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In this context, starting from assemblies stored in STEP 
format without information on kinematic relationships and 
constraints, this paper addresses the way the assembly 
component relationships can be extracted to better support the 
assembly retrieval. The idea is to exploit interface 
relationships through a dedicated geometric reasoning. In 
particular, we propose a framework for the global/partial 
retrieval of assembly models according to different user 
requirements at different levels of details.  

The extracted data are then encoded in a multi-level 
assembly descriptor called Enriched Assembly Model (EAM) 
that is organized in four main levels: statistics, structure, 
interface and shape. This paper focuses on the interface layer, 
in particular on the automatic computation of different types 
of relationships that exist between assembly components. 

The interface layer represents the motions of a part with 
respect to another one. It encodes knowledge starting from 
part contacts and then rising to equivalent joint using four 
levels namely the contact, joint, synthesis and mechanism 
levels. The lowest level encodes all the faces involved in the 
contact between two parts and their corresponding degree of 
freedom (DOF). Here, contacts can be considered as 
constraints that limit the DOF according the involved 
geometric entities, i.e. points, curves or surfaces. The joint 
level, i.e. the second one, characterizes the resulting 
movement between two parts considering all their contacts. 
Then, the synthesis level groups support parts. In this layer, 
the collection of parts that form bearings, couplings, shaft or 
pattern of screws are considered as a unique mechanism for 
allowing a precise movement. The highest level corresponds 
to the assembly mechanism, i.e. the DOF of a part considering 
all the linked parts in the assembly. In this paper, the two 
lowest levels are described: contact and joint. 

Once the information extracted and stored within the so-
called EAM, the assembly model retrieval can start. The use 
of a multi-level descriptor advantageously enables the 
detection of similarities according to various aspects. For 
instance, Fig. 1 shows two translation joints (i.e. same 
functionality) defined in two different ways involving 
different surfaces in contact. The two models are different 
both at the shape and at the contact levels but similar at the 
kinematic one. The proposed multi-level descriptor allows to 
capture and distinguish these configurations and can be very 
helpful when considering the retrieval of similar assembly 
models with respect to specific criteria (e.g. type of surfaces 
in contact). 
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The rest of the paper is organized as follows. Section 2 
provides an overview of the works related to the 

characterization and extraction of assembly relationships with 
a particular focus on those techniques designed for assembly 
retrieval purposes. In section 3, the proposed Enriched 
Assembly Model (EAM) descriptor is introduced, while in 
section 4 the technical background and the reasoning 
techniques to extract the assembly relationships are 
introduced. Some results are presented in section 5 and 
section 6 ends the paper providing conclusions and 
highlighting future works. 

2. Related work

Several works exist for the extraction of assembly contacts
in different application domains. In the assembly retrieval 
field, Chen et al. [5] used Degree Of Freedom (DOF), 
kinematic pair and geometric mating to enrich their assembly 
descriptor. However, they are able to extract all this 
information for some kinematic-pairs while other complicated 
kinematic-pairs have to be labeled manually. Yang et al. [1] 
proposed a simulation system for assembly process based on 
the constraint recognitions, confirmations and navigation. 
Constraint detection is handled in the recognition phase, while 
the other phases compute some transformation matrices to 
move the assembly components in virtual systems. The 
recognition phase detects six types of constraints considering 
geometric information of the involved elements and it is based 
on the equivalence between them and the DOF. However it 
requires user intervention to track the position and the 
orientation of the components. 

An automatic method to extract kinematic information 
from assembly models is developed by Park and Oh [6]. They 
assert that most of the assembly geometric models have just 
revolute and prismatic joints. Their procedure is divided in 
three main steps. First, it identifies the regions of contact 
using the collision detection of boxes and parallel 
computation to improve the speed of calculation. Focusing on 
revolute joints, the second step aims to identify the contact 
surface of the cylinder shape and the creation of the center 
axis. Last step decides the type of joint using collision 
detection. Even though their approach identifies joints 
automatically, the proposed scenario it too restricted. Swain et 
al. [7] have defined an extended liaison to integrate the 
information between the product model and the assembly 
process. This structure is able to identify the assembly process 
of riveting, welding, scree fastening, bolt fastening and 
gluing. The proposed procedure is able to extract the liaison 
details automatically from assembly models, but its main limit 
is the complexity of the algorithm. 

