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Ductility prediction of substrate-supported metal layers based 
on rate-independent crystal plasticity theory 

Mohamed Ben Bettaieb 1,2  &  Farid  Abed-Meraim 1,2

Abstract 
In several modern technological applications, the formability of functional metal components is often limited by the occurrence 
of localized necking. To retard the onset of such undesirable plastic instabilities and, hence, to improve formability, elastomer 
substrates are sometimes adhered to these metal components. The current paper aims to numerically investigate the impact of 
such elastomer substrates on the formability enhancement of the resulting bilayer. To this end, both the bifurcation theory and the 
initial imperfection approach are used to predict the inception of localized necking in substrate-supported metal layers. The full- 
constraint Taylor scale-transition scheme is used to derive the mechanical behavior of a representative volume element of the 
metal layer from the behavior of its microscopic constituents (the single crystals). The mechanical behavior of the elastomer 
substrate follows the neo-Hookean hyperelastic model. The adherence between the two layers is assumed to be perfect. Through 
numerical simulations, it is shown that bonding an elastomer layer to a metal layer allows significant enhancement in formability, 
especially in the negative range of strain paths. These results highlight the benefits of adding elastomer substrates to thin metal 
components in several technological applications. Also, it is shown that the limit strains predicted by the initial imperfection 
approach tend towards the bifurcation predictions as the size of the geometric imperfection in the metal layer reduces. 

Keywords Substrate-supported metal layers . Forming limit diagrams . Localized necking . Neo-Hookean model . 
Rate-independent crystal plasticity . Bifurcation and imperfection analyses 

Introduction 

Ductile failure is the main mechanism that limits the formabil- 
ity of thin metal sheets during forming processes; therefore, 
this phenomenon is central in structural integrity assessment 
together with corrosion and fatigue. Several possible failure 
scenarios, or mechanisms, may occur during forming opera- 
tions. In this field, one can quote at least three main scenarios. 
The first one takes place only for very pure metals. In this 
case, thin metal sheets fail without the occurrence of damage, 
owing to the absence of void nucleation sites. In such circum- 
stances, the deformation state is homogeneous at the 
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beginning of the loading and, at a certain limit strain, the 
deformation starts concentrating in narrow bands. The emer- 
gence of such bands marks the development of localized neck- 
ing in the sheet. The second scenario corresponds to the local- 
ization of plastic strain into shear bands owing to various 
possible softening mechanisms. Subsequently, following the 
accumulation of large plastic strains and the increase of stress 
triaxiality in the necked regions, voids nucleate, grow and 
coalesce to produce final material separation. The third mech- 
anism involves damage nucleation in the material prior to 
plastic strain localization. The softening induced by the accu- 
mulated porosity is sufficient to counteract the strain harden- 
ing capacity of the material and leads to plastic strain locali- 
zation in narrow bands. An extensive study of the different 
failure mechanisms and the competition between them has 
been reported in [1]. In the current contribution, we assume 
that the failure of the studied sheet metals is only due to local- 
ized necking, without prior occurrence of damage. For inter- 
ested readers, an exhaustive academic presentation of the pre- 
diction of failure in metallic materials, based on advanced 
damage models, can be found in [2]. It is now well- 
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recognized that the accurate prediction of the limit strains that 
lead to localized necking is crucial for designing functional or 
structural components used in industrial devices. To this end, 
several numerical models have been developed for the predic- 
tion of localized necking, and the associated limit strains are 
represented in terms of the so-called forming limit diagram 
(FLD). This FLD concept was originally introduced by 
Keeler and Backofen [3], for representing the limit strains in 
the range of positive strain paths, and has been extended by 
Goodwin [4] to the range of negative strain paths. Over the 
last decades, two major challenges, related to the formability 
of metallic components, have been extensively studied both 
from academic and industrial points of view. The first issue is 
of scientific nature and is associated with the accurate predic- 
tion of the formability limit of the studied material, while the 
second, of practical nature, is related to the development of 
industrial solutions to improve its formability. 

