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a b s t r a c t 

FFT-based homogenization methods aim at calculating the effective behavior of heterogeneous materials 

with periodic microstructures. These methods operate on a regular grid of voxels, and hence require an 

appropriate spatial discretization of periodic microstructures. However, when different microstructural 

length scales are involved, it is not always possible to have sufficient spatial resolutions to explicitly 

consider the influence of fine microstructural features (e.g. voids, second-phase particles). To circumvent 

this difficulty, one solution consists of using composite voxel methods to define the effective properties 

and the effective internal variables of heterogeneous voxels. 

In this work, different composite voxel methods are proposed to deal with inelastic materials with mul- 

tiple length scales. These methods use simple homogenization rules to calculate the effective behavior 

of heterogeneous voxels. The first part of this paper is dedicated to the description of the composite 

voxel methods, which are based either on the Voigt, laminate structure or Mori–Tanaka approximations. 

In the second part, these methods are used to model the elasto-plastic behavior of a pearlitic steel poly- 

crystalline aggregate. According to the results, the Voigt approximation, which ignores morphological fea- 

tures, is not appropriate for treating heterogeneous voxels. When morphological information is accounted 

for, with either the laminate structure or Mori–Tanaka approximations, a better agreement with experi- 

mental observations is obtained. Though none of these methods is universal, they offer some possibilities 

to investigate the mechanical behavior of heterogeneous materials involving multiple length scales. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

FFT-based homogenization methods, originally proposed by 

Moulinec and Suquet (1998) and Müller (1996) , provide a conve- 

nient way of estimating the effective properties of heterogeneous 

materials with periodic microstructures. For instance, in a mechan- 

ical context, FFT-based methods have been used to investigate the 

behavior of different types of heterogeneous solids, including hy- 

perelastic ( Lahellec et al., 2003; Kabel et al., 2014 ), thermoelastic 

( Vinogradov and Milton, 2008; Anglin et al., 2014 ), plastic ( Michel 

et al., 2001 ), viscoplastic ( Lebensohn, 2001 ), viscoelastic ( Figliuzzi 

et al., 2016 ) and elasto-viscoplastic ( Lebensohn et al., 2012; Suquet 

et al., 2012; Eisenlohr et al., 2013; Mareau et al., 2013; Robert and 

Mareau, 2015; Mareau and Daymond, 2016 ) materials. Some recent 

applications have also used FFT-based methods to deal with non- 

local plasticity ( Lebensohn and Needleman, 2016 ) and dislocation 

mechanics ( Berbenni et al., 2014; Brenner et al., 2014 ). 

∗ Corresponding author. 

E-mail addresses: charles.mareau@ensam.eu (C. Mareau), camille.robert 
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Independently on constitutive relations, FFT-based homogeniza- 

tion methods aim at finding the solution to the integral equations 

deriving from the application of compatibility and static equilib- 

rium conditions. For the numerical resolution of the correspond- 

ing equations, different iterative procedures have been proposed 

( Moulinec and Suquet, 1998; Eyre and Milton, 1999; Michel et al., 

2001; Monchiet and Bonnet, 2012 ). As shown in the comparative 

study of Moulinec and Silva (2014) , the efficiency of these pro- 

cedures depends on the property contrast. Also, instead of using 

a fixed-point algorithm, an alternative strategy, which is based 

on the conjugate gradient method, has been proposed by Zeman 

et al. (2010) to improve convergence properties. This idea has 

been extended to non-linear constitutive relations by Gélébart and 

Mondon-Cancel (2013) . 

Whatever the iterative procedure is, and except for some spe- 

cific cases, FFT-based methods do not provide exact solutions to 

the integral equations, but only numerical approximations whose 

accuracy depend on different factors. 

First, the numerical resolution of integral equations requires 

the introduction of a homogeneous reference medium to which 

a Green operator is associated. As shown in the work of 

http://dx.doi.org/10.1016/j.mechmat.2016.12.002 

0167-6636/© 2016 Elsevier Ltd. All rights reserved. 
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Brisard and Dormieux, 2012; Willot, 2015; Willot and Pellegrini, 

2008 , alternative definitions of the Green operator may contribute 

to improving both the accuracy of the stress and strain fields and 

the convergence properties. 

Second, FFT-based homogenization methods operate on a reg- 

ular grid of voxels, and hence require an appropriate spatial dis- 

cretization of periodic microstructures. Evidently, the accuracy of 

the numerical approximation is largely influenced by the spatial 

resolution used for discretizing the volume element. 

