authors (Bigerelle and Iost, 2007). Thanks to this mesoscopic discretization,
it is proved that information on each sub-cell of the diffusion map decreases with time before the
unstable equality λ = 1/2 and increases after this threshold involving an increase in negentropy, i.e., a
decrease in entropy contrarily to the second principle of thermodynamics.

Keywords: instability; entropy; parabolic partial differential equations; Monte Carlo simulations;
data compression; information theory

PACS: 89.70.Cf; 02.70.Bf; 05.10.Ln; 05.40.Jc

1. Introduction

Numerous physical phenomena can be modeled by partial differential equations (PDE) [1] and
there are many numerical methods for solving PDE [2,3]. The Finite Element Method (FEM) and the
Finite Volume Method (FVM) are particularly relevant to solve PDE. The FEM or FVM are mainly
useful to solve PDE in complex geometries as well as to optimize the computation times by using
different mesh sizes (or different discretization times). Among all these, the Finite Difference Method
(FDM) stands out as being universally appropriate and straightforward for solving both linear and
nonlinear problems, particularly for uniform mesh sizes and time increments. Stability criteria are
analytically easily expressed for uniform mesh sizes and time increments. As the aim of this paper
consists in analyzing criteria stability of PDE via Information theory, we deal exclusively with the
FDM [4]. To solve these PDE numerically, FDM consists in expanding all variables of the PDE in
a Taylor series on a grid at different points of the domain and to limit this expansion to the first
derivatives. Then these finite expansions are introduced into the PDE problems and finally the
algebraic system of equations is solved using adequate numerical algorithms. The main problems
raised in this method are that PDE become discretized and all differential elements do not tend to 0 but
to a fixed value that depends on the number of discretized points. However, discretization involves

Entropy 2016, 18, 155; doi:10.3390/e18040155 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 155 2 of 16

local truncation errors and all rounding errors introduced during the computation due to the finite
representation number might grow during the iterative process and leads to numerical instabilities.
A high number of mathematical tools and theorems can be used to study the stability of the system,
which we shall briefly summarize. However, no physical interpretation in term of Information theory
has ever been proposed so far. The fundamental question can be summed up as follows: “Is there a
link between the stability threshold and the quantity of information of the diffusive system at a given
scale and how to quantify this amount of information?” Brillouin [5] proved that information could be
considered as the negative of the system’s entropy called “Negentropy”. Entropy measures the lack
of information; it gives the total amount of information missing in the ultramicroscopic structure of
a system. In another scientific field, the Information theory can be a powerful tool to analyze data
compression [6,7]. The more informative, the lower the ratio of data compression is. The discretized
system will be integrally described if the size of the system after compression is minimal, regardless of
the width of the data compression of all possible algorithms. Then the size of the program becomes a
mathematical measure of negentropy. With regard to the numerous mathematical publications related
to PDE stability, we propose to study the stability of parabolic PDE. Moreover, an important category
of physical problems can easily be modeled at a microscopic scale and characterized by the Information
theory concept via data compression [8].

2. Diffusion Equations

2.1. Parabolic Differential Equations

The Parabolic PDE is given by the following mathematical definition:

Bu
Bt
´

n
ÿ

i,j

B

Bxi
ai,j
Bu
Bxj

“ f px, tq (1)

where px, tq P ΩˆIR+, Ω an open set of IRn.
These equations characterize a high number of transport phenomena such as heat transfer, viscous

fluid mechanics, transport of atoms-vacancies, Ohm law, contagious epidemics, etc. While remaining
quite general, we shall treat in this investigation the simple mono-dimensional Fick Equation [9] that
reduces Equation (1) to:

BC px, tq {Bt “ DB2C px, tq {Bx2 (2)

where C px, tq is the concentration of particles at position x after a time t and D is the diffusion
coefficient. If we impose the initial condition, C p0, 0q “ C0δ0 (explain what is δ0?) and Ω “ p´8,`8q,
then the well-known solution is obtained:

C px, tq “
C0

2
?