To solve the first issue, related to the accurate determina- 
tion of formability limits, several experimental methods have 
been developed and widely used in both academic and indus- 
trial environments. Unfortunately, the use of these experimen- 
tal techniques has been limited by various practical difficul- 
ties, such as the high cost of the experimental tests required for 
characterizing an FLD. To avoid these difficulties, several 
analytical and numerical approaches have been set up in the 
literature as alternatives to the experimental characterization 
of FLDs (see, e.g., [5, 6]). These alternative approaches re- 
quire the use of a criterion, to predict the occurrence of strain 
localization, along with a constitutive model to describe the 
evolution of the mechanical state of the studied material. 
Despite their good predictive capabilities, the phenomenolog- 
ical constitutive models, which are the most widely used for 
the numerical prediction of FLDs, are not able to properly 
account for some essential physical and mechanical features, 
such as initial and induced textures and other microstructure- 
related parameters (crystallographic structure, dislocation mo- 
tion, initial morphology of grains, slip on crystallographic 
planes ...). These limitations represent the main motivation 
behind the more recent use of micromechanical modeling 
for FLD prediction. The advantage of such physically-based 
modeling, compared to phenomenological approaches, is its 
ability to link, in a natural and explicit way, the material mi- 
crostructure to the formability of the studied sheets. Due to 
this major advantage, a micromechanical approach is adopted 
in the current paper to model the mechanical behavior of a 
small volume element, which is assumed to be representative 
of the studied metal sheet. The constitutive law of this repre- 
sentative volume element (RVE) is determined from that of its 
microscopic constituents (the single crystals) by using the full- 
constraint Taylor scale-transition scheme. The mechanical be- 
havior at the single crystal scale is described by a finite strain 
rate-independent constitutive model, in which the Schmid law 
is used to govern the plastic flow. This rate-independent 

formulation is more suitable for the modeling and the simula- 
tion of cold forming processes, where viscous effects are lim- 
ited. The developed model is applied in the current study to 
single crystals with FCC crystallographic structure. In order to 
predict the onset of localized necking, the polycrystalline con- 
stitutive model, based on the full-constraint Taylor scheme, is 
coupled with two different localization criteria: the bifurcation 
theory, originally developed by Rice [7], and the imperfection 
approach initiated by Marciniak and Kuczynski [8]. Note that 
coupling these localization criteria (especially the Marciniak 
and Kuczynski approach) with the Taylor multiscale scheme 
is a very challenging problem, from a numerical point of view. 
Hence, the algorithmic aspects related to this coupling are 
detailed in the current paper. The use of the Taylor model, 
instead of other more elaborate (and more complex) 
multiscale schemes, such as the CPFEM model or the self- 
consistent approach, allows a considerable reduction in the 
CPU time required to determine a complete FLD (especially 
within the initial imperfection approach). However, it is well 
known that the Taylor multiscale scheme predicts high stress 
values compared to the self-consistent scheme. 

To solve the above-mentioned second issue, related to the 
improvement of formability of industrial components, a num- 
ber of technological solutions have been proposed and used in 
various industrial applications. One of the most-widely used 
solutions consists in perfectly bonding an elastomer substrate 
to the original metal component. This technological solution 
has proven its effectiveness in the improvement of formability 
of industrial devices [9–13]. For instance, in the design of
electronic devices that require high stretchability levels, 
substrate-supported metal layers are being increasingly used. 
This is the case of stretchable conductors used in biomedical 
applications, as well as interconnects that are used in large- 
scale integrated circuits [9, 10]. The bifurcation theory and the 
initial imperfection approach, previously developed for the 
case of freestanding metal layers, are extended here to predict 
the formability of substrate-supported metal layers. The aim of 
this extension is to numerically investigate the impact of the 
addition of an elastomer substrate on the formability of the 
resulting metal/elastomer bilayer. Note that the formability of 
substrate-supported metal layers has been studied in very few 
numerical investigations in the past (see, e.g., [13, 14]). In 
addition, in these earlier contributions, only phenomeno- 
logical constitutive models have been used to describe the 
mechanical behavior of the metal layer. To the authors’ best
knowledge, this is the first time a multiscale scheme is used 
to model the mechanical behavior of a metal layer, which is 
supported by an elastomer substrate, in order to analyze the 
formability of the resulting metal/substrate bilayer. In the cur- 
rent analysis, the mechanical behavior of the elastomer layer is 
assumed to obey the hyperelastic neo-Hookean constitutive 
law. Also, the adherence between the two layers is assumed 
to be perfect. Consequently, the effect of interfacial 
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delamination between the two layers on the ductility of the 
bilayer cannot be analyzed within the current framework and 
will be the subject of a future investigation. 

The remainder of the paper is organized as follows: 

– The constitutive equations describing the mechanical be-
havior of the metal and elastomer layers will be outlined
in the second Section.

– In the third Section, the theoretical framework for the two
localization criteria will be presented.

– Various numerical results obtained by the application of
the developed tool will be presented and discussed in the
fourth Section.

Notations and nomenclature 

The following notations and abbreviations are adopted in this 
paper: 

– Mechanical fields corresponding to the polycrystal (resp.
single crystal) scale are denoted by capital (resp. small)
letters. To be consistent with the notations adopted for the
metal layer, the different mechanical fields corresponding
to the elastomer layer are also denoted by capital letters.

– •PS: the in-plane part of a given field • (in relation with the
plane-stress assumption). 

– •♦: quantity • associated with layer ♦ (metal or elastomer
layer). 