Third, within the volume of a voxel, different constituents may 

exist. This situation is for instance encountered in interfacial vox- 

els which connect multiple domains with different properties. For 

the specific case of interfacial voxels, with either a linear ( Gélébart 

and Ouaki, 2015; Kabel et al., 2015 ) or a non-linear behavior ( Kabel 

et al., 2016a; 2016b ), the solution quality can be improved by using 

some simple homogenization rules to define the effective behavior 

of such voxels. 

When multiple length scales are involved in a microstructure, 

different constituents may also exist within a voxel. Indeed, when 

fine microstructural details exist (e.g. nano-particles, micro-voids), 

high spatial resolutions are usually needed to explicitly consider 

such details. The computational cost is however often prohibitive 

and some alternative strategies have to be developed. In this work, 

different com posite voxel methods are proposed to circumvent this 

difficulty. These methods treat voxels as heterogeneous media and 

use homogenization techniques to compute the effective behavior. 

This paper is organized as follows. In the first part, the equa- 

tions governing the mechanical behavior of heterogeneous materi- 

als with periodic microstructures are given and the strategy for nu- 

merically solving these equations using FFT techniques is recalled. 

Then, different com posite methods for treating heterogeneous vox- 

els are proposed for materials exhibiting an inelastic behavior. Fi- 

nally, to demonstrate the interest of such methods, the elasto- 

plastic behavior of a pearlitic steel polycrystalline aggregate is in- 

vestigated. The different homogenization methods are employed 

to consider the characteristic two-phased fine microstructure of 

pearlite. The relevance of the proposed composite voxel methods 

is discussed from numerical results. 

2. Field equations 

To represent a heterogeneous material with periodic mi- 

crostructure, a unit cell with volume V and boundary ∂V is consid- 

ered. For the specific case of periodic boundary conditions, the dis- 

placement vector u ( x , t ), which is associated with a material point 

occupying a position x at time t , is decomposed as follows: 

u ( x , t ) = 

˜ u ( x , t ) + ( E ( t ) + �( t ) ) · x (1) 

where ˜ u ( x , t ) is the periodic part of the displacement field, E ( t ) 

and �( t ) are respectively the macroscopic strain and rotation ten- 

sors. The effective response of the heterogeneous material is given 

by the evolution of the macroscopic stress tensor �( t ), which de- 

pends on microstructural features, local constitutive relations and 

prescribed loading conditions. The macroscopic quantities �( t ), E ( t ) 

and �( t ) are connected to their microscopic counterparts σ( x , t ), 

ε( x , t ) and ω( x , t ) with the classical averaging relations of homog- 

enization theory: 

�( t ) = 

1 

V 

∫ 
V 

σ( x , t ) dV (2) 

E ( t ) = 

1 

V 

∫ 
V 

ε( x , t ) dV (3) 

�( t ) = 

1 

V 

∫ 
V 

ω ( x , t ) dV (4) 

The problem of finding the local fields σ( x , t ), ε( x , t ) and ω( x , t ) 

consists of solving a particular set of differential equations result- 

ing from compatibility and equilibrium conditions. More specifi- 

cally, in the absence of volume forces, the respect of static equilib- 

rium conditions imposes: 

div ( σ) | x ,t = 0 (5) 

Also, within the framework of infinitesimal strains and rotations, 

for compatibility conditions to be satisfied, the strain and rotation 

fields have to derive from the displacement field: 

ε( x , t ) = sym ( grad ( u ) | x ,t ) (6) 

ω ( x , t ) = skw ( grad ( u ) | x ,t ) (7) 

The resolution of the above differential equations requires spec- 

ifying the constitutive relations associated with each material 

point. In the present work, we restrict ourselves to constitutive 

models for which the local strain and rotation tensors can be de- 

composed into elastic (superscript e ) and inelastic 1 (superscript in ) 

contributions: 

ε( x , t ) = εe ( x , t ) + εin ( x , t ) (8) 

ω ( x , t ) = ω 

e ( x , t ) + ω 

in ( x , t ) (9) 

In the context of linear elasticity, the microscopic stress tensor σ( x , 

t ) is connected to the elastic strain tensor εe ( x , t ) according to: 

σ( x , t ) = C ( x , t ) : εe ( x , t ) (10) 

where C is the elastic stiffness tensor and S (with S = C 

−1 ) is the 

elastic compliance tensor. 

