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The paper reassesses the mechanism of biodynamical feedthrough coupling to helicopter body motion
in lateral-roll helicopter tasks. An analytical bio-aeroelastic pilot–vehicle model is first developed and
tested for various pilot’s neuromuscular adaptions in the lateral/roll axis helicopter tasks. The results
demonstrate that pilot can destabilize the low-frequency regressing lead-lag rotor mode; however he/she
is destabilizing also the high-frequency advancing lag rotor mode. The mechanism of pilot destabilization
involves three vicious energy circles, i.e. lateral-roll, flap-roll and flap-lag motions, in a very similar
manner as in the air resonance phenomenon. For both modes, the destabilization is very sensitive to
an increase of the steady state rotor coning angle that increases the energy transfers from flap to lag
motion through Coriolis forces. The analytical linear time-invariant model developed in this paper can be
also used to investigate designs proneness to lateral/roll aeroelastic rotorcraft–pilot couplings.

1. Introduction

Biodynamic feedthrough (BDFT) refers to a phenomenon where 
vehicle accelerations cause involuntary pilot limb motions which, 
when coupled to a control device, can result in unintentional pi-
lot control inputs. BDFT effects in helicopters have been identi-
fied since the beginning of helicopter operations [1–4]. In partic-
ular, pilot interaction with helicopter airframe structural modes 
has been of concern for BDFT in rotorcraft [5]. This interaction 
involves passive pilot participation, with low frequency airframe 
structural modes, frequently via flight control system (FCS) interac-
tion, which induces oscillations at a particular airframe structural 
mode. Commonly referred to as pilot augmented or assisted os-
cillations (PAOs) – or more generally aeroelastic Rotorcraft–Pilot-
Couplings (RPCs) – these phenomena need efficient engineering 
solutions as they can result in catastrophic accidents [6,7].

Aeroelastic RPC/PAO existence is often associated with induced 
oscillations at a particular structural mode. Fig. 1 presents the pi-
lot in the loop subsystems that interact during PAO via his/her 
cyclic lever. The pilot, through the muscles in the neuromuscu-
lar system, controls the aircraft response to disturbances and the 
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task to be flown. In modern aircraft, the pilot inceptor is not 
connected to the vehicle directly but through an integrated FCS. 
Sometimes the aircraft vibratory environment affects the pilot’s 
biodynamic response and generates involuntary inputs. The cou-
pled rotor–fuselage aeroelastic motions are fed back to the pi-
lot.

For example, experiences in soft-inplane hinge-or-bearingless 
(i.e. when natural frequency of the rotor blade lead-lag (in-plane) 
motion ωδ is smaller than rotor angular velocity �, ωδ < �) ro-
tor helicopters reveal that, when the helicopter is enhanced with 
FCS, the weakly damped lead-lag motion characterizing these spe-
cial kind of rotors can become unstable through pilot control in-
puts. This was the case of EC135 helicopter instability reported 
in [8]: in the basic helicopter operation condition, the air reso-
nance mode instability was not an issue for the pilots operating 
the EC135. Air resonance mode resembles the interaction of the 
low-frequency blade lead-lag mode as seen in the nonrotating ref-
erence frame – the so-called regressing lag mode – with the low 
frequency flap-roll mode. The air resonance instability in EC135 
manifested as a body roll oscillation which was existent but it was 
below the pilot perception level. However, when the helicopter was 
enhanced with an Attitude command/Attitude Hold (ACAH) control 
system for flying attitude command or flight path following tasks, 
it appeared that, increasing too much the roll rate feedback gain, 
the air resonance mode was driven unstable. This time the body 
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Nomenclature

x airframe lateral translation . . . . . . . . . . . . . . . . . . . . . . . . . . m
ax airframe lateral acceleration . . . . . . . . . . . . . . . . . . . . . . m/s2

z airframe vertical translation . . . . . . . . . . . . . . . . . . . . . . . . . m
αy airframe roll angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
βi, δi, θi individual blade flap, lag and pitch angles . . . . . . . . rad
β0, β1c, β1s collective and cyclic blades flap angles . . . . . . . . . rad
δ0, δ1c, δ1s collective and cyclic blades lag angles . . . . . . . . . . . rad
θ0, θ1c, θ1s collective and cyclic blades pitch angles . . . . . . . . rad
b main rotor number of blades
R rotor radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
e blade root eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
γ lock number
� main rotor angular velocity . . . . . . . . . . . . . . . . . . . . . . rad/s
β0ss steady-state coning angle . . . . . . . . . . . . . . . . . . . . . . . . . . rad
ms individual blade static moment at blade root . . . . m kg
Ibl individual blade inertia at blade root . . . . . . . . . . . m2 kg
Mbl individual blade mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
kδ individual blade equivalent angular lag damper 

stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m/rad

cδ individual blade equivalent angular lag damper 
damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m s/rad

M f helicopter mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
I yy airframe roll inertia around its center of

mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2 kg
h rotor head height from airframe center of mass . . . . m
G gearing ratio
ω pilot biodynamics resonant frequency . . . . . . . . . . . rad/s
k pilot biodynamics gain
ζ pilot biodynamics damping. . . . . . . . . . . . . . . . . . . . . . . . . 1/s

Abbreviations

PIO Pilot Induced Oscillations
PAO Pilot Assisted Oscillations
RPC Rotorcraft Pilot Coupling
BDFT Biodynamic Feedthrough
dof (s) degree(s) of freedom
FPM forcing phasing matrices

Fig. 1. Main subsystems interactions in helicopter BDFT phenomena related to cyclic control.

roll oscillation was perceived by the pilot as an oscillatory ring-
ing in the helicopter roll response at a frequency of about 1.8 Hz. 
It was demonstrated that in this case the EC135 helicopter was 
PAO prone in the lateral axis when applying the bandwidth cri-
terion as described in the ADS-33 handling qualities standard [9]. 
In order to damp the air resonance mode when rate feedback was 
used, [8] developed an air resonance controller needed to be im-
plemented in the main FCS which effectively damped the coupled 
body–roll air resonance mode.

