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Data-Driven Model Order Reduction for Magnetostatic Problem
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Among the model order reduction techniques, the Proper Orthogonal Decomposition (POD) has shown its efficiency to solve
magnetostatic and magneto-quasistatic problems in the time domain. However, the POD is intrusive in the sense that it requires
the extraction of the matrix system of the full model to build the reduced model. To avoid this extraction, nonintrusive approaches
like the Data Driven (DD) methods enable to approximate the reduced model without the access to the full matrix system. In this
article, the DD-POD method is applied to build a low dimensional system to solve a magnetostatic problem coupled with electric
circuit equations.

Index Terms—Data driven, finite element model, model order reduction.

I. INTRODUCTION

F INITE element method is often used to solve Maxwell’s
equations in electrical engineering. Unfortunately, in the

case of a dynamic model, a fine spatial mesh and a large
number of time steps induce high simulation duration. To
reduce the computational time of large-scale dynamical Fi-
nite Element (FE) systems, Model Order Reduction (MOR)
methods have been developed and studied in the literature.
These methods consist in searching an approximation of the
solution onto a subspace of the full solution space. Then,
if the dimension of the subspace is low, the size of the
equation system to solve can be highly reduced, as well as the
simulation duration. One of the most popular MOR technique
is the Proper Orthogonal Decomposition (POD) [1]. This
approach requires to solve the full system for different time
steps (called snapshots) to determine a reduced basis. Then,
from the matrix system of the full model, the reduced model
can be constructed and solved for all other time steps. This
approach is well adapted if the matrix system can be extracted
from the FE software. With commercial FE softwares, the
matrix system is not necessarily accessible. As alternative,
nonintrusive approaches of MOR, like Data Driven (DD)
methods, have been developed in the literature [2]. One of
these approaches (DD-POD) [3], builds an approximation
of the reduced model from the known inputs and outputs
of the full model. In low frequency, a significant number
of magnetostatic or magnetodynamic problems have been
studied with POD [4], [5], [6], [7] but not with nonintrusive
approaches.

In this article, the DD-POD approach is applied to build
a reduced model in order to solve a magnetostatic problem
coupled with electric circuit equations using the vector po-
tential formulation. The DD-POD reduced model is generated
from the known inputs (voltage, current, resistances, ...) and
the outputs (linkage flux, solution vector, ...) of the system.

In the first section of this article, the magnetostatic model
and the electrical equations are introduced. In the second

one, the POD and the DD-POD are developped. Finally, an
application example is studied in the last section: a three phase
transformer is simulated with the POD method and the DD-
POD approach. The results obtained with both reduced models
are compared in terms of accuracy and computational time
with the full model.

II. MAGNETOSTATIC PROBLEM WITH ELECTRIC
EQUATIONS

To solve a magnetostatic problem with Nind stranded induc-
tors coupled with electric circuit equations, the vector potential
formulation can be used. In this case, as the magnetic flux
density B is divergence-free (∇ · B = 0), the magnetic flux
density derives from a potential A such that B = ∇×A.

Using the magnetic behaviour law H = νB, with ν the
magnetic reluctivity, the expression of B is introduced into the
Ampère’s law ∇×H = J , to obtain the strong formulation

∇×
(
ν∇×A

)
= J,

with H the magnetic field and J the source current density
flowing through the inductors. The circuit equations linking
the linkage flux φ, the resistance R, the current i and the
voltage v for each inductor k are added to the magnetostatic
problem:

dφk
dt

+Rkik = vk, k = 1, . . . , Nind.

Finally, discretizing the previous formulation using the FE
method leads to the following system equations[

0 0
FT 0

] [
ȧ

i̇

]
+

[
M F
0 R

] [
a
i

]
=

[
0
v

]
, (1)

with a the vector of size Nx composed of the circulations
of the vector potential A along the edges of the mesh, i the
currents vector of the stranded inductors of size Nind, M the
Nx×Nx stiffness matrix depending on the magnetic reluctiv-
ity, F a Nx×Nind matrix depending on the geometries of the
stranded inductors, v the vector of the Nind voltages applied to
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the stranded inductor terminals and R the Nind×Nind diagonal
matrix of the winding resistances. The operator .T represents
the transpose operator. The linkage flux φk associated with the
k-th inductor is expressed by φk = fTk a, where fk is the k-th
column of matrix F .