πDt
exp

ˆ

´
x2

4Dt

˙

(3)

This equation is in fact a Gaussian probability density function (if we substitute in Equation (3)
C0 by Equation (1) with zero mean and σ ptq “

?
2Dt standard deviation). Using Taylor’s expansion

(explicit in time and central in space), we obtain:

Cj`1
i “ Cj

i `D ∆t{ p∆xq2
”´

Cj
i´1 ´ 2Cj

i ` Cj
i`1

¯ı

(4)

where Cj
i represents the concentration at point x “ i∆x and time t “ j∆t.

Usually linear parabolic problems are solved via implicit or Crank–Nicolson’s schemes in order
to avoid paying the price of the time step restriction. Unfortunately, implicit schemes (or mixed
explicit/implicit schemes) involve that concentrations at time t` ∆ t (partially or totally) depend on
the gradients at time t` ∆t. In 1905, Einstein proposed a physical explanation of D in Equation (2) by
postulating that the concentration at time t` ∆t only depends on the concentration at time t. Then
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the explicit scheme will be retained because it is physically causal (i.e., evolution of the system only
depends on previous time). It can be noticed that microscopic simulations of diffusion mechanisms are
only explicit methods (Monte Carlo methods, Cellular automata, etc.).

2.2. Stability Study

In this Equation (4) scheme, concentration at time t ` ∆ t is calculated by means of the
concentration at time t and then the explicit scheme becomes a dynamical system. As a result, it
will be possible that this scheme becomes unstable for a set of values D ∆t{ p∆xq2. The main idea
behind stability is that a numerical process should limit the amplification of all components of the
initial condition including rounding errors, when applied exactly. The basic analysis consider the
growth of perturbations in initial data or the growth of errors introduced at mesh points at a given time
level. This mathematical philosophy seems to us to be near the theory of chaos [10] and consequently
we think that a duality exists between a mathematical interpretation and its physical representation.
There are three common methods to investigate stability: the Von Neumann method, the matrix
method, and the energy method. Using one of these three methods, it can be shown that the explicit
scheme will be stable if [4]:

λ “ D∆t{ p∆xq2 ď 1{2 (5)

2.3. Monte Carlo Simulation

The solution of the Cell-PDE could also be modeled using a Brownian motion. The discretization
of the diffusion system takes place as follows. A grid of size rx ˆ ry, rx “ ry “ 256, is constructed.
A 2D Monte Carlo (MC) simulation was used rather than a 1D one to visualize the complexity of the
discretized diffusion front. In the middle of this grid, each elementary cell is affected to the value 1 on
a length ∆x “ rx{10 (good approximation, result not shown) that represents the entity (we shall call
“particle”), which will diffuse; elsewhere, the value 0 is given (no particle). This system constitutes the
initial state at time zero (original time). Figure 1 represents this initial state (t “ 0) where black cells
represent the value “1” (particle) and white ones the value “0” (no particle).

Then, for each p particle, ns jumps are processed on the left or on the right with a probability
of 1/2 (more precisely, a jump occurs by choosing at random one particle from all particles). This
constitutes a Monte-Carlo Step (MCS). From the microscopic theory of diffusion [9], the diffusion
coefficient D can be expressed by:

D “ a2Γ{2 (6)

where Γ is the particle jump frequency of length a from one micro cell to one adjacent micro cell.
The stability condition then can be expressed by including Equation (5) into Equation (6):

∆t
p∆xq2

ď
1

a2Γ
(7)

Then, the number of jumps ns over time ∆ t is given by

ns “ Γ∆t (8)

Without any lack of generality, we shall consider D “ 1. The elementary cell size is a “ 1 (pixel
unit). Then the stability criterion becomes:

?
ns ď ∆x “ rx{10 (9)
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Figure 1. Snapshot of the Monte Carlo simulation for a grid size of 2552 at different Monte Carlo 
Steps (MCS) times (0, 10, 300, 655 (stability criterion), and 1000) and the concentration profiles under 
Gaussian approximation and given by the Monte Carlo method. 