The introduction of a reference elastic homogeneous medium, 

with stiffness C 

0 , allows the reformulation of the above problem 

in the form of a set of integral equations: 

ε( x , t ) = E ( t ) −
∫ 

V 

G sym 

(
x − x ′ 

)
: τ

(
x ′ , t 

)
dV (11) 

ω ( x , t ) = �( t ) −
∫ 

V 

G skw 

(
x − x ′ 

)
: τ

(
x ′ , t 

)
dV (12) 

where G sym 

(respectively G skw 

) is the symmetric (respectively 

skew-symmetric) modified Green operator associated with the ref- 

erence medium and τ is the polarization field whose definition is: 

τ( x , t ) = σ( x , t ) − C 

0 : ε( x , t ) (13) 

In the present work, the reference medium is assumed to be 

isotropic with a bulk modulus k 0 and a shear modulus μ0 . These 

properties are chosen according to the suggestion of Eyre and Mil- 

ton (1999) : 

k 0 = 

√ 

k min k max (14) 

μ0 = 

√ 

μmin μmax (15) 

where k min and k max (respectively μmin and μmax ) are the min- 

imum and maximum values of the bulk modulus (respectively 

shear modulus) in V . 

1 No particular restriction applies to the origin of the inelastic contribution (e.g. 

thermal, plastic, viscoplastic). 
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3. FFT-based resolution method 

In most situations, no analytical solution is available for the in- 

tegral Eqs. (11) and (12) . To obtain a numerical solution, the vol- 

ume element is discretized into N voxels with volume v . For a 

given voxel, the corresponding barycentric position x̄ is: 

x̄ = 

1 

v 

∫ 
v 

x dv (16) 

The discrete form of Eqs. (11) and (12) is then given by: 

ε̄( ̄x , t ) = E ( t ) −
∑ 

N 

G sym 

(
x̄ − x̄ 

′ )
: τ̄

(
x̄ 
′ 
, t 

)
(17) 

ω̄ ( ̄x , t ) = �( t ) −
∑ 

N 

G skw 

(
x̄ − x̄ 

′ )
: τ̄

(
x̄ 
′ 
, t 

)
(18) 

where ε̄( ̄x , t ) , ω̄ ( ̄x , t ) , σ̄( ̄x , t ) and τ̄( ̄x , t ) = σ̄( ̄x , t ) − C 

0 : ε̄( ̄x , t ) 
represent respectively the strain tensor, the rotation tensor, the 

stress tensor and the polarization tensor associated with a voxel 

of position x̄ at time t . A convenient way of evaluating the con- 

volution operations involved in the above equations consists of 

using the discrete Fourier transform. Indeed, the application of 

the Fourier transform, which is denoted by a ’ ˆ ’ symbol, to 

Eqs. (17) and (18) leads to: 

ˆ ε̄
(
ξ, t 

)
= 

{
E ( t ) ξ = 0 

− ˆ G sym 

(
ξ
)

: ˆ τ̄
(
ξ, t 

)
ξ � = 0 

(19) 

ˆ ω̄ 

(
ξ, t 

)
= 

{
�( t ) ξ = 0 

− ˆ G skw 

(
ξ
)

: ˆ τ̄
(
ξ, t 

)
ξ � = 0 

(20) 

where ξ denotes the frequency vector. The integral Eqs. (17) and 

(18) are thus solved in the frequency domain, and the applica- 

tion of the inverse Fourier transform leads to the expression of the 

fields ε̄( ̄x , t ) and ω̄ ( ̄x , t ) in the original spatial domain. However, 

because the polarization field τ̄( ̄x , t ) depends on the strain field 

ε̄( ̄x , t ) , an iterative procedure is generally required to solve (19) . 

In this work, the procedure proposed by Eyre and Milton (1999) , 

which is detailed in Appendix A , is used to solve (19) . 

Also, for the resolution of Eqs. (19) and (20) , the expressions of 

the modified Green operators in the frequency domain need to be 

known. In this work, a centered finite difference approximation is 

used to construct these operators from compatibility and equilib- 

rium conditions ( Willot, 2015 ). 

4. Composite voxel methods 

When discretizing a volume element, the application of the 

above FFT-based resolution method requires to define the proper- 

ties associated with each voxel. While the common method con- 

sists of assigning the properties of the predominant constituent, 

more sophisticated strategies can be used. Here, to deal with two- 

scale microstructures, voxels are decomposed into different com- 

plementary domains corresponding to different constituents. Each 

sub-domain, say α (with α = 1 to M ), has homogeneous properties. 

For each voxel of volume v , the introduction of a set of indicator 

functions ηα( x , ̄x , t ) allows the calculation of the volume fractions 

φα of the different constituents: 

φα( ̄x , t ) = 

1 

v 

∫ 
v 
ηα( x , ̄x , t ) dv (21) 

The indicator functions ηα( x , ̄x , t ) take a unity value when the po- 

sition x is included in the αth domain of the voxel with barycen- 

tric position x̄ and a zero value elsewhere. For the αth domain 

of the voxel with barycentric position x̄ , the average stress, strain 

and rotation fields at time t are denoted by σα( ̄x , t ) , εα( ̄x , t ) and 

ω 

α( ̄x , t ) . 