Other examples of BDFT in helicopters relate to the collective 
bounce (vertical bounce) and the roll axis instability. Collective 
bounce is the consequence of adverse interaction of the pilot with 
the vertical motion of the helicopter via the collective control [1,
4,10,11,25]. Roll axis instability is caused by involuntary motions 
of the pilot’s arm in the cyclic control which couple to the lag/roll 
dynamics of the helicopter. In fixed-wing aircraft, the source of ad-
verse pilot–roll dynamics coupling has been often identified either 
in the flexibility of the vehicle (e.g. low frequency skew-symmetric 
wing bending that interacts with rigid body roll dynamics to gen-
erate sufficient phase delay in roll response) or other sources of 
delay (e.g. input processing by a digital flight control system, insuf-
ficient bandwidth, saturation of control system actuators). In heli-
copters, roll axis instability is mainly attributed to the regressing 
lead-lag mode as this mode eigenfrequency is close to pilot bio-
dynamics [12]. The literature of specialty explains mainly the pure 
mechanism through which the flap-lag rotor motions can couple 

to lateral/roll via FCS feedback, however without the involvement 
of pilot biodynamics [13,14]. When involving pilot biodynamics, it 
is recognized that “predictions suggest that the roll/lateral PAO phe-
nomena are more likely to occur on helicopters with soft in-plane rotors 
that have lightly damped in-plane rotor modes, more sensitive to time 
delay than gearing ratio with respect to the lateral cyclic control, more 
dangerous when the flight speed increases and more likely to occur with 
pilots that are characterized by a natural frequency of the biodynamic 
poles that is close to the lightly damped in-plane rotor mode” [12]. The 
goal of the present paper is to give a thorough understanding of 
the mechanism through which the pilot can destabilize the air res-
onance mode and induce roll axis instability via cyclic control stick 
feedback. It will be demonstrated that not only the low-frequency 
regressing lead-lag mode is the mode responsible for coupling to 
pilot biodynamics but also that the high-frequency advancing lead-
lag mode can induce translational and rotational airframe motions 
manifested at low frequency as vertical and lateral rigid body vi-
brations with strong degradation in ride qualities.

2. Mathematical modeling for roll helicopter–pilot coupling

2.1. Helicopter aeromechanical lateral-roll dynamics model

In the following, an air resonance model in hover is briefly 
described. First, a non-linear aeromechanical model is devel-
oped in the rotating system of reference using Lagrange equa-



Fig. 2. Axis definitions of the rotorcraft model.

Fig. 3. Rotor advancing and regressing lag modes seen as lateral and longitudinal center of gravity G shifts [15].

tions. For a 4-bladed rotor the model accounts 11-dof q =
[x, z, αy, β1, β2, β3, β4, δ1, δ2, δ3, δ4]T for the coupled fuselage-
rotor motion that includes 3-dof for the fuselage motion (fuselage 
lateral translation x, fuselage vertical translations z and fuse-
lage roll αy), 4-dof corresponding to each blade flapping motion 
β1, β2, β3, β4 and 4-dof corresponding to each blade lead-lag mo-
tion δ1, δ2, δ3, δ4, see Fig. 2. The rotor–airframe modeling accuracy 
is aligned to the minimum level needed to investigate air reso-
nance phenomena (see for example [15,16]). The model includes 
quasi-steady aerodynamics, which is sufficient when investigating 
low frequency phenomena [17]. No inflow velocity is considered 
since it is reported in [18] that the inflow is generally faster than 
the dynamics of interest and can be reasonably approximated by 
replacing the Lock number with the reduced Lock number: usually 
between 60 to 70% of Lock number [18].

The peculiarity of rotorcraft w.r.t. fixed-wing aircraft is that 
low-frequency pilot inputs can generate high-frequency blade exci-
tations. This is because, in the case of rotorcraft control, moments 
are transmitted indirectly from the pilot stick to the rotor through 
the swashplate mechanism. Pilot cyclic inputs are applied at 1/rev-
frequency through this swashplate mechanism and can generate 
high-frequency rotor blade excitations, in the form of flap and lag 
motion, which can be transformed back to the fixed airframe sys-
tem, where a new 1/rev-frequency shift occurs to a lower and 
higher frequency.

For studying the helicopter-rotor coupled motion, the blades 
motion as given by flapping and lead-lag motions should not be 
considered in the rotor rotating frame of reference, but rather in 
the non-rotating frame of reference fixed to the body. It is there-
fore essential to first transform the blade flapping/lead-lag equa-
tions to the body frame. This may be done by applying the so-
called “Multiblade Coordinate Transformation (MCT)” or “Coleman 
transformation”. This transformation accounts for the cumulative 
effect of the motion of all rotor blades as seen by the body. The 
transformation makes use of the multicyclic symmetry of the rotor 
(all blades are identical) to cancel periodic coefficients and leads 

to simplifications and elimination of periodic coefficients in the 
flapping/lead-lag equations of motion in the non-rotating frame. 
When the MCT transformation is applied, it appears that in gen-
eral, the transient blade motion splits into three levels: a relatively 
low-frequency ‘regressing’ mode, an intermediate ‘coning’ mode, 
a high frequency ‘advancing mode’ (see Fig. 3). For a rotor with 
an even number of blades the differential (reactionless) mode is 
introduced, this is because the MCT transformation must include 
the same number of modes as the number of blades (4 blades for 
the helicopter considered in this paper). However, the differential 
mode is a highly damped oscillation with the same frequency and 
damping as the rotating flap response and is often neglected in 
body-rotor motion analysis, this is because it does not respond to 
the conventional cyclic control inputs [19]. Therefore in this pa-
per the differential mode was neglected as being of little interest. 
Neglecting the differential flapping and differential lagging modes, 
the 11-dof model was reduced to a 9-dof model.

In order to comprehend this frequency transformation behav-
ior of multi-bladed rotor systems, the concept of rotor modes is 
helpful:

1) Collective rotor mode oscillations are transferred directly with-
out frequency shift.

2) Cyclic rotor mode oscillations (so-called regressing and ad-
vancing modes) are transformed with ±1/rev frequency shift.
For blade lag motion, the regressing and advancing lag modes
are equivalent with the rotor lateral and longitudinal center of
gravity shift in the rotor plane, see Fig. 3.

