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1. Introduction

ABSTRACT

This paper describes a hybrid additive manufacturing process — 3D Laser Shock Peening (3D LSP), based on the
integration of Laser Shock Peening (LSP) with selective laser melting (SLM). The well-known tensile residual
stresses (TRS) in the as — built (AB) state of SLM parts in the subsurface region have a detrimental effect on their
fatigue life. LSP is a relatively expensive surface post treatment method, known to generate deep CRS into the
subsurface of the part, and used for high end applications (e.g. aerospace, nuclear) where fatigue life is crucial.
The novel proposed 3D LSP process takes advantage of the possibility to repeatedly interrupt the part
manufacturing, with cycles of a few SLM layers. This approach leads to higher and deeper CRS in the subsurface
of the produced part, with expected improved fatigue properties. In this paper, 316L stainless steel samples were
3D LSP processed using a decoupled approach, i.e. by moving back and forth the baseplate from an SLM machine
to an LSP station. A clear and significant increase in the magnitude and depth of CRS was observed, for all
investigated process parameters, when compared to the AB SLM parts, or those traditionally LSP (surface)
treated.
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the most studied over the past years. In the SLM process the part is built
layer by layer out of a metallic, ceramic, polymer or composite powder.

Selective laser melting (SLM) is a part of a large family of Additive At each step, a powder bed is deposited on a substrate and selectively
Manufacturing (also known as 3D printing) processes [1-3], and also melted by a laser beam. Using a laser beam deflection system, each
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Fig. 1. Schematic representation of residual stresses in SLM parts, showing the influence
of Shot Peening (SP), Laser Shock Peening (LSP), and 3D LSP.

layer is scanned according to the corresponding part cross section, as
calculated from the CAD (computer-aided design) model. After selective
consolidation, a new powder layer is deposited, and the operation
sequence is repeated until completion of the part. At the end, the
unused powder is removed and can be reused in another building
process. This manufacturing method leads to the ability to produce
parts with high added value and very complex geometries, which would
otherwise be difficult or impossible to produce. Typical examples
concern lattice structures used for aerospace and medical applications,
bionic design for weight reduction, conformal cooling channels in
molds, etc.

Although the mechanical properties of parts made by SLM have
become close to those produced by conventional processes [3-13], SLM
still has several inherent limitations, one of them being the accumula-
tion of detrimental tensile residual stresses (TRS), illustrated in Fig. 1.
During the SLM process, the top layer which was melted last has shrunk
upon cooling, with however a magnitude which is limited by the
continuity with the underlying (already solidified) material [14,15].
From one layer to another, large TRS accumulate inside the manufac-
tured component, resulting either in reduced fatigue life or in distortion
of the final part [6,14-16,18-20]. High stresses can even lead to process
failure (cracking) during the building phase [21].

Different methods have been used to control and reduce residual
stresses. In situ heating (e.g. by substrate preheating or laser remelting)
is commonly used [15,22-24]. Adapting scanning strategies has also
been shown to strongly impact residual stresses [15,19]. As a post
treatment, annealing is widely used and has demonstrated in some
cases a 70% reduction of residual stresses [24,25]. Although these
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Fig. 2. Effect of tensile and compressive stresses on the crack growth propagation and
fatigue life.

methods do bring improvements in the final residual stress state, they
have shown to be unable to completely remove TRS, and are unable to
introduce Compressive Residual Stresses (CRS) which improve fatigue
life. Furthermore, process failure cannot be avoided with post-proces-
sing treatments, which means that materials for which in situ heating or
optimized scanning strategies are not successful simply cannot be
processed by SLM.

Laser Shock Peening (LSP) is a high strain rate (~10°s~ 1) [26]
surface treatment method, similar to Shot Peening (SP) and Ultrasonic
Shot Peening (USP), used to introduce CRS in the near surface region of
the material. LSP is well-known to result in an increased fatigue life,
resistance to stress corrosion cracking, and fretting fatigue, for a variety
of metallic materials [27-29]. Introduced CRS can reach a depth of up
to 1 mm (depending on the treated material), counteract some or all of
the tensile stress in the near surface region, decrease the crack
propagation rate, effectively reduce the stress intensity factors, enhance
fatigue crack closure effects and increase the critical stress for crack
propagation, therefore improving the fatigue performance of metallic
materials (Fig. 2) [27-30].

Initial investigation on the application of LSP as a conventional
surface treatment method on parts made by SLM has shown that LSP is
able to convert the TRS into more beneficial CRS in the subsurface
region [31]. The residual stresses were successfully transformed for all
considered LSP parameters. However, conventional LSP remains a
surface post treatment, and cannot address the bulk accumulation of
high TRS during the SLM building phase.