– •(B): quantity • associated with the band (M–K analysis).
– •(S):  quantity  • associated  with  the  safe  zone  (M–K

analysis). 
– •0: the initial value of quantity •.

The constitutive modeling of the polycrystalline aggregate is 
achieved within the framework of finite strains. In the context 
of large deformations, several possible tangent moduli can be 
derived. These different choices are mainly dependent on the 
adopted stress and strain measures. In our case, we used the 
nominal stress rate Ṅ as appropriate stress measure to express 
the constitutive equations and the bifurcation relations. The 
nominal stress tensor N is defined as the transpose of the first 
Piola–Kirchhoff stress tensor. The strain measure, which is
work-conjugate to the nominal stress rate Ṅ , corresponds to 
the velocity gradient G. This choice is motivated by the formu- 
lation of the bifurcation equations proposed by Rudnicki and 
Rice [15], who demonstrated that the most appropriate formu- 
lation for the bifurcation theory at finite strains requires the 
choice of these work-conjugate variables. Indeed, the use of 
these work-conjugate variables allows the automatic satisfac- 
tion of the rate (incremental) form of both the equilibrium and 
the compatibility conditions. Further details on this choice are 
provided in [15] and [16]. The macroscopic tangent modulus L 
linking Ṅ  to G is then obtained by using the Taylor model 

Ṅ  ¼ L : G   ð1Þ 

According to the Taylor scale-transition scheme, the mac- 
roscopic velocity gradient G is assumed to be homogeneous 
over the polycrystalline aggregate: 

∀I ¼ 1; …; N g :     G ¼ gI ð2Þ 

where Ng is the number of single crystals that compose the poly- 
crystalline aggregate and gI is the velocity gradient of grain I. 

The macroscopic nominal stress rate Ṅ is related to its 
microscopic counterpart ṅ  by the following average relation: 

1 
– FM (resp. BL), in figures of BPrediction results^ Section,

refers to freestanding metal layer (resp. metal/elastomer
Ṅ 

V ∫V ṅ ðxÞ dx ð3Þ 

bilayer).

These notations may be combined. For instance, tensor X 
in the elastomer layer of the band is denoted XE(B). 

Mechanical behavior of the bilayer 

Metal layer 

Constitutive equations at the polycrystalline scale 

Let us consider a polycrystalline aggregate, which is assumed 
to be statistically representative of the metal layer. The consti- 
tutive modeling of this aggregate is thus sufficient to accurately 
describe the mechanical behavior of the whole metal layer. To 
derive the constitutive law of the polycrystalline aggregate from 
that of its microscopic constituents, the Taylor model is used. 

where x designates a material point within the polycrystalline 
aggregate. 

In the same way, the macroscopic tangent modulus L is 
related to its microscopic counterpart l by a similar relationship: 

1 
L ∫V lðxÞ dx ð4Þ 

V 

Therefore, to compute the macroscopic tangent modulus L 
via Eq. (4), the microscopic tangent modulus l of all individual 
grains should be first computed. To this end, the following 
Section is dedicated to the derivation of the analytical expres- 
sion of the microscopic tangent modulus. 

Constitutive equations at the single crystal scale 

The mechanical behavior of the single crystals that make up 
the polycrystalline aggregate is described within a rate- 
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independent constitutive framework. Because the single crys- ∀β ¼ 1; …; N s :   <   c ⇒ ¼ β ð11Þ 
tals undergo finite strains, the effect of lattice rotation is 
accounted for. 

τ β  ¼ τ β ⇒γ̇    ≥ 0 
c 

At the microscopic level, a behavior law similar to Eq. (1) 
can be obtained by combining the constitutive relations of the 
single crystal: 

ṅ   ¼ l : g ð5Þ 

The microscopic velocity gradient is additively split into its 
symmetric and skew-symmetric parts, denoted as d and w, 
respectively 

d ¼ ð 1=2Þ 
(
g þ gT)

; w ¼ ð 1=2Þ 
(
g−gT) 

ð6Þ 

The strain rate tensor d and the spin tensor w are split into 
their elastic and plastic parts 

where τ β is the critical shear stress of the slip system β. 
The Cauchy stress tensor σ is related to the nominal stress 

tensor n by the following relation: 

n ¼ j f −1:σ ð12Þ 

where j is the Jacobian of the microscopic deformation gradi- 
ent f. 