As a result, a 9-dofs body-rotor model is obtained in the non-
rotating system of reference q = [x, z, αy, β0, β1c, β1s, δ0, δ1c, δ1s]T

corresponding to 3-dof for the fuselage motion (fuselage lateral 
translation x, fuselage vertical translation z and fuselage roll αy ), 
3-dof for the disc-tilt motion (rotor coning β0, regressing flap and 
advancing flap modes β1c, β1s) and 3-dof for lead-lag motion (con-
ing lag δ0, regressing and advancing lag modes δ1c, δ1s). The 9-dof 



Fig. 4. Pilot seating configuration.

air resonance model is then linearized around a steady state, this 
is the hover condition, see eq. (1),

qss = [0,0,0, β0ss,0,0,0,0,0]T (1)

The hypothesis of linearity around hover flight can be justified 
for example by [20], in which a helicopter dynamics linear model 
is developed and compared to flight tests of Sikorsky’s CH-53E in 
hover; the results show a good agreement between the model and 
the tests for a range of frequencies between 1 and 10 Hz. Nonlinear 
models are necessary for large amplitude maneuvers [20], however 
since low frequency roll axis instability via cyclic control is in the 
range of 2 to 8 Hz [6], the blades and fuselage can be considered as 
rigid bodies [17]. The final expressions of the equations of motion 
are given in (A.1)–(A.9).

2.2. Human pilot biodynamics modeling

When a pilot is engaged in a manual control task under vehi-
cle accelerations, see Fig. 4, these vibrations can cause involuntary 
limb motions leading to involuntary control inputs, i.e. biodynamic 
feedthrough (BDFT). It is known that pilots adapt their response 
and therefore their body to task instruction, workload and fatigue 
[4]. To account for pilot BDFT behavior, one needs to model his/her 
neuromuscular system adaption, i.e. his/her biodynamics. Two ap-
proaches can be identified when modeling pilot biodynamics: the 
first approach consists in identifying from experiments the human 

body response in the frequency domain due to fuselage acceler-
ations [3]; the second approach consists in using multibody ap-
proach to capture his/her skeletal motion superposed to dynamic 
models of the central nervous system control [11,21,22]. The first 
approach usually leads to simple pilot models, easy to be coupled 
to vehicle models; however this approach has a limited validity as 
it is coupled to the experiment in which it was obtained. While a 
more complex pilot skeletal/muscles multibody modeling approach 
may help testing a large number of cabin configurations/human 
variability of the neuromuscular system, the simple pilot models 
obtained through identification experiments have the advantage of 
giving a global understanding of the pilot–vehicle couplings.

The BDFT modeling approach of this paper consists in repre-
senting the pilot biodynamics as a function identified in the simu-
lator experiments performed in [3] in the SIMONA simulator at TU 
Delft. The expression of this second order transfer function taken 
from [3] is,

H(s) = θlat

ax
≈ k.ω2

ω2 + 2.ζ.ω.s + s2
(2)

Eq. (2), embodies the potential variation of BDFT as a function 
of the frequency/amplitude representing the human body neuro-
muscular adaption. The function can be represented as seen in 
Fig. 5, taken from [3]. According to the experiments at TU Delft, 
pilot biodynamic varies between the subjects available and the pi-
loting tasks performed. Between different human subjects, pilots’ 
responses are dependent on their body shapes or somatotypes, i.e. 
ectomorphic or mesomorphic [1]. Secondly, between the different 
tasks performed in [3], i.e. a position task (PT) where the pilot is 
minimizing the position stick, a force task (FT) where the force ap-
plied to the stick is minimized, and a relax task (RT) where the 
pilot relaxes his arm, the highest resonant frequency in pilot BDFT 
responses corresponds to the position tasks (PT). This corresponds 
to the maximum stiffness in the neuromuscular system and shows 
that it is achieved in a position task. Similar conclusions were also 
reported in [23], accompanied by the observation that the body 
‘stiffens’ during urgent tracking tasks. The variability of pilot bio-
dynamics can be therefore characterized with pilot attitudes that 
can be qualified as ‘stiffer’ in the case of stressful, high gain track-
ing tasks or ‘relaxed’ when the pilot’s workload is lower.

Fig. 5. Models of pilot biodynamics envelopes, adapted from [3].



Table 1
Pilot biodynamics data.

Pilot biodynamics Baseline ‘Stiffer’ ‘Relaxed’

Resonant frequency ω (Hz) 1.1 → 2.3 1.1

Gain k 0.04 0.04

→

0.005

Damping ζ(1/s) 0.3 0.3 0.3

For the biodynamic analysis in this paper, a ‘Baseline’ biody-
namic pilot model is chosen and then varied in terms of frequency 
(higher frequency corresponding to a ‘Stiffer’ pilot) and amplitude 
(lower gain corresponding to a ‘Relaxed’ pilot), see Table 1. This 
allows an investigation of the pilot biodynamic shifts in terms of 
BDFT frequency and BDFT amplitude.

The pilot biodynamics model of eq. (2) is rewritten in its Linear 
Time-Invariant (LTI) formulation, see eq. (3):

−Gω2θ1c − 2Gζωθ̇1c + kω2 ẍ − G θ̈1c = 0 (3)

where parameter G corresponds to kinematic ratio between the 
maximum lateral blade pitch angle and lateral cyclic control angle, 
θlat = Gθ1c .

2.3. Pilot–vehicle coupled model

Next, the vehicle model, eqns. (A.1)–(A.9) is coupled to the pilot 
biodynamic model, eq. (3) and expressed in its matrix formulation 
as:

Mq̈ + Cq̇ + Kq = 0 (4)

where q = [x, z, αy, β0, β1c, β1s, δ0, δ1c, δ1s, θ1c]T represents the 
state vector and M , C and K respectively the mass, damping and 
stiffness matrices. The final equations of motions in their metrical 
form are given in Appendix A, eqns. (A.10)–(A.13).

3. Physical insight into aeroelastic roll axis instability via cyclic
control stick feedback

3.1. Pilot–vehicle modal analysis

This section examines how pilot biodynamics couples to lat-
eral/roll helicopter dynamics. As basis for the numerical analysis, 
a medium weight 4-bladed helicopter, is chosen, see Table 2. This 

Table 2
Helicopter model data.