Figure 1 represents the snapshots of the evolution of the diffusion system at different times, 
0,10, 300, 655,1000sn   MCS. The particular value 2 2(255 /10) 655sc

sn x     corresponds to the 
stability–instability threshold. Firstly, we shall verify the convergence rate of the Monte Carlo 
simulation to the Gaussian solution. Figure 1 shows also the concentration curves for different 
evolution times. The theoretical Gaussian curves given by Equation (3) are plotted for each 
concentration map. As can be observed, convergence to the Gaussian approximation is well suited if 

300sn  . Similar to these analyses, we shall develop and induce the Gaussian Probability Density 
Function approximation for the case sc

s sn n ; it becomes clear from the Monte-Carlo Simulation that 
the Gaussian PDF is an adequate assumption to model the diffusion process. 
  

Figure 1. Snapshot of the Monte Carlo simulation for a grid size of 2552 at different Monte Carlo
Steps (MCS) times (0, 10, 300, 655 (stability criterion), and 1000) and the concentration profiles under
Gaussian approximation and given by the Monte Carlo method.

Figure 1 represents the snapshots of the evolution of the diffusion system at different times,
ns “ 0, 10, 300, 655, 1000 MCS. The particular value nsc

s “ ∆x2 “ p255{10q2 “ 655 corresponds
to the stability–instability threshold. Firstly, we shall verify the convergence rate of the Monte
Carlo simulation to the Gaussian solution. Figure 1 shows also the concentration curves for
different evolution times. The theoretical Gaussian curves given by Equation (3) are plotted for each
concentration map. As can be observed, convergence to the Gaussian approximation is well suited
if ns ą 300. Similar to these analyses, we shall develop and induce the Gaussian Probability Density
Function approximation for the case ns “ nsc

s ; it becomes clear from the Monte-Carlo Simulation that
the Gaussian PDF is an adequate assumption to model the diffusion process.
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3. Quantitative Description of the System in the Area of the Information Theory

3.1. Mathematical Formalism

The system X of diffusion states is an ordered set whose dimension dimpXq “ rxry “ 2562. This
system contains sub-systems of the same dimension represented by xi with length equal to ∆x “ rx{10
and then dimpxiq “ rxry{10 “ 2562{10.

Let us note T, the nonlinear bijective algebra that transforms the system x into a system y with
y “ Tpxq. Let tAu be an algebraic set, Tmin is said tAu -maxi contractile in X if there exists one algebra
noted Tmin P tAu such that:

@x Ă X,@T P tAu , DTmin P tAu , dimpTminpxqq ď dimpTpyqq (10)

Topt is said t8u -maxi contractile in X if Topt is tAu -maxi contractile in X where tAu denoted all the
sets of all possible algebras defined by arithmetics. Regrettably, according to the Gödel incompleteness
theorem, the proposition ! Topt is said t8u -maxi contractile in pES, Ψ, Gq " is undecidable [11]
where pES, Ψ, Gq are, respectively, a vector space, the sets of all possible subspaces of ES, G a relation
from ES to ES. However, a set of tAu algebra can be built and then ! tAu -maxi contractile in X "

becomes decidable.

3.2. The Different Classes of Algebra

Run Length Encoding (RLE) is often used for data compression [12]. Each cell of the Monte-Carlo
system is encoded by one bit, representing the existence or the absence of a particle. The efficiency of
the RLE algorithm comes from the fact that selecting a cell at random, the probability that cells in the
vicinity possess the same state is high under the hypothesis that physical system is not a pure random
one (a pure random system possess the maximal statistical entropy). The algorithm counts the cells in
rows on the grid looking for runs of cells having the same state. Encoding the number of runs rather
than all individual states significantly reduces the initial size. Then we applied the Huffman algebra
based on a list of the alphabetical symbols in decreasing probability order [13] on this system. This
algebra allows us to better describe the structure of the diffusion that can be related to the probabilistic
approach to this algebra (some statistical tools are closed to those used in statistical thermodynamics).
This composition of both algebra denoted HUF ˝ RLEpXq is well adapted to describe the power laws
met in the diffusion process [8,14].