III. MODEL ORDER REDUCTION

A. Proper Orthogonal Decomposition

Model order reduction can be performed using various
methods. Among these methods, the POD is one of the most
known and is applied to our problem. In order to conserve
the structure of the matrix system during the reduction and
to insure the stability, a structure preserving MOR [6] is
performed: only the magnetic part of the problem is reduced.
Then, a is approximated by means of a reduced basis Ψ such
that a ' Ψar where the size of ar is much smaller than
this of a. To define the matrix Ψ, the snapshot approach
is used. The full model (1) is solved for different time
steps and/or configurations in order to obtain a set of Ns

solutions and to create the snapshot matrix Xs such as Xs =
[a(t1),a(t2), . . . ,a(tNs

)] ∈ RNx×Ns . The snapshots can be
determined during the first time steps or in a preprocessing
step (greedy algorithm, typical tests,. . . ). The singular value
decomposition applied to Xs, such as

Xs = UΣWT ,

allows to obtain the reduced basis Ψ ∈ RNx×Nr formed by
the Nr (Nr ≤ Ns) first columns of U which is an orthonormal
matrix. The size Nr can be determined by a truncation strategy
based on the analysis of the singular values. The reduced
model of the magnetic equation in (1) (i.e. Ma + F i = 0) is
obtained by replacing a by Ψar and by performing a Galerkin
projection. Finally, the POD model with structure preserving
is defined by[

0 0
FT
r 0

] [
ȧr
i̇

]
+

[
Mr Fr

0 R

] [
ar
i

]
=

[
0
v

]
(2)

with Fr = ΨTF ∈ RNr×Nind and Mr = ΨTMΨ ∈ RNr×Nr .
The obtained system is solved by applying a time stepping

scheme to simulate the problem on a given time interval. For
each time step, it is always possible to go back to the full
space of the solution by multiplying the reduced solution ar
by the matrix Ψ in order to study the distribution of fields
like the magnetic flux density. Left part of figure 1 presents
the principle of the POD approach which involves to extract
the matrices M and F of the FE software to built the reduced
model.

B. Data-Driven POD

The principle of the DD approach combined with the POD
method is to create an approximation of the reduced system
(2) from the snapshots of the full model, without extracting the
full matrix system (i.e. the matrices M and F ). Then, snapshot
matrices associated with each output are defined such as

Xs = [a(t1),a(t2), . . . ,a(tNs
)] ∈ RNx×Ns ,

Is = [i(t1), i(t2), . . . , i(tNs
)] ∈ RNind×Ns ,

v

full model

Ma + F i = 0

FT ȧ +Ri = v

M,F

φ,a, i

POD basis

Ψ

POD model

ΨTMΨ︸ ︷︷ ︸
Mr

ar + ΨTF︸ ︷︷ ︸
Fr

i = 0

FT
r ȧ +Ri = v

DD model

M̃rar + F̃ri = 0

F̃T
r ȧ +Ri = v

Fig. 1. Principle scheme of the POD and DD approaches.

Φs = [φ(t1),φ(t2), . . . ,φ(tNs)] ∈ RNind×Ns .

From Xs, a reduced basis Ψ is determined in the same way
as the one used for the POD (see III-A), and the snapshot
matrix is projected onto the reduced space by Xr = ΨTXs.
The principle of the DD-POD is to find the reduced operators
F̃r ∈ RNr×Nind and M̃r ∈ RNr×Nr , approximations of Fr and
Mr of the system (2), from Is, Φs and Xr. Firstly, the operator
F̃r is deduced by using the relation between the solutions and
the fluxes that must be verified for each snapshot:

F̃T
r a(t`) = φ(t`), ` = 1 to Ns.

Then by applying the transpose operator and considering the
matrix expressions of the snapshots, we have the relation
XT

r F̃r = ΦT
s . Each column f̃r

∣∣∣
k

of F̃r can be identified by
solving the minimisation problem

f̃r

∣∣∣
k

= arg min
y∈RNr

Ns∑
`=1

(
aT (t`)y − φk(t`)

)2
, (3)

k = 1 to Nind, which is equivalent to

f̃r

∣∣∣
k

= arg min
y∈RNr

∥∥∥XT
r y − ΦT

s

∣∣
k

∥∥∥2
2
, (4)

where ΦT
s

∣∣
k

represents the k-th column of ΦT
s . Secondly, the

matrix M̃r is deduced from the first equation of (2). This
relation must be verified for each snapshot such that

M̃ra(t`) + F̃ri(t`) = 0, ` = 1 to Ns,

which can be matricially written XT
r M̃

T
r + ITs F̃

T
r = 0. The

k-th row m̃r|k of M̃r can be determined by

m̃r|k = arg min
y∈RNr

Ns∑
`=1

(
aT (t`)y +

(
it(t`)F̃

T
r

)
k

)2
, (5)

k = 1 to Nr, equivalent to

m̃r|k = arg min
y∈RNr

∥∥∥XT
r y + ITs F̃

T
r

∣∣∣
k

∥∥∥2
2
, (6)

where ITs F̃
T
r

∣∣∣
k

represents the k-th column of ITs F̃
T
r . The

solution of such minimisation problem is usually done using
the pseudo-inverse of the matrix XT

r since it is a linear least-
square problem with an overdetermined system. Indeed, the
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number of snapshots Ns is greater than the size of the reduced
basis Nr. Figure 1 presents the principle of the DD-POD
approach compared to the POD approach.