In the present paper, a novel hybrid additive manufacturing process
— 3D Laser Shock Peening (3D LSP) is described. 3D LSP is a process
patented [32] by the Laboratory of Thermomechanical Metallurgy
(LMTM) at the Ecole Polytechnique Fédérale de Lausanne (EPFL). It is
shown to successfully allow the 3D control of residual stresses in SLM
parts. In particular, the detrimental TRS state inherited from SLM is
converted into beneficial CRS in the surface region, over a depth larger
than that obtained with conventional surface LSP (Fig. 1). The 3D LSP
process is actually able to accumulate CRS in any critical zone in the
bulk of the part. The idea consists in combining SLM and LSP processes,
by applying the LSP treatment every few SLM layers. For such an
approach to be fully functional and able to produce large parts, the LSP
laser with a corresponding scanning head must be integrated into the
SLM machine.

The effects of residual stresses on the fatigue life have been
extensively investigated [27-29,33] and the beneficial role of compres-
sive stresses in the near surface region has been demonstrated without
any ambiguity. It was also observed that the depth of CRS plays a
significant influence on fatigue life. The larger the depth (for a given
magnitude), the more near surface cracks will be mitigated, and the
longer the fatigue life. Although the LSP setting is more complex than
the more conventional SP (or even Ultrasonic SP), it is still irreplaceable
as a surface treatment of parts with tight specifications such as those
encountered for nuclear or aerospace applications, due to the larger
CRS depth(Fig. 1) [27,34-39]. By repeating the LSP treatment on a
number of SLM layers in the subsurface region, 3D LSP aims at
increasing both the CRS magnitude and depth compared to a conven-
tional surface LSP process, with therefore an expected further improve-
ment in fatigue life.

Table 1
Chemical composition of 316L stainless steel, wt%.

Cr Ni Si Mo C Fe

316L 17 12 2.3 2.5 0.03 Balance




Fig. 3. a) Hole drilling device RESTAN-MTS 3000 (SINT Technology), b) sample with
attached strain gauge rosette.

2. Experimental setup
2.1. Material and SLM parameters

The reference material used here is the widely used 316L austenitic
stainless steel, with an ultimate tensile strength (UTS) of 760 MPa [17].
The powder was DIAMALLOY 1003, obtained from Sulzer Metco,
Switzerland. The chemical composition is shown in Table 1. Selective
laser melting was performed with a Concept M2 (Concept Laser GmbH,
Germany) equipped with a fiber laser operated in continuous mode at a
wavelength of 1070 nm and a spot size of 90 um. The specimen
geometry was a 20 X 20 x 7 mm® cuboid on a 3 mm thick support
structure. The chosen SLM processing parameters were: laser power
125 W, scanning speed 600 mm/s, hatch distance 0.105 mm, and layer
thickness 0.03 mm. A bi-directional scanning strategy parallel to the
part edges was used without a change in scanning direction between
layers to deliberately create large residual stresses. Processing was
performed under N, atmosphere, and the O, content was controlled to
be below 1% throughout the process.

2.2. Laser Shock Peening

Laser Shock Peening (LSP) experiments were done using the facility
described in [40]. The laser source was a Nd:YAG GAIA - class laser
from Thales Laser company with a pulse duration of 7.1 ns, operating at
532 nm. The beam spatial energy distribution is “top-hat” and the pulse
shape is near - Gaussian. Round laser spots of 1 and 5 mm diameter
were used with a laser energy per pulse of either 0.4 J or 10 J. The ratio
of spot size and energy per pulse was chosen such as to keep a constant
power density of 7.2 GW/cm?.The advantage in using lower energies
per pulse (for a given power density) is to open the use of more readily
accessible lasers, often functioning at higher repetition rates and
therefore possibly increasing productivity. Furthermore, with the
current state of the art, lower pulse energies could be delivered via a
bundle of optical fibers [41], which is another advantage for the
compactness of the machine.

The pressure created at the surface of the part was estimated to
4.7 GPa using the empirical equation P (GPa) = 1.75 \[I, (%) [42].
Pulse frequency was 1 Hz, and the overlap of 40% and 80% was used
for both spot sizes without a protective ablative layer.