The index form of Eq. (12) is given as follows: 

nij ¼ j f −1 σkj ð13Þ 

The nominal stress rate ṅ  involved in Eqs. (3) and (5) can 
be easily obtained from Eq. (12) 

d ¼ de þ dp; w ¼ we þ wp ð7Þ ṅ  ¼ j f −1:
(
σ̇ þ σ Tr ðdÞ−g:σ

)
ð14Þ 

The rotation r of the single crystal lattice frame is related to 
the elastic part of the spin tensor we by the following relation: 

In the current paper, an updated Lagrangian approach is 
adopted. Thus, in Eq. (14), f is set to the second-order identity 
tensor I2 and j is set to 1, which reduces to 

ṙ:rT ¼ we ð8Þ 

In order to satisfy the objectivity principle, the co-rotational 
rate σ∇ of the Cauchy stress tensor σ, with respect to the 

ṅ  ¼ σ þ σ Tr ðdÞ−g:σ ð15Þ 

By combining Eqs. (6), (7), (9), (10) and (15), ṅ  can be 
β 

lattice rotation, is related to the elastic strain rate de  by the 
following hypoelastic law: 

expressed as a function of the slip rates γ̇ 

ṅ ¼ ðCe þ σ⊗I2Þ : d−σ:w−d:σ β ð16Þ 

σ∇ ¼ σ̇ −we:σ þ σ:we  ¼ Ce : de ð9Þ −∑N s
 

β¼1 sgn
(
τ β )(Ce : Rβ þ Sβ :σ−σ:Sβ ) γ̇ 

where Ce is the fourth-order elasticity tensor. The elastic be- 
havior of the metal layer is assumed to be isotropic and there- 
fore Ce is defined by the Young modulus E and the Poisson 
ratio ν. 

The inelastic deformation is only due to the slip on the 

Let us now introduce the set of active slip systems A; 
defined as the slip systems for which the slip rates are strictly 
positive. The set of slip systems β used in Eq. (16) is then 
reduced to the set A 

ṅ ¼ ðCe þ σ⊗I2Þ : d−σ:w−d:σ 
crystallographic planes. Thus, dp and wp can be defined by ( β )(  e β β β ) ̇  β ð17Þ 
the following relations: −∑β∈Asgn τ C  : R þ S :σ−σ:S γ

dp  ¼ ∑N s
 
 
γ̇ β 

 
sgn

(
τ β ) Rβ ; wp ¼ ∑N s

 
 
γ̇ β 

 
sgn

(
τ β ) Sβ ð10Þ In order to obtain the expression of the microscopic tangent 

β 
β¼1 β¼1 modulus l from relation (17), the slip rates γ̇ of the active slip 

where: 
systems should be expressed as functions of g. To this end, the 
consistency condition, restricted to the active slip systems, is used 

• Ns is the total number of slip systems (equal to 12 for FCC
crystallographic  structure).

∀β∈A : χ̇ ¼ sgn
(
τ β ) τ̇ −τ̇ c  ¼ 0; γ̇ > 0 ð18Þ 

• γ̇ β is the slip rate of the slip system β. By using the definition of the resolved shear stress as well 
β 

• Rβ (resp. Sβ) is the symmetric part (resp. skew-symmetric
part) of the Schmid orientation tensor.

• τβ is the resolved shear stress of the slip system β, which is

as Eqs. (7)1 and (9), the resolved shear stress rate τ̇ 
expressed as 

can be 

equal to σ : Rβ. ∀β∈A : τ̇ 
β
 ¼ Rβ  : σ∇  ¼ Rβ  : Ce  : 

(
d−dpÞ ð19Þ 

The Schmid law is used to model the plastic flow of the As to the time derivative of τ β , it is given by the following 
single crystal, as follows: isotropic hardening law: 
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τ n

1

∀β∈A : τ̇ c  ¼ h ∑α∈  γ̇ known indetermination problem), the pseudo-inversion tech- 
h0 Γ 

\n−1
h ¼ h0    1 þ 

0 ; Γ ∑N s     γα ð20Þ ¼   α¼1 
nique is used to invert it and then to compute the slip rates of 
the active slip systems. For the other slip systems, belonging 
to the set of potentially active slip systems, their slip rates are 

where h0  is the initial hardening rate and n the power-law 
hardening exponent. τ0 is the initial critical shear stress, which 
is assumed to be the same for the different slip systems. It must 
be noted that the developed model and the corresponding 
numerical tools are not restricted to this particular hardening 
law, and can easily incorporate other hardening models. 

The expression of the slip rates for the active slip systems is 
finally obtained by inserting Eqs. (10)1, (19) and (20) into the 
consistency condition (18) 

β 

assumed to be equal to zero. After this step, the Schmid law 
given by Eq. (11) is checked for all of the potentially active 
slip systems. If at least one constraint of this Schmid law is 
violated, then the assumed set is not an effective set of active 
slip systems and another set is selected. Once the different 
mechanical variables are updated, the microscopic tangent 
modulus l is computed by using Eq. (23). 