Assuming the characteristic length scales associated with the 

different constituents are inferior to the size of a voxel, the effec- 

tive stress, strain and rotation tensors are then defined from the 

averaging relations: 

σ̄( ̄x , t ) = 

∑ 

α

( φα( ̄x , t ) σα( ̄x , t ) ) (22) 

ε̄( ̄x , t ) = 

∑ 

α

( φα( ̄x , t ) εα( ̄x , t ) ) (23) 

ω̄ ( ̄x , t ) = 

∑ 

α

( φα( ̄x , t ) ω 

α( ̄x , t ) ) (24) 

For each constituent, the stress tensor σα( ̄x , t ) is connected to the 

strain tensor εα( ̄x , t ) according to an inelastic type of constitutive 

relation: 

σα( ̄x , t ) = C 

α( ̄x , t ) : 
(
εα( ̄x , t ) − εin,α( ̄x , t ) 

)
(25) 

where C 

α( ̄x , t ) and εin,α ( ̄x , t ) are the elastic stiffness tensor and 

the inelastic strain tensor for the αth constituent. 

In the following, different homogenization methods for assign- 

ing properties to heterogeneous voxels are presented. For a given 

voxel, these methods aim at finding the effective behavior which 

is given by the effective elastic stiffness tensor C̄ ( ̄x , t ) and the ef- 

fective inelastic strain tensor ε̄in 
( ̄x , t ) . These tensors connect the 

effective stress tensor to the effective strain tensor according to: 

σ̄( ̄x , t ) = C̄ ( ̄x , t ) : 
(
ε̄( ̄x , t ) − ε̄in 

( ̄x , t ) 
)

(26) 

When inelastic strains are treated as eigenstrains, the problem 

of finding C̄ ( ̄x , t ) and ε̄in 
( ̄x , t ) is solved using the general equations 

for the homogenization of heterogeneous linear thermoelastic me- 

dia. According to the classical result of homogenization theory of 

Rosen and Hashin (1970) , and whatever the retained homogeniza- 

tion method is, the effective stiffness tensor C̄ ( ̄x , t ) and the effec- 

tive inelastic strain tensor ε̄in 
( ̄x , t ) are given by: 

C̄ ( ̄x , t ) = 

∑ 

α

φα( ̄x , t ) C 

α( ̄x , t ) : A 

α( ̄x , t ) (27) 

ε̄in 
( ̄x , t ) = 

∑ 

α

φα( ̄x , t ) B 

αT 

( ̄x , t ) : εin,α( ̄x , t ) (28) 

where A 

α and B 

α are the elastic strain and stress concentration 

tensors for the αth constituent. These tensors, which need to be 

specified for each homogenization method, are connected to each 

other with the following relation: 

B 

α( ̄x , t ) = C 

α( ̄x , t ) : A 

α( ̄x , t ) : S̄ ( ̄x , t ) (29) 

where S̄ = C̄ 

−1 is the effective elastic compliance tensor. 

In the following, for convenience, the dependence with position 

and time will be omitted unless needed. 

4.1. Voigt approximation 

For a given voxel, a simple approximation consists of consider- 

ing the strain and rotation fields to be uniform within v . Thus, lo- 

calization equations, which connect εα and ω 

α to ε̄ and ω̄ , are: 

εα = ε̄ (30) 

ω 

α = ω̄ (31) 

The elastic strain concentration tensor A 

α, which is needed to 

compute the effective elastic stiffness tensor and the effective in- 

elastic strain tensor, is given for each domain by: 

A 

α = I (32) 
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where I is the fourth rank identity tensor. 

While the Voigt approximation is straightforward to implement, 

it has two major drawbacks. First, the influence of morphological 

factors is completely ignored, only the volume fractions are con- 

sidered. Second, it is an upper bound approximation which often 

leads to an important overestimation of internal stresses. 

4.2. Laminate structure approximation 

Another approximation is obtained by treating a heterogeneous 

voxel as a laminate structure. For such a voxel, the planar inter- 

faces separating the different constituents have the same normal 

direction, which is defined by the unitary vector k . Considering 

the interfaces to be perfect, the continuity of the traction vector 

imposes: 

σα · k = σ̄ · k (33) 

Also, for the strain and rotation tensors to be compatible, the fol- 

lowing equalities must hold: 

εα : ( l � l ) = ε̄ : ( l � l ) (34) 

εα : ( m � m ) = ε̄ : ( m � m ) (35) 

( εα + ω 

α) : ( l � m ) = ( ̄ε + ω̄ ) : ( l � m ) (36) 

( εα + ω 

α) : ( k � l ) = ( ̄ε + ω̄ ) : ( k � l ) (37) 

( εα + ω 

α) : ( k � m ) = ( ̄ε + ω̄ ) : ( k � m ) (38) 