4. Results

4.1. Compression Data Analyses

In the Monte Carlo simulation, the diffusive system Xptq is composed of 10 sub-systems xiptq

with Xptq “
10
Y

i“1
xiptq. At initial time t “ 0, the cells of the sub-system x5ptq are all equal to 1 and

all the other sub-system cells are equal to 0. We shall analyze by the HUF ˝ RLE algebra the system
X and the adjacent cells of x5, i.e., x4 (or x6q that are the cells that “received” the diffusion particles
from the source located in x5. To integrate the stochastic aspect of the diffusion, 1000 simulations
are carried out. At t “ 0, we get dimpHUF ˝ RLEpXqq “ 711 and dimpHUF ˝ RLEpx4qq “ 488 and
these probability density functions are Dirac distributions (Figure 2). As it can be shown, HUF ˝ RLE
algebra is contractile on both X and x4 systems because:

dimpHUF ˝ RLEpXp0qqq ă dimpXp0qq “ 65536 and dimpHUF ˝ RLEpx4p0qqq ă dimpx4p0qq “ 6554

Then, during the diffusion process (t ą 0), dimpHUF ˝ RLEpXptqqq and dimpHUF ˝ RLEpx4ptqqq
follow Gaussian densities meaning that the stochastic variation of the Monte Carlo is detected by
the RLE and Huffman algebra. If a diffusion system is finite, the concentration C px, tq will become
a random variable that will follow a Gaussian law under a pure Brownian motion assumption [15].
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The measure of the reduced space dimension follows the same density probability function meaning
that an isomorphism exists between space dimension and the stochastic aspect of diffusion. As the
diffusion time increases, dimpHUF ˝ RLEpXptqqq increases (Figure 3): in fact, during the diffusion
process, the total entropy increases, which will decrease negentropy. The system tends to disorder and
information can be less and less reduced.
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Figure 2. Histograms of the program sizes for the system X (a–e) and the sub system x4 (f–j)
corresponding to the Monte Carlo simulation for a grid size of 2552 at different MCS times (0, 10,
300, 655 (stability criterion), and 1000). (a) Mean and standard deviation are computed and Gaussian
density is plotted.
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Figure 3. dimpHUF ˝ RLEpXptqqq and dimpHUF ˝ RLEpx4ptqqq versus the diffusion time (in MCS) for
the grid size of 2552 cells (see Figure 1). Points are means of 40 simulations.

4.2. The Relation between Stability Criteria and the Dimension of Reduced Space

Now we shall analyze the evolution of the program size for the sub-space x4. Figure 3 represents
the evolution of the program size versus diffusion time.

First the dimension increases to reach a maximum and then decreases after this threshold.
The diffusion time corresponding to this maximum is equal to tmax

HUF˝RLE “ 650˘ 30. This leads
to an important remark. Indeed, statistically:

tmax
HUF˝RLE “ nsc

s “ ∆x2 “ p255{10q2 “ 655 (11)

In the mono-dimensional diffusion problem, a PDE case gets two adjacent PDE cells that will
diffuse on this cell. We shall consider particles coming from the adjacent cell. At the original time, no
particle from the adjacent cell is present on the PDE cell and then the description of the cells can be
summarized by an algorithmic formalism to “n rep 0” and then dimpHUF ˝ RLEpx4p0qqq is minimal.
Then these particles will diffuse on the cell with respect to time. Then entropy will increase thanks to
the diffusion and the amount of information will increase therefore increasing dimpHUF ˝ RLEpx4p0qqq
until it reaches tmax

HUF˝RLE that is the stability criterion (Figure 3). When the diffusion time is higher
than the stability threshold, then dimpHUF ˝ RLEpx4ptqqq decreases. This means that there exists a link
between the PDE stability criterion and the amount of information characterized by this original tool.
We shall now give an explanation of the decrease in the dimension after the threshold criterion.

Now let us analyze very precisely this critical density function (Figure 4).
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Figure 4. Three adjacent cells x1, x2, x3 of the discretized space grid ∆x “ 1 on which mesoscopic
simulations are processed up to the instability criterion. Gaussian curves G1, G2 and G3 with standard
deviation of ∆x “

?
2Dt “ 1 (D “ 1, t “ 1{2, i.e., λ “ 1{2) are centered on each cell.

Let us now consider the x2 intervals. Concentration is the summation of all the Gaussian curves
on these intervals and the concentration on the x2 cell only results from the flux from cells x1 and x3.
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For the condition ∆x “
?