For finite element analysis, Shahwan et al. [4] described a 
qualitative reasoning process to detect component interfaces 
from assembly models. Their method is based on the 
definition of conventional and functional interfaces. 
Unfortunately, the geometric information intrinsically 
contained and available in the assembly model are not 
sufficient for the reasoning process and additional data 
formalized in other structures as ad-hoc ontologies are 
required. 

Fig. 1. (a) Translation by cylindrical faces; (b) Translation by planar face 



Kim et al. [8] presented ontology based reasoning techniques 
for representing and differentiating assembly joints that are 
similar from geometric and topological point of view. They 
gave definitions and theorems for characterizing assembly 
joints in mereotopological representation (a formal ontology 
that combines mereological and topological concepts) 
requiring various data as fastener attribute, screw/nut head 
and body; but it is not mentioned how this information are 
obtained from the assembly model.  

3. Enriched assembly model

When looking for an existing assembly in a database, and
depending on the objectives of the retrieval, a designer may 
be interested in different assembly characteristics. Thus, to 
support assembly retrieval with different search keys at 
different LOD, we define a multi-level assembly descriptor, 
the so-called Enriched Assembly Model (EAM). The EAM 
has four information layers: statistics, structure, interface and 
shape (Fig. 2). The statistics layer contains values that roughly 
characterize and discern assembly models. Number of sub-
assemblies, number of principal parts, number of fasteners, 
number of thin parts and number of patterns of a specific type 
(e.g. linear, rotational or reflective patterns) are attributes 
associated to the entire assembly as well as to each sub-
assembly. On the other hand, for matching purpose, the parts 
in the assembly can be filtered according to the percentage of 
a specific type of surface or the number of maximal faces of a 
specific type of surface. Then, the number of a specific joint 
type or the number of elements in contact for a specific 
contact type is considered to differentiate the type of joint 
present in an assembly model. 

The structural layer encodes the hierarchical assembly 
structure as specified at the design stage. In this organization, 
the structure is represented as a tree where the root 
corresponds to the entire assembly model, the intermediate 
nodes are associated with the sub-assemblies and the leaves 
characterize the parts. Attributes to specify parts arrangement 
(regular patterns of repeated parts) are attached to the entire 
assembly and its sub-assemblies [9]. 

The interface layer is the main focus of this paper and it 
specifies the relationships among the parts in the assembly. It 
is divided in four levels. The lowest level, i.e. the contacts 
level, encodes all the faces involved in the contact between 
two parts and the degree of freedom between those faces. 
Joint level describes the motion(s) resulting from several 
contacts between two parts, while synthesis level gathers 
together collection of parts that belong to the same 
functionality group. The highest level, i.e. the mechanism 
level, characterizes the overall motion of a part when 
considering all the associated joints.  

 The shape layer categorizes the shape of an assembly and 
its constitutive parts using several dedicated descriptors. 
Using several shape descriptors helps answering different 
assembly retrieval scenario, which can consider different 
shape characteristics. 

A complete EAM, i.e. with the four layers, is computed 
only for the models stored in the databases on which the 
search has to be performed. However, for what concerns the 
query, only those layers involved in the retrieval are 

computed and exploited, thus reducing the complexity of the 
system.  