Elastomer layer 

∀β∈A : γ̇ ¼ ∑α∈A M βαsgnðτ αÞ Rα : Ce  : d
¼ yβ  : d 

ð21Þ In contrast to the metal layer, the mechanical behavior of the 
elastomer layer is assumed to be homogeneous and is modeled 

where M is the inverse of matrix P of rank CardðAÞ, which is 
defined by the following index form: 

∀α; β∈A : Pαβ ¼ 
(
h þ sgnðτ αÞ sgn

(
τ β ) Rα : Ce  : Rβ ) ð22Þ 

Combining Eqs. (5), (17) and (21), one can obtain the an- 
alytical expression of the microscopic tangent modulus l 

l ¼ Ce þ σ⊗I2−1ΛðσÞ−2ΛðσÞ 

by a hyperelastic neo-Hookean law [20]. The formulation of 
this model allows linking the Cauchy stress tensor Σ to the left 
Cauchy–Green tensor V

Σ ¼ q I2 þ μ V2 ð25Þ 

where μ is the shear modulus, q an unknown hydrostatic pres- 
sure to be determined by applying the incompressibility con- 
straint, and V is defined by the following relation: 

α e α α α α ð23Þ 
−∑α∈Asgnðτ Þ ðC   : R þ S :σ−σ:S Þ⊗y V2 ¼ F: F ð26Þ 

where 1Λ and 2Λ are fourth-order tensors that reflect the con- 
tribution of Cauchy stress convective terms 

1 

with F being the deformation gradient tensor of the elastomer 
layer. 

In the particular case of plane-stress state (which will be 
1Λijkl ðσÞ ¼ 

2Λijkl ðσÞ ¼ 

(
δljσik −δkjσil

)

2 

2 
(
δik σlj þ δil σkj

)
ð24Þ adopted in BStrain localization criteria^ Section to apply the

different localization criteria), the unknown hydrostatic pres- 
sure q is easily determined by using the plane-stress condition 

To incrementally integrate the constitutive equations, at the 
single crystal scale, over a typical time increment [tn, tn + 1], an 
implicit algorithm is used. This algorithm belongs to the fam- 
ily of ultimate algorithms (initially developed by Borja and 
Wren [17]), and is very similar to the one developed in [18]. 
By analyzing the above constitutive equations, one can easily 
notice that the determination of the set of active slip systems 
A; from the set of potentially active slip systems P (
¼ 

f
β ¼ 1; …; N s  :  τ β ðtnÞ  ¼ τ β ðtnÞg ), as well as the cor-

(Σ33 = 0): 

q ¼ −μ V 33 ð27Þ 

Strain localization criteria 

Let us consider a bilayer comprised of a metal layer M and an 
elastomer layer E (Fig. 1). We define an orthogonal Cartesian c 

responding slip rates γ̇ β allows the computation of all other 
mechanical variables. To this end, a combinatorial search 
strategy, very similar to the one proposed in [19], is used to 
determine the set of active slip systems from the set of poten- 
tially active slip systems. This search strategy is carried out 
iteratively and, at each iteration, a subset of the set of poten- 
tially active slip systems is selected to be the set of active slip 
systems. The slip rates corresponding to the presumed set of 
active slip systems are computed by using Eq. (21). If matrix P 
(see Eq. (22)) is singular (which corresponds to the well- 

coordinate system (!x 1; !x 2; !x 3 ), which is tied to the bilayer.
The axes !x 1; !x 2 and !x 3 coincide with the rolling, trans-
verse, and normal directions of the sheet, respectively. The 
two layers are assumed to be perfectly adhered and sufficient- 
ly thin. Consistent with several literature works and consider- 
ing the thickness of the bilayer, the assumption of generalized 
plane stress is adopted in both localization criteria (namely the 
bifurcation theory and the initial imperfection approach). 
Hutchinson and Neale [21] have proven the validity of such 
an assumption in the case of thin structures (which is the case 



the following generic forms: 
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1   0 0 
1 0 

? ? 0 
1

LPS ¼ ℒ þ Σ⊗Ι2−1ΛðΣÞ−2ΛðΣÞ ð34Þ 
E 

The generic forms of tensors 1Λ and 2Λ involved in rela- 
GM ¼ @ 0    ρ   0 A   ; Ṅ 

M ¼ @ ?
0    0 ? 0 

? 0 A
0  0 

tion (34) are given in Eq. (24). 
The non-zero components of the fourth-order tensor ℒ are 0 

1 0 0 
1

0 
?

? 0 
1 ð30Þ defined by the following relations (see [14]):

GE ¼ @ 0   ρ 0 A   ;
0 0    −ð1 þ ρÞ 

N 
E  ¼ @ ?