2Dt, the inflexion points of the Gaussians G1 and G3 are in the middle of the
interval x2. Then the following expressions can be stated:

B2C1,0

´

x, ∆x2{2D, ∆x
¯

{Bx2 ă 0, B2C3,0

´

x, ∆x2{2D, ∆x
¯

{Bx2 ą 0 @x P rx2 ´ ∆x{2, x2s (12)

B2C1,0

´

x2, ∆x2{2D, ∆x
¯

{Bx2 “ 0, B2C3,0

´

x2, ∆x2{2D, ∆x
¯

{Bx2 “ 0 (13)

B2C1,0

´

x, ∆x2{2D, ∆x
¯

{Bx2 ą 0, B2C3,0

´

x, ∆x2{2D, ∆x
¯

{Bx2 ă 0 @x P rx2, x2 ` ∆x{2s (14)

From Equation (2), B2Ci,j px, t, ∆xq {Bx29BCi,j px, t, ∆xq {B t and it can be concluded that 50% of dx
micro intervals (dx ! ∆x) of x2 intervals get a positive temporal gradient (BC1,0 px, t, ∆xq {Bt ą 0 and
BC3,0 px, t, ∆xq {Bt ą 0), and 50% a negative gradient (BC1,0 px, t, ∆xq {Bt ă 0 and BC3,0 px, t, ∆xq {Bt ă 0).
After the stability threshold, more than 50% of micro cells get a negative gradient. This clearly
means that particles issued from adjacent cells x1 and x3 will decrease in keeping with time,
which will decrease the configuration entropy of the system x2 contrarily to the second principle
of thermodynamics for a diffusive system. The mathematical criterion of stability of the explicit
scheme is then physically related to the production of entropy characterized by our algebra operator:
if the scheme is unstable, then the production of entropy on each discretized cell is negative and the
size of the program will decrease.

We eventually get:

B dimpHUF ˝ RLEpx4ptqqq{Bt ą 0 if
?

2Dt ă ∆x, t ą 0 (15)

B dimpHUF ˝ RLEpx4ptqqq{Bt “ 0 if
?

2Dt “ ∆x (16)

B dimpHUF ˝ RLEpx4ptqqq{Bt ă 0 if
?

2Dt ą ∆x (17)

To illustrate these partial differential equations, different system sizes are simulated using the
Monte Carlo diffusion process (from s = 250 to 1000). Then, according to Equation (11), and if assertion
! tHUF ˝ RLEu -maxi contractile in X " is true, the relation between the threshold that depends on
the system size (because the system is always decomposed into 10 sub-systems with parts of equal
length) becomes:

tmax
HUF˝RLE psq “ nsc

s psq “ ∆x2 psq “ ps{10q2 (18)

Figure 5 represents the normalized dimension obtained by dimpHUF ˝ RLEpx4ptqqq{dimpx4ptqq
for the different system sizes. The maximal values for each system size are computed and compared to
Equation (18).

As can be observed, data match to the theoretical equation meaning that whatever the system size,
the time of maximal entropy tmax

HUF˝RLE psq is obtained so that it corresponds to the stability criterion.
Thanks to statistical thermodynamics, it was shown that stability threshold corresponding to a violation
of the second principle of the thermodynamics that confirms all results shown by the Information
theory tools [16].
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Figure 5. dimpHUF ˝ RLEpx4ptqqq{dimpx4ptqq versus the diffusion time (in MCS) for different grid sizes
of cells (250, 300, . . . , 950, 1000). Values of the time tmax

HUF˝RLE are plotted (graph on the right corner)
versus the theoretical stability criterion nsc

s “ ps{10q2 given by Equation (18).

5. Two Examples of PDE

5.1. Non Constant Diffusion Coefficient

The problems treated by the information theory were investigated with a constant diffusion
coefficient. In this case, the diffusion coefficient does not depend on the position. Thus, we will treat
the following problem:

B

Bt
C px, tq “

B

Bx
D pxq

B

Bx
C px, tq (19)

For a real positive diffusion parameter D(x) that depends on the x-position, the classical explicit
first order in time and second order in space method in the one-dimensional case is stable if:

λ “
max pD pxqq∆t

p∆xq2
ď 1{2 (20)

The x-dependence of diffusion coefficient D can be due to different variations of material
properties like crystal structure, local molar concentration, vacancy gradient, etc., or external conditions
like residual stress, temperature, electrical field, chemical potential, etc.