Main rotor

Number of blades b 4
Radius R (m) 7.5
Blade root eccentricity e (m) 0.3
Lock number γ 9
Angular velocity � (rad/s) 29
Steady-state coning angle β0ss (rad) π/180

Individual blade

Static moment ms (m kg) 300
Inertia Ibl (m2 kg) 1500
Mass Mbl (kg) 100
Equivalent angular lag damper stiffness kδ (N m/rad) 160000
Equivalent angular lag damper damping cδ (N m s/rad) 3000

Airframe

Mass M f (kg) 7500
Roll inertia around center of mass I yy (kg) 10000
Rotor head height from center of mass h (m) 2

Cyclic blade pitch/lever roll angle

Gearing ratio G 0.1

helicopter has a soft-inplane rotor with lightly damped in-plane 
rotor modes, ωδ = √

kδ/Ibl = 1.64 Hz (≈ 0.35� < �). This is an in-
teresting characteristic, as soft-inplane rotors seem more prone to 
roll axis instability via cyclic control.

3.1.1. Helicopter modal analysis
Fig. 6 presents the pure vehicle eigenvalues (eqs. (A.1) to (A.9)), 

without the inclusion of pilot biodynamics characteristics. It also 
presents the system mode shapes normalized around the roll rate 
(α′

y). One can see a classical distribution of the first flap and 
lag modes: the advancing flap mode (8.60 Hz) and the regressing 
flap mode (0.67 Hz) are highly damped, while the advancing lag 
(6.91 Hz) and regressing lag (2.57 Hz) are lightly damped. Concern-
ing the mode shapes, one can see that the highest contributors to 
the motion correspond to the regressing and advancing lag mode 
δ′

1c,s followed, in a smaller range, by regressing and advancing flap-
ping β ′

1c,s (flapping motion) and lateral-roll motions (x′, α′
y).

The lightly damped collective lag mode δ0 shown in Fig. 6 is 
fully decoupled from other dofs and therefore it will be not in-
fluenced by pilot biodynamics. The collective flap mode β0 which 
is very close to the rotor angular velocity � is coupled to the 
vertical motion z of the helicopter. Based on the modal shapes 

Fig. 6. Rotor flap and lead-lag eigenvalues and mode shapes without pilot biodynamics.



Fig. 7. Helicopter roll rate response in the frequency domain.

of Fig. 6, one can see that the airframe translational modes are 
close to the origin and can be considered decoupled from the rotor 
and pilot. These will therefore not be affected by pilot biodynam-
ics.

3.1.2. Coupled helicopter–pilot modal analysis including pilot 
biodynamics

Fig. 7 depicts the helicopter roll rate response as identified by 
a discrete Fourier transformation for a cyclic pitch θ1c sweep given 
between 0 and 10 Hz. Two cases are plotted, first when no pi-
lot biodynamics is included in the model (continuous lines) and 
second when the baseline pilot biodynamics model is coupled to 
the vehicle. In both cases one can see that higher roll rate ampli-
tude peaks can be found around both regressing and advancing lag 
modes, this was also found by [20].

When pilot biodynamics is involved in the motion, three 
changes can be seen in Fig. 7:

1) At 1.1 Hz there is an extra amplitude peak in the vehicle roll
rate response caused by pilot biodynamics.

2) The shape of the roll rate response changes in the low-
frequency range around regressing flap mode.

3) An increase in the vehicle roll rate response appears due to the
regressing lag mode, this revealing the loss of damping around
this mode.

Next, the pilot biodynamic characteristics are varied to a ‘Stiffer’ 
pilot (by increasing his resonant frequency) and to a ‘Relaxed’ pi-
lot (by decreasing his gain) according to the data of Table 1. The 
vehicle–pilot eigenvalues are represented in Fig. 8. Looking at this 
figure, one can see that a stiffer pilot destabilizes the regressing lag 
mode. This was also concluded by [12]. However, from this figure 
it appears that the ‘Stiffer’ pilot is destabilizing not only the re-
gressing lag mode but also the high-frequency advancing lag mode 
– although this mode’s frequency is higher (6.91 Hz) than pilot
biodynamics (1.1 Hz and 2.3 Hz). The ‘Relaxed’ pilot shows a bet-
ter “damping” than both the ‘baseline’ and the ‘stiffer’ pilots, his 
damping is as the case of ‘no pilot biodynamics’.

Fig. 8. Rotor lead-lag eigenvalues with different pilot biodynamics.

Fig. 9. Sensitivity of lag modes to pilot biodynamics resonant frequency and gain.

3.1.3. Sensitivity of lag modes to pilot biodynamics resonant gain and 
frequency

In order to understand the effect of pilot biodynamics on lag 
regressing and advancing modes, firstly, the pilot biodynamics gain 
is varied in the range of k = 0.00 to 0.08, keeping his resonant 
frequency constant. Secondly, his resonant frequency is varied be-
tween 1 and 5 Hz keeping his gain constant, see Fig. 9.

Then, both pilot gain and frequency are varied simultaneously 
along a range (k = 0.02 to 0.08) and frequency (1 to 5 Hz), see 
Fig. 10. One should recall the fact that these two parameters rep-
resent the adaption of the neuromuscular system to a given task 
or state of the pilot (stressed, relaxed) and somatotype. Looking at 
Fig. 9 one can see that, varying the pilot’s biodynamics gain leads 
to a similar behavior in damping of both advancing and regressing 
modes, i.e. higher pilot gain leads to lower lag mode damping.

However, when both pilot biodynamics’ gain and frequency are 
varied, the rotor lag modes react differently: while regressing lag 
mode recovers its damping (2.7 Hz is the point of neutral damping for 



Fig. 10. Pilot biodynamics neuromuscular system adaption impact on stability of lag modes.

regressing lag), the advancing lag mode (6.91 Hz) is continuously losing 
is damping. More precisely, when the pilot stiffens (higher gain), 
the advancing lag mode becomes less damped than the regress-
ing mode. This means that, when the pilot modifies his mindset 
due to a change of task or workload (for example he/she is asked 
to perform a high precision maneuver) he/she will tend to ‘stiff-
en’ himself/herself, adapting his/her neuromuscular system uncon-
sciously to higher gains and frequencies, see also Fig. 5. The loss 
of damping of the regressing lag mode due to its proximity to 
the pilot biodynamics mode will be evidenced more clearly in 
Fig. 11 representing the Campbell diagrams of the pilot–vehicle 
system.