In the above equations, l and m are two mutually orthogonal vec- 

tors which are orthogonal to k . The complete set of strain and rota- 

tion localization equations is obtained by introducing constitutive 

relations into Eq. (33) : (
C 

α : 
(
εα − εin,α

))
· k = 

(
C̄ : 

(
ε̄ − ε̄in 

))
· k (39) 

For a given voxel with prescribed strain and rotation tensors ( ̄ε and 

ω̄ ), relations (34) to (39) allow the determination of the strain and 

rotation tensors associated with the αth constituent. The applica- 

tion of relation (39) however requires the knowledge of the ef- 

fective elastic stiffness tensor C̄ and the effective inelastic strain 

tensor ε̄in . To compute these tensors, relations (34) to (39) are 

grouped according to: 

F 

α : εα − H 

α : εin,α = F̄ : ε̄ − H̄ : ε̄in 
(40) 

The elastic strain concentration tensor A 

α for the αth domain is 

then deduced from the averaging condition (23) : 

A 

α = F 

α−1 

: 

(∑ 

α

(
φα

F 

α−1 ))−1 

(41) 

The effective stiffness tensor C̄ and the effective inelastic strain 

tensor ε̄in are finally obtained from relations (27) and (28) . With 

the above definition of the elastic strain concentration tensors, the 

expression of the effective stiffness tensor C̄ is valid for any class 

of material symmetry; it is equivalent to the general expression 

proposed by Milton (2002) for laminate composite materials. 

In contrast with the Voigt approximation, the laminate struc- 

ture approximation considers some kind of morphological informa- 

tion to determine the effective behavior of a given voxel. Though 

this approach does not require any sophisticated numerical proce- 

dure, it is restricted to lamellar structures. 

4.3. Mori–Tanaka approximation 

For some voxels, a matrix-inclusion type of structure can some- 

times be assumed. In such situations, if the matrix constituent 

represents a large portion of the heterogeneous voxel, the Mori–

Tanaka approximation ( Mori and Tanaka, 1973 ) can be used to es- 

timate the corresponding effective properties. For the matrix con- 

stituent, the superscript α = μ is used while inclusion constituents 

are denoted by the superscript α = β . According to the Mori–

Tanaka approximation, the strain and rotation tensors for inclusion 

constituents are given by: 

εβ = A 

�β : εμ + A 

�β : E 

β
sym 

: S μ : 
(
C 

β : εin,β − C 

μ : εin,μ
)

(42) 

ω 

β = ω 

μ + E 

β
skw 

: E 

β−1 

sym 

: 
(
εβ − εμ

)
(43) 

where E 

β
sym 

and E 

β
skw 

are the symmetric and skew-symmetric Es- 

helby tensors associated with the βth inclusion. The tensor A 

�β is 

calculated from: 

A 

�β = 

(
I + E 

β
sym 

: S μ : 
(
C 

β − C 

μ
))−1 

(44) 

The strain and rotation tensors for the matrix constituent ( εμ and 

ω 

μ) are obtained from the averaging conditions (23) and (24) : 

εμ= A 

�μ : ̄ε−A 

�μ : 
∑ 

β

(φβ
A 

�β : E 

β
sym 

: S μ : (C 

β : εin,β−C 

μ : εin,μ)) 

(45) 

ω 

μ = ω̄ −
∑ 

β

(
φβ

E 

β
skw 

: E 

β−1 

sym 

: 
(
εβ − εμ

))
(46) 

with: 

A 

�μ = 

( ∑ 

β

(
φβ

A 

�β
)

+ φμ
I 

) −1 

(47) 

The following expression of the elastic strain concentration tensor 

is used to determine the effective stiffness tensor C̄ and the effec- 

tive inelastic strain tensor ε̄in : 

A 

α = 

{
A 

�μ, α = μ
A 

�β : A 

�μ, α = β
(48) 

In some specific situations, the Mori–Tanaka approximation 

provides an accurate estimation of the effective properties associ- 

ated with a heterogeneous voxel. Nevertheless, the Eshelby tensor 

E 

α
sym 

has to be known to compute the effective properties. While 

some analytical expressions are available for ellipsoidal inclusions 

when the elastic properties of the matrix material are isotropic 

( Mura, 1987 ), a numerical procedure is needed to evaluate these 

tensors in the general case. 

5. Application to pearlitic microstructures 

In this section, the mechanical behavior of a fully pearlitic eu- 

tectoid steel is investigated. Pearlite is a lamellar aggregate with 

alternating layers of cementite and ferrite for which the charac- 

teristic length scale is typically about a few hundreds of nanome- 

ters ( Marder and Bramfitt, 1976; Dollar et al., 1988; Yahyaoui et al., 

2014 ), much lower than the typical grain size of pearlitic grains. 