0 
?
0

0 A
0 8 

ℒ 1111 ¼ 2 μ 
h

e2 E11 þ e−2 ðE11þE22Þ
i

> 

L ¼ 

LPS 

M αβγδ 

E 

h i

The bifurcation criterion states that strain localization oc- 
curs when the acoustic tensor associated with the bilayer be- 
comes singular (see, e.g., [7]). Hence, this criterion is 
expressed in the following form: 

→ → 

\ 

Fig. 1  Geometry of the bilayer and Cartesian coordinates 

det   N PS:LPS: N PS

where: 

¼ 0 ð31Þ 

in the current study). The plane-stress conditions are 
→ 

• N PS is the unit vector (lying in the plane of the bilayer)
→ PS 

expressed here in terms of out-of-plane components of the 
macroscopic nominal stress rate tensor Ṅ  in both layers by: 

normal to the localization band. Here, N 
to (cos θ, sin θ). 

is taken equal 

Ṅ 
13 ¼ Ṅ 

31 ¼ Ṅ 
23 ¼ Ṅ 

32 ¼ Ṅ 
33 ¼ 0 ð28Þ 

• LPS is the averaged plane-stress tangent modulus of the
bilayer. This modulus is defined by the following relation:

h  LPS h  LPS
The numerical tools developed in the current paper are 

restricted to polycrystalline aggregates (which are assumed 
to be representative of the metal layer) with orthotropic initial 

PS M     M   þ   E     E 

hM þ hE
ð32Þ 

texture. For this type of materials, the plane-stress assumption 
implies that the out-of-plane components of the macroscopic 
velocity gradient, in both layers, are equal to zero: 

G13 ¼ G31 ¼ G23 ¼ G32 ¼ 0      ð29Þ 

Bifurcation theory 

where hM (resp. hE) is the current thickness of the metal (resp. 
elastomer) layer and LPS (resp. LPS ) is the plane-stress tan- 

M E 
gent modulus of the metal (resp. elastomer) layer. 

M is derived from the 3D expression of the metal layer 
tangent modulus LM by using the following condensation 
relation: 

∀α; β; γ; δ ¼ 1; 2 : LPS

LM αβ33  LM 33γδ 

Theoretical equations ¼ LM αβγδ −  

LM 3333 
ð33Þ 

The bilayer is submitted to uniform strain, where the in-plane 
strain rate components Ė 11, Ė 22 and Ė 12 are equal to 1, ρ and 0, 
respectively. Parameter ρ designates the strain-path ratio, 
which  ranges  from  −1/2  (uniaxial  tensile  state)  to  1 
(equibiaxial tensile state). Considering the plane-stress condi- 
tions, expressed by Eqs. (28) and (29), as well as the 
incompressibility of the elastomer layer, the above specific 
loading implies that the macroscopic velocity gradient and 
the macroscopic nominal stress rate tensor for both layers have 

where LM is determined by using the Taylor multiscale 
scheme described in BConstitutive equations at the polycrys- 
talline scale^ Section. An iterative scheme is required to com- 
pute the 33 component of tensor GM so that the plane-stress 
condition is fulfilled in the metal layer. 

The plane-stress tangent modulus LPS corresponding to the 
elastomer layer is directly determined by using the following 
relation [13]: 

where symbol ? designates the unknown components in the 
above tensors. It must be noted that the components of tensor 

> 
>< ℒ 2222 ¼ 2 μ e2 E22  þ e−2 ðE11þE22Þ

> ℒ 1122 ¼ 2 μ e−2 ðE11þE22Þ
ð35Þ 

Ṅ are different from one layer to another (due to the difference > 
: 

 μ  2 E11 2 E22 
l 

in the mechanical behavior between the two layers). > ℒ 1212 ¼ 2  e þ e
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M → 

The current thicknesses hM  and hE  of the two layers are 
related to their initial values h0 and h0  by the following rela- 
tions: 

hM  ¼ h0  e∫GM 33 dt ; hE  ¼ h0 e−ð1þρÞ E11 ð36Þ 
M E 

Algorithmic aspects 

For each strain-path ratio ρ, and at each time increment, the 
tangent modulus LPS is computed by using Eq. (34). For the 
same time increment, an iterative scheme is applied to determine 
the value of GM 33, which ensures the plane-stress condition in 
the metal layer. Once this iterative scheme has converged, the 
tangent modulus LPS is determined by the condensation relation 
(33). Then, the layer thicknesses are updated by Eqs. (36) and the 
averaged tangent modulus of the bilayer LPS is determined by 
Eq. (32). Once LPS is obtained, the bifurcation criterion (31) is 
checked for all possible band orientations (θ ∈[0, 90°]). When the 
determinant of the acoustic tensor becomes negative for a given 

Fig. 2  M–K  analysis  for  a  bilayer  (current  geometry  and  band
orientation) 

• h0 ðSÞ and hM(S): initial and current thickness, respectively,
of the metal layer outside the band. 

• h0 ðBÞ and hE(B): initial and current thickness, respectively,
of the elastomer layer inside the band.

• h0 ðSÞ and hE(S): initial and current thickness, respectively,
of the elastomer layer outside the band. 

band orientation, then localized necking is detected. The associ- 0 0 

ated angle θ corresponds to the orientation of the localization 
band, while the associated major strain E11 corresponds to the 
localization limit strain. 