2.3. Residual stress determination using the hole drilling method

Residual stresses measurements were done with the hole drilling
method (HDM). This technique is widely used for determination of in
depth residual stress profiles, especially after surface treatments such as
LSP, USP, or SP [43-48]. The measuring device was the RESTAN-MTS
3000 from SINT Technology (Fig. 3.a), and the measurements were
done according to the ASTM standard E837 [14,43]. The HDM
measurement is done by positioning a strain gauge rosette (Fig. 3.b)
on the measured surface, and drilling a 1,8 mm diameter hole through
it into the surface. As the hole is drilled, residual stresses relax at the
hole location causing strains to change. Residual stresses are given by
the theory of Kirsch [49]. A variable depth increment of the drill was
applied. In the region from the surface up to 100 pm depth, measure-
ments were made every 10 um. From 0.1 mm to 0.5 mm, the step
increased to 25 pym, and from 0.5 mm to 1 mm, it increased further to
50 pum. This procedure resulted in a total of 36 points measured over a
total depth of 1 mm.

Fig. 4 shows the most relevant parameters of a typical residual stress
profile. These are (i) the maximum amount of CRS - Max CRS, (ii) the
depth at which the maximum CRS is observed — Depth of max CRS, and
(iii) the depth at which a transition from CRS to TRS occurs — Depth of
CRS.

3. Results and discussion
3.1. As-built state

Residual stress measurement of the 316L SLM samples in the AB
state are shown in Table 2. The high tensile value of 342 MPa at 131 um
depth represents 45% of the material UTS (760 MPa). Stresses are
tensile from the surface up to the depth of > 1 mm (Fig. 5), which is
typical for parts made by SLM.

3.2. LSP treated state

SLM samples attached to the baseplate were removed from the SLM
machine and treated with LSP. LSP treatments operated with 1 mm and
5 mm spot size, and 40% or 80% overlap were done. A total of four
samples were treated for each LSP processing condition. After LSP
treatment, one of the four samples of each LSP processing condition was
removed from the baseplate and analyzed, while the remaining three
samples were sent back to the SLM machine for a rebuilding step of 1, 3
and 10 new layers. Results of residual stress measurements done on
samples in the AB and LSP treated states are given in Table 2. The
corresponding stress profiles are shown in Fig. 5.

From Table 2 it can be observed that an increase in the overlap rate
from 40% to 80% leads to an overall increase in CRS for both the 1 mm
and 5 mm spot size. This is in agreement with the previous investigation
done on PH1 stainless steel, where it was also observed that (i) a larger
spot size leads to deeper CRS, and (ii) a smaller spot size leads to higher
max RS [31]. As already discussed in [31], result (i) comes from a
geometrical effect associated to the use of a too small spot size, which
results in a strong 2D attenuation of shockwaves, and therefore to a
decreased plastically affected depth of the LSP treatment [27,35,50].
Result (ii) is in agreement with [51], and this effect can be explained
from the increased number of impacts by a smaller spot size on a given
surface area.

The maximum value of CRS occurred when using a 1 mm spot size
with 80% overlap: the stress value represents 96% of the material UTS.
This indicates cyclic hardening of the 316L due to the high number of
LSP shots to which the surface is subjected in the 80% overlap LSP
condition [52]. Regardless of the chosen LSP parameters, TRS of the AB
state are systematically converted to CRS. Smaller spot sizes lead to
larger maximum CRS which is in agreement with previous results
obtained on a different material [31]. This is especially evident for the
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Fig. 4. Residual stress profile displaying the most relevant parameters: Max CRS — maximum amount of CRS; Depth of max CRS - depth at which the maximum CRS is observed; Depth of

CRS - depth at which a transition from CRS to TRS occurs.

Table 2

Results of RS measurements: maximum RS/normalized by UTS; depth of maximum RS;
depth of CRS. Measurements are made in the as-built state (AB), or with LSP treatments of
1 mm and 5 mm, 40 and 80% overlap, without an ablative coating.

LSP treatment ~ Max RS[MPa]/percentage of  Depth of max Depth of CRS
the UTS [%] RS [um] [um]

AB 342/45 131 /

1 mm 40% —266/35 128 416

1 mm 80% —730/96 94 804

5 mm 40% —246/32 207 696

5 mm 80% —390/51 241 963

80% overlap case where reducing the spot size from 5 to 1 mm led to an
increase of 45% of UTS. A larger spot size tends however to increase the
LSP affected zone depth: an increase from 416 um to 686 um is

LSP
n x SLM
LSP
SLM
Baseplate

Fig. 6. Schematic description of the 3D LSP process.

observed, for the 40% overlap case. The effect is less pronounced for
the 80% overlap case, but still present. The relationship between the
spot size and the LSP affected zone depth is due to the 2D attenuation of
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Table 3

Results of RS measurements: maximum RS/normalized by UTS; depth of maximum RS;
depth of CRS. Measurements are made in the as-built state (AB); LSP treatments of 1 mm,
40% overlap; 3D LSP 1 mm 40% with 1,3 and 10 rebuilt layers.

