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Abstract 
Chatter prediction is nowadays frequently carried out for machining operations involving deformable parts or 
tools. These analyses are commonly based on the uncoupled elements of the system: frequency response of 
the deformable parts under non-rotating conditions and cutting law. The present investigation puts forward 
the dynamics of a thin-walled tubular part during straight axial turning undergoing chatter instability. Studied 
system’s peculiarities include quasi-static nominal cutting conditions and twin flexural modes featuring strong 
variation of modal characteristics along the pass. 
The measurement records, based mainly on fixed-frame non-contact eddy-current displacement probes, are 
performed during the machining operation. Additional hammer modal analysis tests are also carried out. As 
can be observed from time and spectral analysis of the records, the system's response features several 
characteristic phenomena as, for example, twin mode separation. The influence of different factors, such as 
the additional stiffness due to the tool presence, gyroscopic effects and the fixed sensors measurement on 
rotating part is investigated. 
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1 INTRODUCTION 
Machining of thin-walled parts, due to the workpiece 
compliance, is prone to vibrations. A particularity of thin-
walled structures machining is the variation of the 
dynamical properties coming from matter removal. One of 
the first detailed accounts of chatter occurring during the 
turning thin-walled cylindrical parts was provided by 
Arnold in 1961 [1], Thin-walled structures elastodynamics 
have since been addressed in detail, but few works since 
then have investigated the machining-induced vibrations 
of such structures in case of turning. In 2002 Mehdi et al. 
[2, 3] have reported results of investigations on thin-
walled tubular parts turning with chatter, principally 
arguing the damping aspect. Lorong et al. in 2011 [4] 
have presented a time domain numerical simulation 
approach, qualitatively reproducing experimentally 
observed chatter-induced vibrations. 
Among various causes of vibrations induced in 
machining, an important one is regenerative mechanism, 
leading to chatter. This phenomenon, first explained in 
years 1950 by Tobias [5] and Tlusty [6], based on a delay 
term due to the previous turn’s influence on the current 
tool-workpiece interaction, has given place to a now 
classical analysis approach involving stability lobe 
diagrams [7]. Gerasimenko et al. have carried out an 
application of this approach to thin-walled tube under 
turning in 2015 [8]. 
One of the limitations in experimental investigations of 
chatter vibrations is the frequency range of classical 
cutting dynamometers, disabling valid dynamic force 
assessment for some configurations, such as the one 
studied by [4,8], with vibrations above 1.5 kHz. Thus, 
partial or indirect measurements are mostly used, non-
rotating part and non-cutting tool modal analysis, tool-
workpiece interaction dynamometry on stiff part etc. 
The purpose of the present work is to go further in the 
detail of the complexity of measured displacement 
response during a turning pass on a tubular part involving 
chatter. The issue is addressed via time-frequency 

analysis of measured signals as well as by numerical and 
analytical investigations.  
The paper is composed as follows. The experimental 
setup is presented as well as the studied turning operation 
in section 2 alongside a finite element model of the 
workpiece. Global time-frequency post-processing of the 
measured signals with FEM analysis of matter removal 
influence are exposed in section 3. Finally, the influence 
of different factors related to the rotation and to the tool 
presence on the measured response spectrum is then 
carried out in section 4. 

2 EXPERIMENTAL SETUP 
2.1 Instrumented tubular part experiment 
The addressed case consists in turning a clamped-free 
tubular part (Figure 1, Table 1). A photograph of the 
workpiece, tool and instrumentation is shown on Figure 2. 
The present investigation is based on the non-contact 
measurement of displacement on the outer surface at the 
free end of the part (eddy current probe). Hammer tests 
are also carried out before and after the machining pass.    
After machining, the remaining thickness of the tube is 
e=4.4 mm. 

Feed (axial) f = 0.25 mm/turn 

Penetration (radial) Ap = 1 mm 

Rotation period T = 79.14 ms 

Outer diameter (final) D = 158.3 mm 

Inner diameter d = 149.5 mm 

Workpiece material C38 steel 

Tool holder reference Sandvik MS SNR 2525 M12 

Tool insert reference SCMT 432-PR

Table 1: Process and workpiece parameters. 



Figure 1: Workpiece and turning operation schematic. 
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Figure 2: Workpiece, tool and instrumentation  
(* hammer and accelerometer absent during turning). 

2.2 Finite element model 
In order to better analyze the frequency contents of the 
measured signal we have elaborated a finite element 
model of the tube and its fixture (the 3 jaws of the chuck). 
This model uses 10 nodes parabolic tetrahedrons. 
Material data are: Young modulus 2.1∙1011Pa, density 
7800 kg/m3, Poisson ratio 0.3. 
The model takes into account the effect of the tool 
progression. This can be seen on Figure 3 (with 
noticeable exaggeration on this figure in order to render it 
clearly visible). This taking into account is necessary as 
matter removal modifies the thickness of the workpiece, 
and thus its mass and stiffness. That implies a variation of 
the computed eigenfrequencies (modal analysis) of the 
system.  