3.1.4. Sensitivity of lag modes to air density and steady state rotor 
coning angle

In [12], the investigation on “the roll/lateral PAO phenomena pre-
dictions suggest they are [. . .] more dangerous when the flight speed 
increases”. The increase of the steady state rotor coning angle β0ss

is a way of studying the dynamic behavior of the system for higher 
load factors, which is an artificial way of experimenting what 
would happen the helicopter forward velocity increases. However, 
one should keep in mind the aerodynamic model used in this pa-
per is especially valid around hover or low advancing speeds. More 
relevant models should be used in the future to investigate the 
phenomenon at high advancing speeds.

Sensitivity analyses of lead lag modes are conducted with re-
spect to air density and steady-state coning angle, see Fig. 12. 
Looking at this figure one can see that varying the air density 
from −30% to +30%, around sea level and 15 ◦C of temperature 
(ρ = 1.225 kg/m3), results in small variations in the lag modes 
damping.

Varying the air density modifies the role of aerodynamic forces 
and especially the damping they can provide to flap motion. The 
last seems quite insensitive to altitude or temperature changes. 
When it comes to the variation of the steady state rotor coning 
angle β0ss , it can be seen the damping of lag modes is very sensi-
tive to this value, a deeper understanding of why this happens is 
proposed in the next section.

3.2. Understanding the mechanisms of lead-lag instability

The above analysis of the coupled vehicle–pilot biodynamics 
suggests that:

1) Low frequency roll axis instability involving pilot biodynamics
in lateral tasks is the result of a destabilization of both regress-
ing and advancing lag modes;

2) The damping of the regressing lag mode decreases especially
when the pilot biodynamics mode frequency is lower than the
regressing lag mode frequency;

3) Whatever the positioning of the pilot biodynamics mode fre-
quency is, the advancing lag mode damping seems to be af-
fected by pilot biodynamics;

4) The destabilization of both vehicle lag modes is very sensitive
to the steady state rotor coning angle.

The mechanism of lead-lag instability involving pilot biodynam-
ics will be next explained using two approaches: 1) Campbell dia-
grams and 2) Force phasing matrices [24].

3.2.1. Campbell diagrams applied to the roll axis instability problem 
through BDFT lateral cyclic inputs

Generally, Campbell diagrams give the representation of the 
system eigenvalues as a function of rotor angular velocity. In the 
upper part of the diagram, one can see potential coalescences of 
the system modes frequencies and on the lower part the damp-
ing evolution in the system. Fig. 11 plots the Campbell diagrams of 
the pilot–vehicle system in three cases: baseline pilot biodynam-
ics, stiffer pilot and a relaxed pilot. Looking at this figure one can 
see that, for the baseline pilot, the pilot biodynamics mode inter-
sects first both the regressing and advancing lag modes (point A) 
and further away, at a higher rpm, it intersects again only the re-
gressing lag (point B). Looking at the lag damping in this case, it 
appears that pilot biodynamics has little impact on the lag modes 
and therefore one can conclude that pilot biodynamics is not trig-
gering a dangerous PAO problem. However, when the pilot gets 
‘Stiffer’, there is an intersection between the pilot mode and the 
advancing flap mode which is causing the destabilization of the 
advancing lag mode (see point C in Fig. 11). In this case, there 
seems to be continuously an “issue” for the advancing flap mode 
frequency, as its frequency grows very fast with � when compared 
to the regressing lag mode frequency increase. As a result, the 
pilot biodynamics will always cross the advancing lag mode and 
therefore unwillingly excite the advancing lag mode. Of course, for 
relatively small pilot biodynamics gains, the lower the �, the less 
energy is involved in the instability and the lesser will be the im-
pact on the system. This is the case of the ‘Relaxed’ pilot (see 
point E and F in Fig. 11), one can see that when there is an in-
tersection of the pilot biodynamics mode with both advancing flap 
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Fig. 11. Campbell diagrams deviations from no pilot in the loop to three different pilot behaviors.



Fig. 12. Sensitivity to air density and steady state rotor coning angle.

and regressing lag modes, but the damping of the both lag modes 
remains almost unaffected. The physical explanation of advancing 
lead-lag mode branch intersecting the pilot mode and destabiliz-
ing it is given in the next section of this chapter using energetic 
method explaining the forces involved in the system and their vi-
cious circles of energy flow.

Furthermore, representing the regressing lag mode eigenvec-
tors, see Fig. 13, it appears that, for the stiffer pilot (white bars), 
the flapping motion couples more strongly to the lead lag motion 
than in the case of baseline pilot biodynamics. One should recall 
that the helicopter roll motion is obtained by modifying the rotor 
thrust orientation, i.e. by generating cyclic flapping motion. Also, 
recalling Fig. 6, it follows that in the presence of pilot biodynam-
ics, the advancing and regressing lag modes are not only composed 
of a coupling between lateral/roll, flap and lag motions but also 
it involves lateral cyclic lever motion (this last state being a new 
variable associated with the pilot motion).

Concluding, for a stiffer pilot, the pilot biodynamics mode in-
tersects the regressing lag mode and leads to a loss of damping of 
this mode. This mechanism is very similar to the ground resonance 
phenomenon coupling, where the weakly damped regressing lag 
mode couples to the airframe roll movement on its landing gear 
[15]. The difference between the ground resonance scenario and 
the roll axis instability through pilot cyclic control is that the pi-
lot biodynamics gain dictates the loss of damping in the regressing 
lag mode.

3.2.2. Force phasing matrices applied to the roll axis instability problem 
through BDFT cyclic inputs

The so-called “energy flow” or “forcing phasing matrices (FPM)” 
analysis [24] (Appendix B) will be next applied to the roll axis in-
stability. According to this method, a dynamic instability is equiva-

lent with at least one energy-flow path wherein two or more sys-
tem’s degrees of freedom mutually pump energy into each other 
with ever increasing amplitude [24]. The FPM method can be ap-
plied to both linear time invariant and time periodic systems. The 
following steps should be followed:

1) Identify the most active degree(s) of freedom in the eigenvec-
tors modal shapes;

2) Search for the highest positive values in the FPM representing
the most active dof. These are the so-called “critical forces”;

3) Search for the critical forces positions in the mass, damping
and stiffness matrices. These forces are off-diagonal forces that
are almost in phase with velocity vector and thus pump en-
ergy into a given dof. The positive sign of a term in the mass,
damping or stiffness matrices of the FPM system means that
the corresponding term (which becomes force once it is mul-
tiplied by the corresponding state variable) is destabilizing the
system.