LSP treatment, 40% Max RS[MPa]/ Depth of max  Depth of CRS
overlap percentage of the UTS RS [um] [um]

[%]
AB 342/45 131 /
LSP —266/35 128 416
3DLSPn=1 —345/45 170 652
3DLSPn =3 —368/48 202 686
3DLSP n = 10 —358/47 131 767

shock waves [27,31,53]. Higher overlap expectedly led to both higher
maximum CRS and deeper CRS, but at the cost of an increased LSP
treatment time.

Since the LSP laser is meant to be integrated with an SLM machine,
laser related questions such as repetition rate, laser size, laser beam
delivery and guiding methods should be addressed. The effect of laser
spot size requires attention, since laser features differ significantly for
the proposed two sets of LSP processing parameters. To reach the
desired power density, the energy per pulse jumps from 400 mJ with a
1 mm spot, to 10 J with a 5 mm spot. Since the reported results with the
two spot sizes do not vary too much from each other, especially for the
80% overlap case, lower energy lasers (around 400 mJ per pulse) are
likely to be beneficial, due to their smaller size, reduced cost and higher
repetition rate. Taking into consideration both spot size and available
repetition rates, the LSP treatment time is potentially reduced by a
factor 4 when using smaller spot sizes. Furthermore, lower energies in
the ns range can be coupled into an optical fiber delivery system, and
make use of a scanning head (similar to those used in SLM). These
considerations explain why a spot size of 1 mm was chosen for all
further investigations related to 3D LSP.

3.3. 3D LSP
After the initial LSP treatment, for each group of LSP processing

parameters, three treated samples were left attached to the baseplate.
The baseplate with these samples was returned to the SLM machine for

a rebuilding phase. After careful re-alignment, powder was refilled and
n additional new layers were rebuilt (Fig. 6). The number n of new
layers was 1, 3 or 10. The SLM parameters and scanning strategy were
kept the same, including the layer thickness of 30 um. After the
rebuilding phase, the samples were removed from the SLM machine,
and the LSP treatment was repeated, using a 1 mm spot size and overlap
rates of 40% and 80%.

3.3.1. 3D LSP, 40% overlap

Residual stress measurements for the AB, LSP treated and 3D LSP
treated samples are shown in Table 3, and a graphical representation of
the stress profiles is given in Fig. 7. 3D LSP samples have a very similar
max RS of — 345 MPa (45% of UTS), — 368 MPa (48%) and — 358 MPa
(47%) for n = 1, 3 and 10 SLM layers, respectively. This represents a
significant increase of Max RS when compared to a conventional
surface LSP treatment, leading to an improvement of 30%, 38% and
35%, respectively. This result was not obvious, due to the possible
relaxation of stresses from thermal effects induced by the SLM rebuild-
ing step, and the associated generation of tensile stresses. However, an
accumulation of CRS was observed for all 3D LSP processing parameters
(Figs. 7 and 8). This indicates that the stress relaxation caused by the
subsequent laser melting of even multiple n SLM layers during the
rebuilding step is not the dominant effect, and that the 3D LSP does lead
to a clear increase in magnitude and depth of CRS compared to a
conventional LSP treatment.

The depth of CRS varied from 416 um for the conventional LSP
treatment, to 652 um, 668 pm and 767 um for the 3D LSP cases (n = 1,
3 and 10), showing an increase of 57%, 65% and 84%. The general
trend which can be extracted from these results is that an increase in n
leads to an increased depth of CRS. As mentioned above, this result was
not straightforward. Since the melting and solidification of an SLM
layer is very fast, it introduces a limited amount of heat and does not
lead to full stress relaxation. CRS can therefore accumulate. The details
of these mechanisms will however require further investigation. It is
expected that there will be a critical value n. beyond which the
cumulative effects on the magnitude and depth of CRS will start
decreasing. The value of n. itself should be a function of SLM processing
parameters and scanning strategy. In the present case, as mentioned in
Section 2.1, the least favorable SLM parameters and scanning strategy

Residual stress profile

600

HH

HH
HH
.‘

400 T
1T

200

-200

-400

Residual stress [MPa]

-600
-800

-1000

— A\ B
@ 3D LSP 11, Imm 40%

T T T T

1mm 40%
e 3D LSP 31, Imm 40%

0.5 1

Depth [mm]

a1 mm 80%
3D LSP 10l, 1mm 40%

Fig. 7. Residual stress curves measured for samples in the AB, LSP 1 mm 40% and 3D LSP 1 mm 40% with 1, 3 and 10 rebuilt layers.