Initial imperfection approach 

Note that hEðSÞ and hE(S) are equal to hEðBÞ and hE(B), 
respectively. 

On the basis of these notations, the initial geometric imper- 
fection ratio ξ0 (corresponding to the metal layer only) can be 
defined as 

h0 ðBÞ 

Theoretical equations 
ξ0 ¼ 1− M 

h0  ðSÞ 
ð37Þ 

It has been experimentally observed that there are at least three 
main failure modes for thin substrate-supported metal layers: 
the plastic strain localization of the metal layer under biaxial 
stretching, the development of damage in the metal layer, and 
the buckling and the delamination under compression (see 
Refs. [22–24]). As has been discussed in the introduction, the
second and third failure modes (namely, damage, buckling and 
delamination between layers) are not the matter of the current 
contribution, where the main focus is restricted to the prediction 

The M–K analysis is governed by four main sets of equa-
tions, which are specified in what follows: 

• As a consequence of the perfect adherence between the
metal and the elastomer layer, the following equalities
between the in-plane velocity gradients in the metal layer
and their counterparts in the elastomer layer are satisfied:

GPS PS PS 

of the inception of localized necking in the bilayer. Hence, to M ðBÞ ¼ GE  ðBÞ ¼ G 
GM ðSÞ ¼ GE  ðSÞ ¼ G 

ðBÞ ðSÞ ð 38Þ

PS PS PS 

accurately model this problem by using the imperfection ap- 
proach (called hereafter M–K analysis for the sake of brevity), it
is more convenient to introduce the initial geometric imperfec- 
tion in the form of a band in the metal layer (Fig. 2). The 
introduction of this imperfection will ultimately trigger the ini- 
tiation and development of localized necking in the whole bi- 
layer. Note that this choice of introducing the initial imperfec- 
tion in the metal layer has been followed and discussed earlier 
by Xue and Hutchinson (see, e.g., [12, 13]). 

To clearly develop the equations of the M–K analysis related to 
the metal/elastomer bilayer, the following notations are adopted: 

When the adherence between the two layers is not perfect, 
the above equalities between the in-plane velocity gradients in 
the metal and elastomer layers are not satisfied. In this case, 
the beneficial effect of necking retardation due to the elasto- 
mer layer is reduced to some extent, which should be propor- 
tional to the extent of surface debonding. 

• The kinematic compatibility condition between the band
and the uniform zone (i.e., outside the band): this condi-
tion requires the displacement increments to be continu-
ous across the band, and it is mathematically expressed as

• h0 ðBÞ and hM(B): initial and current thickness, respec-
tively, of the metal
layer inside the band. :GPSðΒÞ ¼ GPSðSÞ þ CPS⊗ 



PS 
→ ð39Þ 

N 



C l 

Ν̇ 
E  ðBÞ ¼ LPSðBÞ : GPSðBÞ 

Ν̇ 
M ðBÞ ¼ LPSðBÞ : GPSðBÞ; 

Ν̇ 
M ðSÞ ¼ LPSðSÞ : GPSðSÞ; → 

Ν̇ 
E  ðSÞ ¼ LPSðSÞ : GPSðSÞ 

→ 

→ 

→

→

→ 

→ 

l 

E 

→ 

→ 

→ 

• The equilibrium balance across the interface between the l 
→
: l

PS 

→  
PS PS →  

PS
\

band and the homogeneous zone:
l l

→∞⇔det N l l : L  ðBÞ: N →0 ð46Þ 

→  
PS 

PS 
PS 

\ Comparing the above equation with the bifurcation criteri- 

N : hMðBÞ Ν̇ 
M ðBÞ þ hEðBÞ Ν̇ 

E ðBÞ 40Þ 
 

on given by Eq. (31), it is reasonable to expect that the limit 
→  

PS
 

PS PS 
\ ð 

¼ N :  hMðSÞ Ν̇ 
M ðSÞ þ hEðSÞ Ν̇ 

E ðSÞ 

• The behavior law of both the metal and the elastomer
layer, restricted to the plane dimension, inside and outside
the band, respectively: these constitutive equations are
expressed in the following generic form:

PS 
M 

PS 

PS 
ð41Þ 

M 

PS 
E 

By inserting the constitutive relations (41) into the equilib- 
rium eq. (40), this latter becomes 

strains predicted by the initial imperfection approach tend to 
those obtained by the bifurcationtheory when the initial im- 
perfection ratio ξ0 tends towards zero. This observation will be 
verified in BPrediction results^ Section on the basis of various 
numerical predictions. 