Figure 3: Finite element model. Left: workpiece mesh for 
a machining evolution with tool location at the middle of 

workpiece. Right: 3 lobes eigenmode 

Due to the cyclic symmetry of the system (tube and 
fixture) non-axial or torsional modes are twin modes. 
The convergence of this FE model has been checked 
(with more refine meshes than on Figure 3) and the 
relative errors of all numerical eigenfrequencies plotted 
on Figure 5 are estimated lower than 0.5 %. 
The discrepancies between eigenfrequencies obtained by 
the hammer tests (before and after the machining) and 
computed eigenfrequencies are less than 1.1 % (for a 

frequency up to 5500 Hz). Thanks to this very close 
agreement between experimental and numerical 
eigenfrequencies we can associate modal shapes to 
experimental frequency data. 

3 GENERAL OBSERVATIONS 
During the above-described pass, the following raw time 
signal (Figure 4) has been recorded: 

Figure 4: Raw time signal from displacement sensor. 

On this plot, one can notice the following features:  
• beginning of the cut (step-shaped offset) at t=16.7 s,
• chatter bursts at t>45 s,
• strong distance increase due to the matter removal

under the sensor at t>66.7 s.
The time-frequency analysis of this signal is presented on 
Figure 5 as a spectrogram.  

Figure 5: Spectrogram of the time signal from 
displacement sensor (color plot: FFT,  

o – eigenfrequencies from hammer tests,  
+ – eigenfrequencies from FEM,  

x – multiples of 1661 Hz). 

It is important to notice that the choice of size of time 
blocks used in the Fourier analysis is subject to 
antagonistic arguments:  

• longer blocks provide higher frequency resolution
and higher signal-to-noise ratio 

• shorter blocks provide better time resolution in the
context of fast variations, such as encountered in the 
end of the experiment 

Thus, for the plot on Figure 5 the blocksize covers 8 
spindle revolutions, which enables readable spectrogram 
(relatively low noise) over a wide frequency range. 
One can observe from this plot that the signal is mainly 
composed of two contributions: invariant wideband 
contribution mostly present in lower frequency range 
(f<1kHz) and several narrowband higher frequency 
components (f>1kHz). The former can be mainly 
attributed to the cutting process itself while the latter 
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follows the eigenfrequency evolution due to the matter 
removal. This eigenmode-based nature is confirmed by 
the values of the eigenfrequencies issued from the 
hammer tests before and after the pass, superimposed 
on the spectrogram with circle marks: they correspond 
clearly to the ends of the respective curves visible on 
Figure 5. Further insight is provided by the finite-element 
analysis presented below.  
One can also notice that these curves occur by pairs, like 
ski tracks, spaced by 50…120 Hz. 
Finally, it appears clearly that the dominant component, 
especially starting from t=35 s, is provided by the mode 
for which the frequency evolves from 1900 to 1660 Hz. 
The intensity of the response on this mode causes the 
presence of multiples (2x and 3x), can be observed in the 
final quarter of the pass (highlighted by cross marks on 
the right side of the plot). This is likely caused by the 
nonlinearity of the tool-workpiece interaction, excited by 
the large magnitude of the response of this mode. 
A zoom on this frequency range is shown on Figure 6 
(here the FFT was performed on 4xT time segments). 
The time plot shows that the measured displacement 
signal is principally composed by this component (the 
black line represents the signal filtered in the band of 300 
Hz around this main eigenmode). One can see in more 
detail that, as mentioned above, there exists more than 
one line along which the eigenfrequency varies. Two 
main branches vary are spaced by 60—70 Hz. 

Figure 6: Measured displacement signal: 
Zoom on the principal frequency component (top: 

displacement signal filtered in the 300 Hz frequency band 
surrounding the principal resonance; bottom: zoomed 

spectrogram). 

Another characteristic feature for the response of this 
eigenmode is that the frequency is not varying 
continuously, but rather by discrete steps, causing a stair-
type evolution. This aspect is in very good agreement 
with the assumption of regenerative-chatter-induced 
mechanism, involving several instability zones. Thus, the 
observed bursts (higher magnitude segments of the time 
plot, corresponding to the passage of the respective red 
spots on the spectrogram) are caused by the 
regenerative chatter mechanism, as described in [8]: in 
different instability zones, the chatter frequency would be 
close to a different multiple of the delay (spindle 
revolution period). 
In the presented context, the subject of the present work 
is to analyze the interpretation of feature these modal 
components of the response: the frequency variation and 
the double branch (“ski track”) shape. 