IV. APPLICATION

In term of application, a linear 3D three-phase EI trans-
former is considered. Figure 2 presents the mesh of the
transformer, where only one quarter of the transformer is
modeled. The time interval of simulation is [0:0.2s] with 400
time steps. To build the reduced models for the POD and DD-
POD approaches, an Offline/Online method is used. During the
Offline step, the snapshots are extracted from the typical tests
at no-load and in short-circuit [7] on the first period, with 40
time-steps. Then, the POD and DD-POD models are defined
and used to study another operating points during the Online
step, with a resistive load and a self connected to the secondary
windings. The full system has 75584 spatial unknowns when
both reduced models are reduced to only 5 unknowns in this
case due to a star secondary winding.

The reduced matrices obtained by the identification process
of the DD-POD match with the reduced matrices based on the
full matrix with the POD. Problem (3)-(4) provides an accurate
operator

100 · ‖Fr − F̃r‖
‖Fr‖

= 2.7× 10−9.

Problem (5)-(6) supplies also a precise operator, but less
accurate than the previous one:

100 · ‖Mr − M̃r‖
‖Mr‖

= 1.6× 10−3.

secondary
windings primary

windings

magnetic
core

Fig. 2. Mesh of the 3D three-phase transformer.

Firstly, the reduced models are validated onto the no-load
case. The evolutions of primary currents for the snapshots are
presented on Fig. 3(a) for the full, POD and DD-POD models.
Secondly, the current waveforms of the windings are compared
in the case of a resistive load (Fig. 3(b)). Finally, the results are
compared with the resistive and inductive loads. Figures 4(a)
and 4(b) present the evolutions of the currents at the beginning
of the simulation obtained from all models. In all cases, the
waveforms of the currents from both reduced models are close
to the references. Figures 5(a) and 5(b) present the evolutions
of the error on the currents i and on the solution vector a
versus the time. For each time step tj , the error is given by
the formula

εy(tj) = 100 · ‖ymor(tj)− yref(tj)‖2
‖yref(tj)‖2

.
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(a) Primary currents at no-load
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(b) Primary currents with a resistive load.

Fig. 3. Primary currents for the full, POD and DD-POD models at no-load
and with a resistive load.

where y is i or a and “mor” denotes the POD model or the
DD-POD model. The error on the currents is always lower than
0.2% with the DD-POD model, whereas the error is less than
0.03% for the POD model. For the solution vector, the error is
less than 0.02% with the DD-POD approach and 0.0025% with
the POD method. The differences of error between the both
reduced models are due to the approximations of the reduced
operators in the case of the DD-POD approach. Nevertheless,
the errors introduced by these approximations are low.

Figure 6 presents the distribution of the magnetic flux
density from the full model at a given time step and the errors
between the full model and the reduced models Bmor−Bref. We
can observe that the errors are smaller with the POD model
than with the DD-POD model, nevertheless the magnitudes
of the error of the DD-POD are small compared with the
magnitude of the magnetic flux density. The maximal error is
8.06×10−7 and 1.22×10−4 for the POD and DD-POD models
respectively.

In term of computation time, the Offline phase requires
260s to extract the snapshots of the two typical tests. To build
the reduced basis and then, the POD and DD-POD models,
the running time is negligible (i.e. about 0.1s) compared with
the offline step. For the solution of the problem on the time
interval, the full model needs 1300 seconds and the reduced
models require less than 0.1 second, leading to a speed-up of
20000.

V. CONCLUSION

In the context of MOR, the POD is often used. For dy-
namic cases, this method is robust, accurate and easy to be
implemented. Nevertheless, it involves to have access to the
matrices of the full system in order to build the reduced model.
If the matrices are not avalaible, it is possible to produce a
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(a) Primary currents for the RL load.
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(b) Secondary currents for the RL load.

Fig. 4. Primary and secondary currents for the full, POD and DD-POD models
with a RL load.
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(a) Error on current for the RL load.
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Fig. 5. Error on current and solution vector for the RL load.

reduced model only from inputs and outputs of the model by
a data-driven technique. First, a reduced basis is calculated in
the same way as classical POD. Secondly, the snapshots are
projected onto the reduced space. After that, the process of
the DD consists in determining the reduced matrices through a
minimisation problem based on the fact that the matrices must
verify the equations of the reduced system for each projected
snapshot. By this way, a low dimensional system is determined
without knowing the matrices of the full FE problem. From the
application example, the results of the DD-POD model are less
accurate than those from the POD model but the errors of the

(a) Distribution of the magnetic flux density (T)
from the full model

(b) Bpod −Bref

(c) Bdd-pod −Bref

Fig. 6. Distribution of the magnetic flux density (T) from the full model (a)
and of the error for the POD (b) and DD-POD (c) models (Bmor −Bref).

DD-POD are very small. Then, the DD-POD gives excellent
accuracy in term of global and local solutions.
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