If there are degrees of freedom which mutually pump energy 
into each other, this indicates the possibility of dynamic insta-
bility. The FPM method was applied to the helicopter roll axis 
instability through BDFT lateral cyclic inputs. First, from Fig. 13
it appears that the most active degrees of freedom in the eigen-
vectors modal shapes correspond to advancing and regressing lag 
modes. Using the ‘Stiffer’ pilot parameters (ω = 2.3 Hz, k = 0.04) 
for which the two lag modes have been proved to be unstable, the 
highest positive values in the FPM were searched. The FPM values 
are calculated in Appendix B (Eqns. (B.9)–(B.14)) for both regress-
ing and advancing lag modes. Three energy circles are present in 
the system when analyzing the regressing lag mode: lateral x to 
roll αy motions, flap β1c,1s to roll αy and flap β1c,1s to lag δ1c,1s, 
see Fig. 14 for the generic representation of the system and Ap-
pendix B for the numerical values. Appendix B highlights also the 
critical driving forces in the system. These reveal that two symmet-
ric off-diagonal terms of the FPMs have positive values. Therefore, 
vicious energy cycle loops appear, see Fig. 14. Observe that in the 
case of advancing lag mode, the energy flow loop between lateral 
x and roll αy dofs is not present.

The expressions of the driving forces responsible for the en-
ergy flow circles are given in Table 3. For both regressing and 
advancing lag modes, there are two critical forces in the first 
line of the mass matrix M that do not create any energy loop, 
i.e. (4hmbl + msβ0ss)α̇y and (2msβ0ss)β̈1s . As these both critical 
forces are in the first line of mass matrix M , it follows that 
these two forces drive energy into the lateral translation x dof; 
this is precisely the acceleration that will excite pilot biodynamics 
feedthrough.

The pilot is indirectly participating to the instability by in-
putting energy into the flap motion, term m10,1 in Fig. 14. He/she 
is destabilizing both the advancing and regressing lag modes by 
destabilizing the flap-roll and flap-lag couplings.

One can identify that, in the case of regressing lag mode, this 
driving force is of aerodynamic nature for both lateral-roll and 

Fig. 13. Regressing lag modal shape when varying pilot biodynamics.



Fig. 14. Critical drivers and energy-flow paths.

Table 3
Driving forces in the energy circles.

Regressing lag mode Advancing lag mode

1: Lateral-roll c1,3.α̈y = Ibl(3e+2R)β0ssγ�

6R2 .α̈y –

2: Flap-roll c3,6.β̇1s = Ibl(4e+3R+4hβ0ss )γ�
12R .β̇1s c3,6.β̇1s = Ibl(4e+3R+4hβ0ss )γ�

12R .β̇1s

c3,5.β̇1c = −4(Ibl + ems)�.β̇1c

3: Flap-lag k8,5.β1c = 4Iblβ0ss�
2.β1c c9,5.β̇1c = 4Iblβ0ss�.β̇1c

flap-roll couplings; in the case of advancing lag mode, the driv-
ing force in flap-roll coupling is of aerodynamic nature as well. For 
the flap-lag coupling, the driving force is due to the Coriolis effect 
for both advancing and regressing lag modes. From the magnitude 
of Coriolis forces in the flap to lag and lag to flap coupling terms 
of the FPM matrices, one can see that the transfer from flap to lag 
is ten times higher in magnitude than the reverse from lag to flap. 
Neglecting the term 4hβ0ss in the flap-roll coupling as it is very 
small when compared to 4e + 3R , one can say that the lateral-roll 
coupling depends on the β0ssγ product, the flap-roll coupling de-
pends on the Lock number γ and the flap-lag coupling depends 
on the coning angle β0ss . Recalling the sensitivity analysis on air 
density and steady state rotor coning angle presented in Fig. 12, it 
follows that the variation of β0ss is furthermost the most critical 
factor in the variation of damping for both regressing and advanc-
ing lag modes. As a result, the most destabilizing forces in the 
FPM matrices are the Coriolis forces from flap to lag. The mech-
anism explained herein for the pilot biodynamics is very similar 
to the one of air resonance [15,16]. If one examines the critical 
force associated to pilot action m10,1, it appears that the power 
input from the pilot is proportional to kω2 multiplied by the air-
frame lateral acceleration ẍ. As a result, the more a pilot is in a 
stressful situation or in a task that demands his/her neuromuscu-
lar system to adapt to a ‘Stiffer’ configuration (Fig. 10), both pilot 
gain k and pilot resonant frequency ω will increase and the en-
ergy he/she will transfer to the system will increase proportionally 
to kω2. Minimizing the above critical forces in the FPM matrices 
will help recovering some damping of the unstable modes but it 
cannot suppress the roll axis instability phenomenon.

4. Conclusion

The goal of the present paper was to explain the mechanism
of roll axis instability through pilot BDFT lateral cyclic inputs for 
soft-inplane rotors. It is known that these rotors are more critical 
to biodynamic couplings and unstable PAOs. Using an identified 
pilot biodynamics model and coupling it to the critical dofs in-
volved in the instability (i.e. lateral, vertical and roll degrees of 
freedom for the fuselage and flap, lag and pitch for the blades) 
the paper demonstrated that both the lightly damped regressing 
lag mode and the advancing lag mode participate to the instabil-
ity. Usually, the literature of specialty relates only to the regressing 
lag mode as this is close to the pilot’s biodynamics mode. The pa-
per demonstrates that the advancing lag mode is crucial for the 

roll axis instability through pilot lateral cyclic and should be in-
cluded in the analysis especially in the case of a soft-inplane rotor. 
The mechanism of destabilization is slightly different for the two 
modes: while regressing lag mode recovers its damping when pilot 
neuromuscular adaption varies to a stiffer pilot, the advancing lag 
mode is unable to recover its damping being very little damped for 
a Stiff pilot. From energetic point of view, three vicious energy cir-
cles have been identified for the regressing lag mode (in a similar 
manner as for the air resonance instability): lateral-roll, flap-roll 
and flap-lag. Furthermore, for the advancing lag mode, two vi-
cious energy circles exist: flap-roll and flap-lag. This shows that 
pilot biodynamics can input energy to higher order modes, usually 
not involved in the instability. For the roll axis instability problem 
through BDFT lateral cyclic inputs, the pilot is indirectly partici-
pating to the instability by inputting energy into the flap motion, 
which is transmitted further to both advancing and regressing lag 
modes. As the advancing lag mode is not recovering damping, it 
will be the first one to become unstable. For both lag modes, the 
destabilization is very sensitive to an increase in the steady state 
rotor coning angle; this increases the energy transfers from flap 
to lag motion through Coriolis forces. Future work will implement 
more complex aerodynamics to investigate the roll axis instabil-
ity phenomenon at higher helicopter speeds. Also, future studies 
may investigate the development of an adapted flight control sys-
tem and filter design considering the effect of advancing lag mode 
to alleviate lateral-roll aeroelastic RPCs.
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Appendix A