4  UNSTABLE MODE RESPONSE SPECTRUM 
The principal phenomena that are examined here in 
search of possible explanation of the qualitative difference 
between the modal analysis of the non-rotating part (twin 
modes with equal eigenfrequencies) and the 
measurements (split into “ski tracks”), are the following 

- Coriolis effects, 
- stiffness asymmetry due to the tool presence, 
- measurements in the fixed frame of the 

vibrations of the rotating part. 
These aspects are illustrated on Figure 7. 

Figure 7: Considered factors for observed frequencies 
dynamics: rotating part, fixed sensor, apparent cutting 

stiffness.  

For the purpose of the analytical description of the 
contribution of a shell bending mode, represented by a 
pair of generalized degrees of freedom (q1 and q2), we 
approximate the displacement field as follows: 

ur (t, x,θ) = φ(x) (q1(t) ψ1(θ) +  q2(t) ψ2(θ)) (1) 

with ur radial displacement, x and φ(x) axial coordinate 
and shape function respectively, θ and ψi(θ) circum-
ferential coordinate and shape functions respectively. 
In the case of the eigenmode of interest, φ(x) is obtained 
from a polynomial interpolation of the FEM modal analysis 
results (mass-normalized) while the functions reflect the 
mth circumferential harmonics 

ψ1(θ) = cos mθ;   ψ2(θ) = sin mθ (2) 

with m = 3, as shown on Figure 8.  
The matrix equation of motion for this pair of DOF can be 
written as follows: 

M q!! + C q! + K q = f (3) 

Here q = [q1, q2]T is the vector of dynamical variables, f is 
the vector of modal excitations, M, C and K are 
respectively mass, generalized damping and stiffness 
matrix. 
For the non-rotating, non-machined structure, we have the 
following unperturbed values for the system’s matrices: 

Mo = I,   Co = 2ζωoI,   Ko = ωo
2I. (4) 



Here ωo is the double mode eigenfrequency, 
ζ modal damping factor, I identity matrix. In these 
conditions, the eigenfrequencies are equal to the 
reference value:  

ω1,2 = ωo. (5) 

 
Figure 8: Shape approximation functions for the mode of 
interest. (top: axial, φ(x); bottom: circumferential, ψ1,2(θ)). 

4.1 Coriolis effect 
Under rotation, the Coriolis effect would modify the 
damping term:,  

C = Co + ΩG,    G = Γ 𝟎 −𝟏
𝟏 𝟎 . (6) 

with Ω  spindle rotation velocity,  Γ modal gyroscopic 
factor. The latter is computed for mass normalized 
eigenmode shapes, under assumption of constant shell 
thickness h: 

Γ  = 
𝜋!!  m ρ h3 φ2  dx 

= mh2/3D2 (7) 
3 D 𝜋!!  D ρ h φ2  dx 

The perturbation of the eigenvalues can be estimated by 
direct numerical computation from the polynomial 
eigenproblem: 

(λ2M  + λC + K) ϕ  = 0. (8) 

At small values of γ, the presence of gyroscopic terms 
leads to a quasi-symmetric split frequencies 

ω1,2  ωo  ΔωG. (9) 

In our case of Ω and γ, eigenfrequencies of the system 
with gyroscopic terms would only very slightly differ from 
ω ( ΔωG <0,01 Hz). Thus, the Coriolis effects are negligible 
in our case. 
4.2 Additional stiffness due to cutting 
The presence of the tool would bring about an additional 
stiffness in the zone of the tool-workpiece interaction. 
The tangent slope of the cutting law in radial direction 
defines this stiffness. For the cutting conditions at hand, 
this value is kr = 527 N/mm.  
The value of kr is extracted from the cutting law [8]. For a 
given local radial displacement ur of the machined surface 
of the tube under the tool, the chip thickness h and the 
chip width b are given by (see Figure 9): 

h = f sin κr + ur cos κr   (10) 

b = (ap + ur) / sin κr 

 
Figure 9: Chip thickness and width taking into account a 

radial motion coming from the deformation of the part  

For cutting force F expressed in the basis (n, a, g) 
associated to the cutting edge, F= Fn n + Fa a + Fg g, 
where we use a Kienzle cutting law [9][10] for each 
component: 

Fj = Kj 𝑏 ℎ!"   with   𝑏 = !
!!

, and ℎ = !
!!

,  𝑗 ∈ {𝑛, 𝑎,𝑔} (10) 

where h0= 1 mm is a reference length (dimensionless 
form), Kj and nj parameters depending on the tool/matter 
couple and cutting condition (Table 2). 

Component Kj (N) nj 

Fn  1278. 0.5843 

Fa 0.0 0.0 

Fg 402.8 0.3405 
Table 2: Kienzle cutting law parameters 

The stiffness kr is then defined by: 

kr =
!!!
!!!