4. Interface layer

The interface layer aims at describing the relationships
between two parts of an assembly model. Starting from the 
contacts involved between parts and then reasoning on the 
relative DOF, the relative motion of a part with respect to 
another one can be characterized. To formalize this 
knowledge, four levels are defined: contact, joint, synthesis 
and mechanism levels. The contacts level encodes all the 
faces involved in the contact between two parts and the 
degree of freedom between those faces. Joint level describes 
the motion(s) resulting from several contacts between two 
parts. Since the motion of a component in the assembly might 
be realized through different technologies (e.g. bearings, 
coupling and drive shaft), an additional level is introduced, 
the synthesis one. In this level, the parts which belong to the 
same equipment are grouped together thus creating a higher 
level of details. A further level is defined, the mechanism 
level, to define the overall motion of a part respect to the 
entire model. Fig. 3 shows an example of the structure of the 
interface layer. An assembly model is illustrated in Fig. 3(a) 
while Fig. 3(b) illustrates the four levels of the interface layer. 
The first row of Fig. 3(b) depicts the contacts through a graph 
structure, where the nodes identify the parts and the arcs 
represent the type of contacts. The portions of contacts, 
highlighted in red on Fig. 3(a), are formed by two planar and 
one cylindrical face, while the other junctions in the assembly 
involve only a cylindrical contact. For this reason, the graph 
representing the contact level has several arcs between some 
pairs of nodes. The second row of Fig. 3(b) corresponds to the 
joint level and represents the equivalent motion between two 
parts, thus the arc between nodes B and C supports an 
attribute value that indicates the rotation between the two 
corresponding parts of the assembly. The bar C and D are 
secondary parts and are inserted in the model to limit the final 
overall motion of B with respect to E, thus in the graph in the 

Fig. 2. Enriched assembly model layer 







problem, solving it by the exploitation of a probabilistic 
technique matching [12]. 

Some results are illustrated in Fig. 5. The first model used 
as query for the retrieval is a landing gear and the query 
requests models similar at the joint level. While the second 
model is a flange and, in this case, the requests is for models 
similar at the contact level. The retrieved models are very 
similar at local level, while the global similarity is represented 
by a rough measure. Two models are locally similar if a 
portion of the query model is present in the compared model. 
In both the examples, the last retrieved models are indeed 
locally similar. The structure of the hydraulic cylinder (last 
retrieved model for the first example) has the same movement 
(rotations) of the tires in the query, while the radial pistons 
(last retrieved model for the second example) have the same 
contacts given by the patterns of screws and bolts as in the 
flange model. 

The rate for the ranking is the ratio between the number of 
matched parts and the number of parts in the query models. 
This value is not accurate – because it considers only a 
parameter – but it is an index of the global percentage of the 
query in the retrieved models. With this meaning, some 
retrieved landing gears have a low global measure, but it is 
due to some additional components for which the models 
diverge. In this sense, the models are rather different at the 
joint level but should be more similar at a higher level of 
detail. 

Fig. 5. Similar models at the joint level and at contact level 

6. Conclusion and future works

The information concerning the relationships between the
components of an assembly model are crucial in several 
domains. However, for different reasons, those information 
are not always available. Tools for their automatic 

computation are important but it is not an easy task and some 
existing tools often require major user interactions. .  

Starting from the basic contacts between two parts, we 
define a first class of equivalence able to describe the motion 
between the involved parts. The simple results of the landing 
gears show the importance of additional levels for the 
equivalence. In that frame, other landing gears have the same 
final motion but involving additional components, thus the 
global measure is low (in some cases it is less then 0.50). To 
retrieve them with a higher score, fasteners and auxiliary parts 
should be neglected considering only the final motion 
between the main parts. This objective is addressed by the 
other levels of equivalence, the synthesis and the mechanism 
ones which have not been detailed in this paper. In this way, 
the landing gears designed with different components will be 
retrieved with a higher measure at the mechanism level and 
lower measure at the joint level. 

Ongoing activities aim to improve the rules for the 
computation of the DOF of the contacts and for the 
identification of their equivalence concerning also the aspect 
ratio of the contact portions. For instance, a cylindrical 
contact with L >> r (where L and r are the cylinder length and 
radius respectively) could rotate along its axis, but it allows 
small rotations along other directions also. Another upgrading 
concerns the ability of recognizing if the kinematic system 
defined by two parts is isostatic or hyper-static. This kind of 
information is useful in simulation systems. 
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