In equilibrium conditions, the volume fractions of ferrite and ce- 

mentite are respectively about 88% and 12%. Since the explicit dis- 

cretization of pearlitic microstructures is often not possible, com- 

posite voxel methods provide a solution for dealing with such fine 

microstructures. 
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5.1. Constitutive model 

For a given constituent (i.e. ferrite or cementite), a rate- 

dependent elasto-plastic behavior is assumed. Adopting the gen- 

eral framework of crystal plasticity for rate-independent processes 

( Hill, 1966 ), a set of S slip systems is introduced to express the in- 

elastic contribution. Each slip system s (with s = 1 to S ) is defined 

with a slip direction b s, α and a slip plane normal n 

s, α . The inelas- 

tic strain and rotation tensors ( εp, α and ω 

p, α) are expressed as a 

function of the plastic shear strains γ s, α according to: 

εin,α = 

∑ 

s 

sym 

(
b 

s,α
� n 

s,α
)
γ s,α (49) 

ω 

in,α = 

∑ 

s 

skw 

(
b 

s,α
� n 

s,α
)
γ s,α (50) 

The shear stress τ s, α acting on a given slip system is obtained 

from the projection of the stress tensor σα: 

τ s,α = b 

s,α · σα · n 

s,α (51) 

For each slip system, plastic flow is possible only when the criti- 

cal shear stress g s, α is reached. The evolution of the critical shear 

stress is assumed to be linear: 

g s,α = g α0 + 

∑ 

q 

( H 

sq,α p q,α ) (52) 

where g α
0 

is the initial value of the critical shear stress, H 

α is the 

hardening matrix and p s, α is the accumulated plastic shear strain 

(i.e. ˙ p s,α = | ̇ γ s,α| ). Within a rate-independent plasticity framework, 

active slip systems are defined according to the following condi- 

tions: 

˙ γ s,α � = 0 , | τ s,α| = g s,α and | ̇ τ s,α| = 

˙ g s,α (53) 

˙ γ s,α = 0 , | τ s,α| < g s,α or | ̇ τ s,α| < 

˙ g s,α (54) 

At each time t , for active slip systems, the corresponding plastic 

shear strain rates ˙ γ s,α are determined to fulfill the consistency 

condition | ̇ τ s,α| = ˙ g s,α . 

According to the above constitutive relations, the set of mate- 

rial parameters for a given constituent consists of the independent 

thermoelastic constants associated with C 

α and αα , the initial crit- 

ical shear stress g α
0 

and the hardening matrix H 

α . 

5.2. Representative volume element 

To represent the pearlitic steel aggregate, the volume element 

presented in Fig. 1 is used. It has been constructed from a Voronoï

tessellation and consists of 200 equiaxed grains with random crys- 

tallographic orientations. For the application of the FFT-based reso- 

lution method, the volume element is discretized into 128 3 voxels. 

To describe pearlitic microstructures, three different assump- 

tions are used: the Voigt approximation, the laminate structure 

approximation and the Mori–Tanaka approximation. For the appli- 

cation of the Mori–Tanaka approximation, ferrite is considered to 

be the matrix constituent and cementite lamellas are treated as 

penny-shaped inclusions with an aspect ratio of 20. 

The numerical procedures used for computing the effective be- 

havior of a volume element with prescribed boundary conditions 

are detailed in Appendix A . 

5.3. Material parameters 

The elastic constants associated with cementite, for which a 

purely elastic behavior was assumed, were extracted from the 

work of Henriksson et al. (2008) . For ferrite, both the {110} 〈 111 〉 

Fig. 1. Periodic representative volume element used for the different calculations. 

The volume element is discretized into 128 3 voxels. 

Table 1 

Material parameters for the eutectoid 

steel grade. Only independent elastic 

constants are listed. 

Cementite 

C 11 (GPa) C 12 (GPa) C 13 (GPa) 

394 157 146 

C 22 (GPa) C 23 (GPa) C 33 (GPa) 

412 166 360 

C 44 (GPa) C 55 (GPa) C 66 (GPa) 

83 133 136 

Ferrite 

C 11 (GPa) C 12 (GPa) C 44 (GPa) 

231 135 116 

g 0 (MPa) H ss (MPa) H st (MPa) 

270 2 .2 2 .0 

and {112} 〈 111 〉 slip systems have been considered. The correspond- 

ing hardening parameters have been chosen to match the experi- 

mental results of Inal et al. (2004) who used diffraction techniques 

to determine the evolution of the average axial stress in each phase 

during an uniaxial tension test. The material parameters associated 

with both phases are listed in Table 1 . 