Residual stress profile

600

400

HH

200

-200

-400

-600

Residual stress [MPa]

-800

-1000

@ 3D LSP 1I, Imm 80%

1mm 40%
e 3D LSP 3|, Imm 80%

HH
HH
HH
HH
HH

0.5 1

Depth [mm]

a1 mm 80%
3D LSP 10l, Imm 80%

Fig. 8. Residual stress curves measured for samples in the AB, LSP 1 mm 80% and 3D LSP 1 mm 80% with 1, 3 and 10 rebuilt layers.

Table 4

Results of RS measurements: maximum RS/normalized by UTS; depth of maximum RS;
depth of CRS. Measurements are made in the as-built state (AB); LSP treatments of 1 mm,
80% overlap; 3D LSP 1 mm 80% with 1, 3 and 10 rebuilt layers.

LSP treatment, Max RS[MPa]/ Depth of Depth of CRS [pm]
80% overlap percentage of the UTS  max RS
[%] [um]

AB 342/45 131 /

LSP —730/96 94 804

3DLSPn =1 —667/88 165 > 1 mm (— 38 MPa
at 1 mm)

3DLSPn =3 —707/93 126 > 1mm (- 52 MPa
at 1 mm)

3DLSPn = 10 —756/99 243 > 1mm
(— 254 MPa at
1 mm)

were selected on purpose, to show the potential of the 3D LSP process,
hence leaving space for further improvement.

3.3.2. 3D LSP, 80% overlap

Residual stress measurements after treatments with 80% overlap are
shown in Table 4 and Fig. 8. 3D LSP samples had a max RS of
— 667 MPa (88% of UTS), — 707 MPa (93%) and — 756 MPa (99%) for
n = 1, 3 and 10 SLM layers, respectively. These values are very similar
to those produced by a conventional LSP treatment (— 730 MPa or 94%
of UTS), which already indicate a high strain hardening level due to a
high density of shots when working with a 80% overlap.

The depth of CRS was increased from 804 um for the conventional
LSP treatment to over 1 mm, beyond the maximum depth investigated
with the current hole drilling experimental setup. At the 1 mm depth,
remaining compressive stresses were 38 MPa, 52 MPa and 254 MPa for
n =1, 3 and 10, respectively. This is not only a significant increase
compared to the conventional LSP treatment, but also compared to the
LSP treatment with 5 mm spot size (see Table 2 and Fig. 5). These results
illustrate the relevance of choosing a small spot size in 3D LSP, as the LSP
affected zone depth can be even higher than the one produced by larger
spot sizes in conventional LSP treatments. Similarly to the 40% overlap
case, an increase in n leads to a significant increase in depth of CRS.

4. Conclusions and future work

In this paper, we have demonstrated the capability of an LSP
treatment to change the residual stress state of SLM parts. Tests were
performed on an austenitic 316L stainless steel, for which a highly
tensile state of the AB sample was converted into a CRS state. It was also
shown that if SLM building phase alternates with LSP treatments, both
the magnitude and depth of maximum CRS can be significantly
increased. Various LSP processing parameters were tested, and it can
be concluded that:

® A conventional LSP treatment easily converts TRS into a CRS state

e A smaller spot size leads to a larger maximum CRS

® A larger spot size leads to increased depth of CRS.

e Higher overlap rates (80%) lead to higher CRS and deeper CRS
profiles due to a larger density of impacts on the treated surface.
Although this LSP processing condition leads to better results, it
increases the LSP treatment time.

e 3D LSP increases both the magnitude and depth of CRS. This was
observed for all processing conditions

e 3D LSP with a reduced spot size and pulse energy can produce
deeper CRS than those induced by a conventional LSP treatment
with a larger spot size and pulse energy. This was observed for both
40% and 80% overlap, and proves the interest of using lower energy
pulsed lasers with higher repetition rates and reduced processing
time. Such lasers are also better suited for implementation into a
single SLM-LSP hybrid machine, being smaller in size, cheaper, and
more easily adaptable in terms of beam delivery and positioning.

e Increasing the number of SLM layers between LSP treatments leads
to an increase of CRS depth.

Further work will focus on (i) more accurate investigation of the
effects of the number of SLM layers between two subsequent LSP
treatments, (ii) the development of a prototype machine for the
building of larger samples with optimized spatial distribution of tensile
and compressive stresses, (iii) the assessment of fatigue life of 3D LSP
treated samples, and the comparison with samples subjected to a
conventional surface LSP treatment.

Another research direction will relate to the manufacturing of



materials which are known to fail in SLM conditions due to the
accumulation of high TRS, and for which the combination with 3D
LSP is anticipated to be beneficial.
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