=!!!
!!

!!
!!!

+ !!!
!"

!"
!!!

=  kg 𝑏ℎ!" !! !"# !!!

!
+ !

! !"#!!
 (11) 

Given the tool axial and angular location (xT = f t / T, θT = 
0), the modal stiffness matrix would be modified as follows 

K = Ko + Kc,       Kc = kr φ
2(xT) 𝟏 𝟎

𝟎 𝟎 . (12) 

This stiffness term would induce the perturbation of the 
eigenfrequecy related to the first DOF: 

ω1 = ωo + ΔωC ,    ω2 = ωo.  (13) 

To the first order, this perturbation can be estimated as 
follows: 

ΔωC   kc φ
2(xT)/2ωo,  (14) 

which corresponds to a variation that increases from 0 to 
10 Hz along the pass. 
4.3 Fixed frame measurement 
We now consider the influence of the rotation on the 
measurement by a fixed sensor, on an example of 
harmonic vibration with an m-lobe shape, in the rotating 
frame attached to the workpiece. The displacement field 
can be written in a way that is similar to (1): 

ur (t,x,θ) = φ(x) cos(ωt) cos(m(θ−Ωt)). (15) 



Hence, the displacement ws, measured by a sensor 
located at (xs, θs), would read 

ur s(t) = ur (t,xs,θs) = φ(xs) ( cos(mθs + (ω−mΩ)t)  

                                      +  cos(-mθs + (ω+mΩ)t) )/2, 
(16) 

thus yielding two frequency components 

ωs1,2  ω  Δωs, (17) 

centred on the vibration frequency and spaced by 2Δωs  = 
2mΩ.  
In the case (m = 3) of the considered mode, it would lead 
to 75.6 Hz difference between these two components. 
This value corresponds to the observed distance between 
the principal response and another branch visible on 
Figure 6.  
4.4 High vibration behavior 
It should be noted though that, at high vibration 
magnitudes (for t>50s), the response is significantly 
enriched. This is most probably due to the nonlinear 
character or the tool-workpiece interaction. This nonlinear 
aspect is corroborated by the presence of multiple 
frequency components in this area, visible on Figure 4.  
Although the resulting surface features interrupted cut 
track, similar to that observed by Arnold [1], actual cutting 
is not discontinuous. This is due to vibration magnitude 
limitation at the flank face. Indeed, the vibration-induced 
relative radial motion of the workpiece surface w.r.t. tool, 
shown on Figure 10, would lead to a variation of apparent 
instantaneous clearance angle: 

Δγ = atan ( ur
! cos κr / Vc ) (18) 

On Figure 10, this motion is shown in the section normal 
to the primary cutting edge (A—A , also indicated on 
Figure 9),  

 
Figure 10: Actual clearance angle under vibration (section 
normal to the primary cutting edge; 1: nominal clearance 

angle γ, 2: clearance angle perturbation Δγ due to 
vibration).  

Under harmonic vibration assumption, an estimation of 
the radial velocity ur

! can be made based on the 
displacement magnitude: 

ur
! max (xT,θT)   ur max(xT,θT) ω (19) 

Thus, based on the tool insert clearance angle γ, the 
maximum possible magnitude for the displacement 
magnitude can be deduced: 

ur max (xT,θT) < Vc tan γ / ω cos κr (20) 

Given the tool manufacturer’s data (nominal value of the 
clearance angle γ = 7°), the value of ur max (xT,θT) would 
not exceed 0.1 mm. This order of magnitude is consistent 
with the observed displacement signals and is 
considerably below 0.25 mm necessary for the overall cut 
interruption. 

So, under high vibrations, the cut would remain 
continuous. Nevertheless, the process would involve 
intermittent ploughing which would bring about highly 
nonlinear interaction accompanied with the observed 
complex spectrum. 
 
5 CONCLUSION 
A numerical model based on the finite element analysis 
contributes to a detailed interpretation of the matter 
removal effect on the dynamical characteristics of the 
workpiece. These results enable an analysis of several 
factors potentially intervening in the spectral contents of 
the response: Coriolis effects, additional stiffness due to 
the tool-workpiece interaction, measurement on rotating 
part from fixed frame. One particular mode is considered, 
the one involved in regenerative chatter. 
Among these phenomena, the following hierarchy has 
been found: the Coriolis effects have no visible impact on 
system’s frequencies; the cutting zone stiffness could shift 
the eigenfrequency by up to 10 Hz on considered mode; 
the frequency split induced by the measurement in the 
fixed frame is, alongside the matter removal, the main 
factor shaping the spectrum of the response. 
Finally, a kinematic analysis in the high vibration part of 
the experience has shown that although the cut would 
remain continuous thanks to ploughing, this very 
ploughing would be likely to produce complex spectrum. 
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