A positive perturbation ∆apxq is introduced to the unitary jump length during the Brownian
simulation process and the mean displacement of each particle becomes 1 ` ∆apxq. By posing
apxq “ 1` ∆apxq in Equation (7), one gets Dpxq “ papxqq2 and the local stability criterion becomes:

a

nspxq ď p∆x{p1` ∆apxqqq (21)

Finally, the global stability criterion becomes:

?
ns ď min

x
p∆x{p1` ∆apxqqq (22)

A Gaussian function will be used to simulate the variation of diffusion coefficient:

∆apx, c,σq “ e
1
2 p

x´c
σ q

2
(23)
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To assess nonlinearity, the size of the system is increased and resolution map will be extended to
N = 1024 (rather than N = 256 for the previous simulations). The Gaussian is centered at 3/4 of the
diffusion map and then c = 3 ˆ 1024/4 = 768 (Figure 6).
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Figure 6. Values of ∆apx, c,σq “ exp0.5 px´ cq2 {σ2 versus x for different standard deviations σ.
These functions allow producing nonlinear PDEs involving different stability criteria

a

nspx, c,σq ď
∆x{ p1` ∆apx, c,σqq along the x position for a given pairpc,σq.

The mesh size is equal to ∆x “ 1024{8 “ 128. At t = 0, the diffusion cell is located the middle
of the map (at t = 0, xi,j = 1 @j P r1, 1024s if i belongs to i4 = [448,576] otherwise xi,j = 0). The diffusion
only occurs in the x direction. Figure 7 represents snapshots of the diffusion process for two standard
deviations. As can be observed, for the standard deviation of 112 pixels, a dissymmetry of the
concentration appears and diffusion increases on the right of the diffusion map. Contrarily, diffusion
map is symmetrical for diffusion map obtained with small standard deviation (and for high standard
deviation, i.e., greater than 220 pixels, result not shown). According to Equation (21), for very small
standard deviations, one gets:

lim
σÑ0

pnspx, c,σqq ď ∆x2 “ 1282 “ 16384,@x,@c, (24)

and for high standard deviations, one gets:

lim
σÑ8

pnspx, c,σqq ď ∆x2{4 “ 4096,@x,@c (25)

In these two cases, diffusion becomes linear and stability condition does not depend on x position.
Let us now analyze the two compression ratio, dimpHUF ˝ RLEpinptqqq{dimpinptqq, of the two

adjacent cells (i3, i5) at i4 (i3 = [320,448], i5 = [576,704]) for different values of standard deviations
(Figure 8). As can be observed, all curves present maximal values of compression leading to a MCS
time nsc

s px, c,σq that depend on the values of the standard deviations.
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Figure 7. Snapshots of the Monte Carlo simulation for a grid size of 10242 pixels at different Monte
Carlo Steps (MCS) times (50, stability criterion, 28,377). (a) σ “ 0, t = 50; (b) σ “ 0, t = 16,384; (c) σ “ 0,
t = 28,377; (d) σ “ 112, t = 50; (e) σ “ 112, t = 9938; (f) σ “ 112, t = 28,377.
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Figure 8. dimpHUF ˝ RLEpi5ptqqq{dimpi5ptqq versus the diffusion time (in MCS) for different values of
standard deviations.

From our postulate, the theoretical stability criterion is equal to
nsc

s px, c,σq “ p∆x{p1` ∆apx, c,σqqq2. Values of the theoretical stability threshold agree with
simulated values (Figure 9), meaning that our method can be applied to linear PDE with non-constant
diffusion coefficient.
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Figure 9. Plot of MCS max

HUF RLEt   versus the theoretical stability criterion  2( ) / (1 ( ))sc
sn x x a x     

given by Equation (21) for both cells i4 and i5 corresponding to maximal values of Figure 8. 