The equations of motion of air resonance model for roll axis 
helicopter instability are:



x − Iblβ0ssγ �2β1c
3R − Iblβ0ssγ �2θ1s

3R + eIblβ0ssγ �α′
y

2R2 + Iblβ0ssγ �α′
y

3R + Iblβ0ssγ �β ′
1s

3R + M f x′′ + 4Mblx′′ + 4hMblα
′′
y + 4msβ0ssα

′′
y + 2msβ0ssβ

′′
1s − 2msδ

′′
1c = 0 (A.1)

z − eIblβ0ssγ �2δ0
R2 − 2Iblγ �2θ0

3R + Iblγ �z′
R2 + 2Iblγ �β ′

0
3R + M f z′′ + 4Mbl z′′ + 4msβ

′′
0 = 0 (A.2)

αy − 1
4 Iblγ �2β1c − eIblγ �2β1c

3R − hIblβ0ssγ �2β1c
3R − e2 Iblβ0ssγ �2δ1s

2R2 − eIblβ0ssγ �2δ1s
3R − 1

4 Iblγ �2θ1s − eIblγ �2θ1s
3R − hIblβ0ssγ �2θ1s

3R + eIblβ0ssγ �x′
2R2

+ Iblβ0ssγ �x′
3R + 1

4 Iblγ �α′
y + e2 Iblγ �α′

y

2R2 + 2eIblγ �α′
y

3R + ehIblβ0ssγ �α′
y

R2 + 2hIblβ0ssγ �α′
y

3R − 4Ibl�β ′
1c − 4ems�β ′

1c + 1
4 Iblγ �β ′

1s + eIblγ �β ′
1s

3R

+ hIblβ0ssγ �β ′
1s

3R + 4hMblx′′ + 4msβ0ssx′′ + 2Iblα
′′
y + I yyα

′′
y + 2e2 Mblα

′′
y + 4h2 Mblα

′′
y + 4emsα

′′
y + 8hmsβ0ssα

′′
y + 2Iblβ

′′
1s + 2emsβ

′′
1s

+ 2hmsβ0ssβ
′′
1s − 2hmsδ

′′
1c − 2Iblβ0ssδ

′′
1c = 0

(A.3)

β0 4Ibl�
2β0 + 4ems�

2β0 − 2eIblβ0ssγ �2δ0
3R − 1

2 Iblγ �2θ0 + 2Iblγ �z′
3R + 1

2 Iblγ �β ′
0 + 8Iblβ0ss�δ′

0 + 4ms z′′ + 4Iblβ
′′
0 = 0 (A.4)

β1c − 1
4 Iblγ �2β1c + 2ems�

2β1s − 4Iblβ0ss�
2δ1c − eIblβ0ssγ �2δ1s

3R − 1
4 Iblγ �2θ1s + Iblβ0ssγ �x′

3R + 1
4 Iblγ �α′

y + eIblγ �α′
y

3R + hIblβ0ssγ �α′
y

3R

− 4Ibl�β ′
1c + 1

4 Iblγ �β ′
1s + 4Iblβ0ss�δ′

1s + 2msβ0ssx′′ + 2Iblα
′′
y + 2emsα

′′
y + 2hmsβ0ssα

′′
y + 2Iblβ

′′
1s = 0

(A.5)

β1s −2ems�
2β1c − 1

4 Iblγ �2β1s + eIblβ0ssγ �2δ1c
3R − 4Iblβ0ss�

2δ1s + 1
4 Iblγ �2θ1c

− 4Ibl�α′
y − 4ems�α′

y − 1
4 Iblγ �β ′

1c − 4Ibl�β ′
1s − 4Iblβ0ss�δ′

1c − 2Iblβ
′′
1c = 0

(A.6)

δ0 4kδδ0 + 4ems�
2δ0 − 8Iblβ0ss�β ′

0 + 4cδδ
′
0 + 4Iblδ

′′
0 = 0 (A.7)

δ1c 4Iblβ0ss�
2β1c − 2cδ�δ1c + 2kδδ1s − 2Ibl�

2δ1s + 2ems�
2δ1s − 4Iblβ0ss�β ′

1s − 4Ibl�δ′
1c + 2cδδ

′
1s + 2Iblδ

′′
1s = 0 (A.8)

δ1s 4Iblβ0ss�
2β1s − 2kδδ1c + 2Ibl�

2δ1c − 2ems�
2δ1c − 2cδ�δ1s + 4Iblβ0ss�β ′

1c − 2cδδ
′
1c − 4Ibl�δ′

1s + 2msx′′ + 2hmsα
′′
y + 2Iblβ0ssα

′′
y − 2Iblδ

′′
1c = 0 (A.9)

Using the matrix notation and adding the pilot biodynamics to 
the vehicle motion, this gives the final matrix formulation of the 
roll axis instability problem as:

Mq̈ + Cq̇ + Kq = 0 (A.10)

where q = [x, z, αy, β0, β1c, β1s, δ0, δ1c, δ1s, θ1c]T represents the 
state vector and M , C and K respectively the mass, damping and 
stiffness matrices. Their expressions are:

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

M f + 4Mbl 0 4(hMbl + msβ0ss)
0 M f + 4Mbl 0

4(hMbl + msβ0ss) 0 2Ibl + I yy + 2e2 Mbl + 4h2 Mbl + 4ems + 8hmsβ0ss
0 4ms 0

2msβ0ss 0 2(Ibl + ms(e + hβ0ss))
0 0 0
0 0 0
0 0 0

2ms 0 2(hms + Iblβ0ss)

kω2 0 0

0 0 2msβ0ss 0 −2ms 0 0
4ms 0 0 0 0 0 0

0 0 2(Ibl + ms(e + hβ0ss)) 0 −2(hms + Iblβ0ss) 0 0
4Ibl 0 0 0 0 0 0

0 0 2Ibl 0 0 0 0
0 −2Ibl 0 0 0 0 0
0 0 0 4Ibl 0 0 0
0 0 0 0 0 2Ibl 0
0 0 0 0 −2Ibl 0 0
0 0 0 0 0 0 −G

⎤
⎥⎥⎥⎥⎥⎦ (A.11)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Ibl (3e+2R)β0ssγ�

6R2 0

0 Iblγ�

R2 0 2Iblγ�
3R

Ibl (3e+2R)β0ssγ�

6R2 0 Ibl (6e2+8eR+3R2+12ehβ0ss+8hRβ0ss)γ�

12R2 0

0 2Iblγ�
3R 0 Iblγ�

2
Iblβ0ssγ�

3R 0 Ibl(4e+3R+4hβ0ss)γ�
12R 0

0 0 −4(Ibl + ems)� 0
0 0 0 −8Iblβ0ss�
0 0 0 0
0 0 0 0
0 0 0 0



0 Iblβ0ssγ �
3R 0 0 0 0

0 0 0 0 0 0
−4(Ibl + ems)�

Ibl(4e+3R+4hβ0ss)γ �
12R 0 0 0 0

0 0 8Iblβ0ss� 0 0 0
−4Ibl�

Iblγ �
4 0 0 4Iblβ0ss� 0

− 1
4 Iblγ � −4Ibl� 0 −4Iblβ0ss� 0 0

0 0 4cδ 0 0 0
0 −4Iblβ0ss� 0 −4Ibl� 2cδ 0

4Iblβ0ss� 0 0 −2cδ −4Ibl� 0
0 0 0 0 0 −2Gζω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.12)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 − Iblβ0ssγ �2

3R 0
0 0 0 0 0 0

0 0 0 0 − Ibl(4e+3R+4hβ0ss)γ �2

12R 0
0 0 0 4(Ibl + ems)�

2 0 0
0 0 0 0 − 1

4 Iblγ �2 2ems�
2

0 0 0 0 −2ems�
2 − 1

4 Iblγ �2

0 0 0 0 0 0
0 0 0 0 4Iblβ0ss�

2 0
0 0 0 0 0 4Iblβ0ss�

2

0 0 0 0 0 0
0 0 0 0

− eIblβ0ssγ�2

R2 0 0 0

0 0 − eIbl(3e+2R)β0ssγ�2

6R2 0

− 2eIblβ0ssγ�2

3R 0 0 0

0 −4Iblβ0ss�
2 − eIblβ0ssγ�2

3R 0

0
eIblβ0ssγ�2

3R −4Iblβ0ss�
2 1

4 Iblγ�2

4(kδ + ems�2) 0 0 0
0 −2cδ� 2(kδ + (−Ibl + ems)�2) 0
0 −2(kδ + (−Ibl + ems)�2) −2cδ� 0
0 0 0 −Gω2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.13)

Appendix B. Force-phasing matrices approach

The computation of force phasing matrices is done by intro-
ducing the kth eigenvector of A associated to its eigenvalue. By 
reintroducing the eigenvector {φ(k)} associated to its eigenvalue λk
as a general solution of the homogeneous equations of motion,

x =
∑

eλk .
{
φ(k)

}
(B.1)

The equations of motion using the kth eigenvector can be ex-
pressed as,

mnnλ
2
kφ

(k)
n + cnnλkφ

(k)
n + knnφ

(k)
n

+
∑
j �=n

(
mnjλ

2
k + cnjλk + knj

)
φ

(k)
j

︸ ︷︷ ︸
fn

= 0 (B.2)

Once represented in the complex plane, equation (B.2) leads to 
Fig. 15. These vectors can be obtained by computing the so-called 
“force-phasing matrices” (FPMs) [24]. The technique consists in 
normalizing M , C , K matrices by the damper forces, see equations 
(B.3) to (B.8). The sign of each term, in each force phasing matrix 
gives the orientation of each one of the forces in the equations of 
motion in the complex plane.

Such normalization allows to align the damper forces (diagonal 
terms of the damping matrix) with the real axis with a magni-
tude of 1 while being in the left hand part of the complex plane. 
The inertia and spring forces are the diagonal terms of the mass 
and stiffness matrix. For each line of the matrices, the positive 
off-diagonal terms are the driving forces ( fn), see Fig. 15. If these 
terms are positive, then a projection of the driving force is in phase 
with the velocity: the work of this force on the system through a 
given degree of freedom is positive and acts as a contributor to 
the destabilization of the system. The identification of the driving 

Fig. 15. Driving forces in the complex plane.

forces is done only for the most active degrees of freedom that are 
obtained from the modal shape of the unstable mode under in-
vestigation. Finally, looking for the position of these terms in the 
original mass, damping and stiffness matrices allows obtaining the 
analytical expressions of the critical forces.

[
P (k)

M

] = [
p(k)

Mij

] = −Re

[
[mij] ⊗

[
α

(k)
j

β
(k)
i cii

]]
(B.3)

[
P (k)

C

] = [
p(k)

Cij

] = −Re

[
[ci j] ⊗

[
β

(k)
j

β
(k)
i cii

]]
(B.4)

[
P (k)

K

] = [
p(k)

Kij

] = −Re

[
[kij] ⊗

[
γ

(k)
j

β
(k)
i cii

]]
(B.5)

where the ⊗ symbol denotes the Hadamard or term by term ma-
trix multiplication [24]. The complex-valued α(k) , β(k) and γ (k) are 
formed from the results of the basic eigensolution:{
α(k)

} = λ2
k

{
ϕ(k)

}
(B.6){

β(k)
} = λk

{
ϕ(k)

}
(B.7){

γ (k)
} = {

ϕ(k)
}

(B.8)



Regressing lag mode

[P M ] = (B.9)

[P C ] = (B.10)

[P K ] = (B.11)

Advancing lag mode

[P M ] = (B.12)

[P C ] = (B.13)

[P K ] = (B.14)
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