5.4. Results 

First, the effective response of the pearlitic polycrystalline ag- 

gregate has been computed for the case of uniaxial tension (up to 

an axial strain E 11 of 2%). The evolution of the macroscopic ax- 

ial stress 
11 as a function of the macroscopic axial strain E 11 is 

plotted in Fig. 2 . The evolution of the average stress is given for 

each metallurgical phase (ferrite and cementite) in Figs. 3 and 4 . 

According to the results, the effective hardening rate in the plastic 

regime is much higher when the Voigt approximation is used. This 

difference between the Voigt approximation and the other approx- 

imations can be attributed to internal stresses, which are largely 

overestimated with the Voigt approximation. Indeed, while the be- 

havior of the ferritic phase is correctly described with all methods, 

important discrepancies exist concerning cementite. More specif- 

ically, the bilinear type of behavior which is experimentally ob- 
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Fig. 2. Evolution of the macroscopic axial stress 
11 as a function of the macro- 

scopic axial strain E 11 for a pearlitic steel polycrystalline aggregate subjected to uni- 

axial tension. 

Fig. 3. Evolution of the average stress in ferrite as a function of the macroscopic 

axial strain E 11 for a pearlitic steel polycrystalline aggregate subjected to uniaxial 

tension. The experimental results were obtained by ( Inal et al., 2004 ). 

Fig. 4. Evolution of the average stress in cementite as a function of the macroscopic 

axial strain E 11 for a pearlitic steel polycrystalline aggregate subjected to uniaxial 

tension. The experimental results were obtained by ( Inal et al., 2004 ). 

served for cementite is reasonably reproduced only when the lam- 

inate structure or the Mori–Tanaka approximations are used. For 

a given voxel, the Voigt approximation imposes the same strain 

state in both constituents. It thus fails in describing the fact that 

strains are preferably transferred to the soft constituent (ferrite) 

rather than the hard constituent (cementite). As a consequence, 

important internal stresses are generated in cementite because the 

imposed strain state is accommodated in a purely elastic manner. 

These internal stresses provide a supplementary contribution to 

hardening, resulting in an overestimation of the final axial stress 

in cementite. These results thus emphasize the importance of a 

Table 2 

Total computation times required for per- 

forming uniaxial tension simulations for 

each method. 

Method Computation time (s) 

Voigt 1 .27 × 10 5 s 

Laminate 2 .16 × 10 5 s 

Mori–Tanaka 2 .67 × 10 5 s 

proper description of morphological features when evaluating the 

response of heterogeneous materials with multiple length scales. 

The above computations have been performed on a DELL Pow- 

erEdge R710 server with 2 processors (Intel Xeon X5690) using 8 

cores. The computation time required for performing uniaxial ten- 

sion simulations is given for each method in Table 2 . The lowest 

computation time is obtained with the Voigt approximation, which 

does not involve any sophisticated numerical procedure. At the op- 

posite, important computational efforts are needed for the applica- 

tion of the Mori–Tanaka approximation. Indeed, for this homoge- 

nization method, the determination of effective properties requires 

additional operations with a significant impact on the total com- 

putation time. 

Finally, the response of the pearlitic polycrystalline aggregate 

has been calculated for plane strain loading conditions such that 

the imposed macroscopic strain state is: 

E = 

∣∣∣∣∣
+10% 0 0 

0 0 0 

0 0 −10% 

∣∣∣∣∣ (55) 

The loading conditions are chosen to represent a rolling operation 

with a reduction ratio of 10%. To show how rotations are impacted 

by the chosen homogenization method, the final {110} and {111} 

pole figures obtained for the ferritic phase after rolling are plotted 

in Fig. 5 . Though quite similar trends are obtained for all approxi- 

mations, texture evolution is found to be slightly more pronounced 

when the Voigt approximation is used. 

6. Conclusions 

When using FFT-based techniques for modelling the behavior of 

heterogeneous materials with periodic microstructures, the com- 

mon strategy consists of assuming the mechanical properties to 

be homogeneous within each voxel. This assumption is however 

not sufficient for microstructures with multiple length scales for 

which some specific strategies have to be developed. In the first 

part of this paper, different methods for considering multiple mi- 

crostructural length scales have been proposed for materials with 

an inelastic behavior. More specifically, three different strategies, 

which use elementary homogenization rules to determine the ef- 

fective behavior of heterogeneous voxels, have been described: the 

Voigt approximation, the laminate structure approximation and the 

Mori–Tanaka approximation. 

Then, to demonstrate their interest, these methods have been 

used to calculate the effective behavior of a pearlitic steel poly- 

crystalline aggregate. According to the numerical results, a spe- 

cific care should be taken when using the Voigt approximation. 