5.2. Nonlinear PDE 

The problems treated by the information theory were investigated on a linear PDE. A vast array 
of complex phenomena of motion, reaction, diffusion, equilibrium, conservation, and more lead to 
nonlinear PDE. A PDE is said to be nonlinear if the relations between the unknown functions and 
their partial derivatives involved in the equation are nonlinear. Thus, we will treat the following 
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5.2. Nonlinear PDE

The problems treated by the information theory were investigated on a linear PDE. A vast array
of complex phenomena of motion, reaction, diffusion, equilibrium, conservation, and more lead to
nonlinear PDE. A PDE is said to be nonlinear if the relations between the unknown functions and
their partial derivatives involved in the equation are nonlinear. Thus, we will treat the following
nonlinear problem:

B

Bt
C px, tq “

B

Bx
D pC px, tqq

B

Bx
C px, tq (26)

In our case, the diffusion coefficient depends on the concentration C px, tq. Lee [17] proposed
diffusion coefficients relating to the uptake of excess calcium by calcium chloride [18]. The diffusion
coefficient D takes the form:

D pC px, tqq “
D0

1` aC px, tq
(27)

where a is a coefficient that represents sur-diffusion processes (a < 0) or a sub-diffusion ones (a > 0) or
a classical diffusion ones (a = 0). In our simulations, a “ t´1, 0, 1, 2, 3, 4, 5u. The stability criterion is
given by:

λ “
max pD pC px, tqqq∆t

p∆xq2
ď 1{2 (28)

The Monte Carlo simulation is based on an explicit scheme. Jump length at time t + dt is computed
from concentration at time t (Figure 10). Too validate our hypothesis, 50 simulations are performed
with three sizes of the system: 1282, 2562 and 5122 pixels. Maximal values of the dimension are
extracted (Figure 11).
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Figure 12. Plot of MCS max

HUF RLEt   versus the theoretical stability criterion for both cells i4 and i5 

corresponding to maximal values of Figure 11 (Size = 2572) and Size = (1292, 5122). 
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Figure 10. Snapshots of the nonlinear Monte Carlo simulation for a grid size of 1292 pixels at five
Monte Carlo Steps (MCS) times with different values of a given by D pC px, tqq “ D0{ p1` aC px, tqq
and snapshots corresponding to stability criterion and their associated Monte Carlo Steps.

Entropy 2016, 18, 155 13 of 16 

 

a −1 0 1 2 3 4 

t = 5 MCS 

Instability 
Threshold 

 300 MCS 600 MCS 1000 MCS 1300 MCS 1600 MCS 2000 MCS 

Figure 10. Snapshots of the nonlinear Monte Carlo simulation for a grid size of 1292 pixels at five 
Monte Carlo Steps (MCS) times with different values of a given by      0, 1 ,D C x t D aC x t   

and snapshots corresponding to stability criterion and their associated Monte Carlo Steps. 

 
Figure 11. 5 5dim( ( ( ))) / dim( ( ))HUF RLE i t i t  versus the diffusion time (in MCS) for different 

values of diffusion coefficient      0, 1 ,D C x t D aC x t  . 

Values of the theoretical stability threshold agree with simulated values (Figure 12), meaning 
that our method can be applied to nonlinear PDE. 

Theoretical MCS time

E
xp

er
im

en
ta

l M
C

S
 t

im
e

3
0

0

4
0

0

5
0

0

6
0

0
7

0
0

8
0

0
9

0
0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

100

300

500
700
900

2000

4000

6000
8000

10000

30000

50000

Size
129²
257²
512²

 
Figure 12. Plot of MCS max

HUF RLEt   versus the theoretical stability criterion for both cells i4 and i5 

corresponding to maximal values of Figure 11 (Size = 2572) and Size = (1292, 5122). 

MCS Time

N
o

rm
a

liz
e

d
 D

im
e

n
si

o
n

0 22 47 78 129 231 468 1065 2616 6697 17492
0.02

0.04

0.06

0.08

0.10

0.12

0.14

a
 -1

 0

 1

 2

 3

 4

 5

Figure 11. dimpHUF ˝ RLEpi5ptqqq{dimpi5ptqq versus the diffusion time (in MCS) for different values of
diffusion coefficient D pC px, tqq “ D0{ p1` aC px, tqq.