Indeed, the Voigt approximation, which is an upper bound approx- 

imation, strongly overestimates macroscopic stresses and ignores 

the influence of morphological features. The impact of such fea- 

tures on the effective behavior can be considered by using either 

the laminate structure approximation or the Mori–Tanaka approx- 

imation. The application of the Mori-Tanaka approximation how- 

ever requires more important computational efforts. 
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Fig. 5. Final {110} and {111} pole figures for the ferritic phase of a pearlitic polycrystalline aggregate after rolling. The crystallographic orientations have been calculated with 

different approximations (Voigt, laminate structure or Mori–Tanaka). Pole figures have been plotted using the MTEX package ( Hielscher and Schaeben, 2008 ). 

Appendix A. Implementation details 

The global strategy used for computing the effective behavior 

of a volume element with prescribed boundary conditions is de- 

scribed in Table A.3 . The objective of the iterative procedure (from 

step 3a to step 3h) is twofold. First, it is needed to ensure that, 

once convergence is reached, the effective properties C̄ and ε̄in 

used for steps 3c and d are the same as those determined from 

step 3f. Second, there are some situations where stress-controlled 

or mixed loading conditions are imposed to the volume element. 

However, whatever the boundary conditions are, step 3c uses the 

macroscopic strain and rotation tensors E and � to solve the in- 

tegral Eqs. (11) and (12) . The iterative procedure thus also aims 

at finding the macroscopic strain tensor E satisfying the imposed 

stress-controlled or mixed loading conditions. 

Convergence is reached once the difference between the strain 

tensors obtained from two consecutive iterations is small enough. 

In the present work, a tolerance e c of 10 −8 has been used for de- 

termining whether convergence is reached or not. 

Also, one should note that the iterative procedure, which is 

needed for the resolution of the integral Eqs. (11) and (12) , is con- 

tained in step 3c. In the present work, the resolution method pro- 
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Table A.3 

Description of the strategy used for computing the effective behavior of a vol- 

ume element with FFT-based methods. 

Algorithm 

1 Set the state variables to their initial values 

2 For each time increment: 

� i = 0 

3 Do while e ≥ e c : 

a/ Start a new iteration 

� i = i + 1 

b/ Estimate the macroscopic strain and rotation tensors from 

boundary conditions 

� E i and �i 

c/ Use the iterative procedure of Eyre and Milton (1999) to solve 

Eqs. (11) and (12) 

� ε̄i and ω̄ i 

d/ Use localization equations to determine the strain and 

rotation tensors within each constituent 

� εα
i 

and ω 

α
i 

e/ Integrate the constitutive relations for each constituent 

� σα
i 
, εin,α

i 
and internal variables 

f/ Determine the effective properties for each voxel 

� C̄ i and ε̄in 
i 

g/ Calculate the macroscopic stress state from relation (2) 

� �i 

h/ Evaluate the convergence indicator e : 

e = max V 
(|| εα

i 
− εα

i −1 
|| )

4 Update the state variables 

Table A.4 

Description of the iterative procedure used for solving the integral Eqs. (11) 

and (12) with FFT-based methods. 

Algorithm 

1 Compute the modified Green operator in the frequency domain 

� ˆ G sym and ˆ G skw 

2 Provide the tensor field ē with an initial estimate 

� ē 0 = E 

� i = 0 

3 Do while e ′ ≥ e ′ c : 
a/ Start a new iteration 

� i = i + 1 

b/ Calculate the polarization tensor field 

� τ̄ i = C̄ : 
(
ē i −1 − ε̄in 

)
− C 

0 : ̄e i −1 

c/ Use the FFT algorithm to calculate the polarization tensor field 

in the frequency domain 

� ˆ τ̄ i = FFT ( ̄τ i ) 

d/ Compute the convolution operation 

� G sym ∗ τ̄ i = FFT −1 
(

ˆ G sym : ̂  τ̄ i 

)
e/ Propose a new estimation for the tensor field e 

� ē i = ̄e i −1 + 2 
(
C 

0 + ̄C 

)−1 
: C 0 : ( E − ē i −1 − G sym ∗ τ̄ i ) 

f/ Evaluate the convergence indicator 

� e ′ = max V ( || ̄e i − ē i −1 || ) 
3 Set the strain field ε̄ equal to the tensor field ē 

� ε̄ = ̄e i 
4 Compute the convolution operation 

� G skw ∗ τ̄ i = FFT −1 
(

ˆ G skw : ̂  τ̄ i 

)
5 Calculate the rotation field 

� ω̄ = � − G skw ∗ τ̄ i 

posed by Eyre and Milton (1999) , which has been later reformu- 

lated by Michel et al. (2001) , is used. A detailed description of the 

procedure is given in Table A.4 . For the calculations presented in 

this work, a value of 10 −9 is used for the convergence criterion e ′ c . 
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