Values of the theoretical stability threshold agree with simulated values (Figure 12), meaning that
our method can be applied to nonlinear PDE.
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Figure 12. Plot of MCS tmax
HUF˝RLE versus the theoretical stability criterion for both cells i4 and i5

corresponding to maximal values of Figure 11 (Size = 2572) and Size = (1292, 5122).



Entropy 2016, 18, 155 14 of 16

6. Discussion

To summarize, the mathematical criterion of stability λ “ ∆t{∆x2 ą 1{2 of the explicit scheme
leads to an unstable scheme due to the decrease of information versus time characterized by the
reduction size of the system on each discretized cell of the whole system. In the stability vision of Von
Neumann, a finite difference scheme is stable if the errors made at one time step of the calculation
do not let the errors increase for the following time steps. Therefore, in our approach, this means
that, for a fixed time of observation of the diffusion, an increase of the size of the sub-cells of the
grid will irrevocably lead to a critical size from which discretized information will not be enough to
contain information on concentration gradient described by the partial differential equation. In fact,
the physical interpretation of instability of the PDE was never introduced in a high number of papers,
which treat mathematical aspects of instability via information formalisms. Mishra has introduced
the problems of violation of local thermodynamic laws in the transport equations via Information
theory. He discretizes the transport equation via a simple centered finite difference scheme. The time
derivative is replaced with a forward difference and the spatial derivative with a central difference.
In this scheme of discretization, the central scheme leads to a growth of energy at every time step and
is unstable whatever the size of both discretization of time and space [19]. Mishra explains why the
solutions computed with the central scheme blow up. After all, the central scheme seems a reasonable
approximation of the transport equation. The physical explanation can be deduced from the following
argument: the exact solution moves to the right with entities speed (Figure 13).
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Unfortunately, for the scheme described in this publication that we have physically proof to be
physical relevant in term of the physics causality via Einstein theory of the Brownian motion [15],
no justification of the conditional stabilities was found in the bibliography via Information theory.
However, some results using entropy concept in PDE stability conclude [21] that many linear Partial
Differential Equations or Integral equations with non-constant coefficients satisfy some entropy
dissipation properties [22]. Finally, explicit time discretization leads to entropy production [23]
and more specifically, explicit scheme with Lax–Friedrichs flux is entropy stable under conditions
given by Equation (5) [24].

7. Conclusions

In this paper, we showed that a relation exists between the well-known stability criterion
λ “ D∆t{ p∆xq2 ď 1{2 applied on the explicit numerical scheme Ct`∆t

x “ Ct
i ` λ

´

Ct
x´∆x ´ 2Ct

x `Ct
x`∆x

¯

to guarantee the convergence of the 1D non-stationary PDE BC px, tq {Bt “ DB2C px, tq {Bx2 to the
solution and the quantity of information contained at a mesoscopic scale under the size of discretization
∆ x. Implicit and semi implicit schemes (such as the unconditionally stable scheme of Crank–Nicolson
method) lead to a violation of the principle of causality: the cause must precede its effect according to
all inertial observers meaning that the cause and its effect are separated by a time-like interval, and
the effect belongs to the future of its cause. Jaroszkiewicz pointed out the violation of causality in the
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fields of discrete mechanics by analyzing the implicit and explicit Euler Schemes and deduced that
the implicit scheme involves that the flow of information occurs in a temporal loop. Jaroszkiewicz
concluded his argument with the following question: “we should ask, given this violation of causal
implication, how could we ever use implicit Euler scheme in practical calculation” [25]. Under Causality
scheme assumptions, it was proved that instability occurs during iterative process if and only if
information contained inside the cell ∆x decreases with time, thus violating the second principle of
the thermodynamics. As microscopic simulations of diffusion mechanisms are only explicit methods
(Monte Carlo methods, Cellular automata, etc.), the criterion of sub-cell information seems to be a
relevant tool to assess that a stable explicit scheme meets both the causality and the second principle of
the thermodynamics.
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