Algorithmic aspects 

For each strain-path ratio ρ, and each initial band orientation 
θ0, the equations that govern the M–K analysis are incremen-
tally integrated over each time increment. Indeed, by analyz- 
ing Eq. (45), it can be seen that the main incremental unknown 

: 
of the M–K approach is the jump vector CPS. This jump vector
is determined at the end of the time increment by using the 
fixed point iterative method. For each loading case (i.e., a 
given strain-path ratio ρ and a given initial band orientation 
θ0), the computations are conducted until the norm of the jump: → PS 

N PS: 
(
hMðBÞ LPSðBÞ þ hEðBÞ LPSðBÞ

) 
: GPSðBÞ vector C increases abruptly. For the complete details on the 

M EPS 
) ð42Þ numerical and algorithmic aspects regarding the M–K ap-

proach, the reader may refer to [14]. 

¼ N : 
(
hMðSÞ LPSðSÞ þ hEðSÞ LPSðSÞ 

: GPSðSÞ
M E 

In other words, Eq. (42) is equivalent to: 

N PS: LPSðBÞ : GPSðBÞ ¼ N PS: LPSðSÞ : GPSðSÞ ð43Þ Prediction results

where LPS(B) and LPS(S) are defined by the following relations: 

LPSðBÞ ¼ hMðBÞ LPSðBÞ þ hEðBÞ LPSðBÞ 

Material and geometric data 

Several studies, mainly based on some statistical techniques,M E 44Þ 
LPSðSÞ ¼ hMðSÞ LPSðSÞ þ hEðSÞ LPSðSÞ ð have been carried out in the literature to evaluate the minimum 

M E 
number of grains that should be used to ensure the represen- 

Combining the compatibility condition (39) and the equi- 
librium eq. (43), one can derive the following expression for 

: 
the jump vector CPS: 
: 

CPS ¼ 

tativeness of the volume element. These studies reveal that the 
obtained results may depend on the boundary conditions ap- 
plied on the polycrystalline aggregates (periodic boundary 
conditions….) as well as on the degree of anisotropy of the
studied single crystals. In most references (see, for instance, 

→
 

N PS: LPSðBÞ: N 
\−1 → 

PS N 
\ 

PS: 
(
LPSðSÞ−LPSðBÞ

) 
: GPSðSÞ 

Refs. [25, 26]), the number of grains required to ensure the 
representativeness of the volume element does not exceed 

ð45Þ 

From the above equations (see, e.g., Eq. (39)), it is clear 
that the localiza:tion of deformation occurs when the magni-
tude of vector CPS becomes very large, which means that the 
velocity gradient in the band GPS(B) becomes very large as 
compared to that in the safe zone GPS(S). In such a situation, 
the deformation concentrates much more rapidly in the imper- 
fection zone than in the safe zone. A: natural outcome from 

(45) is that the magnitude of vector CPS becomes very large 



1000. Accordingly, we have chosen a polycrystal with 
2000 
grains, considering that this number is sufficient to generate 
a volume element representative of the studied sheets. 
Indeed, from a variety of numerical experiments, we have 
observed that beyond 2000 grains, the response of the 

polycrystalline aggregate representing the metal layer 
remains almost un- changed. The initial texture 
corresponding to this aggregate is generated randomly (see 
Fig. 3), in such a way that it is orthotropic with respect to 
the rolling and transverse direc- 
tions. It is widely recognized that the initial crystallographic 

→ → 

when N PS: LPSðBÞ: N PS approaches singularity: texture strongly affects both the shape and the overall level of 
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M 1221 

E 

E 

E 1221 

RD 1111, 1122 and 1221) of the tangent moduli of both layers 
for the uniaxial tensile state (ρ = −0.5) and the equibiaxial 
tensile state (ρ = 1). These evolutions are shown in Fig. 4. 
From this figure, one can easily observe that the different 
components of LPS steadily decrease for both strain paths 
investigated (especially for the equibiaxial tensile state). One 
particularly observes that the shearing component LPS is TD 

Fig. 3 Initial crystallographic texture of the studied polycrystalline 
aggregate: {111} pole figure 

the predicted FLDs [27]. Initially, all of the grains are assumed 
to have the same volume fraction. We also assume that the 
adopted polycrystalline aggregate is representative of the stud- 
ied metal sheet. As plastic strain localization occurs at rela- 
tively large strains, the values of the predicted limit strains are 
almost unaffected by the elastic behavior. This justifies the 
consideration of simple isotropic elastic behavior in the cur- 
rent study. 

The material parameters of the single crystals are given in 
Table 1. They are the same as those used in [27]. 

The shear modulus of the elastomer layer is set to 22 MPa. 
This choice is based on data for polyurea [28]. To investigate 
the impact of the addition of the elastomer substrate on the 
formability of the bilayer, three values of the ratio of elastomer 
initial thickness to metal initial thickness are considered. The 
values taken for this ratio (denoted R in the subsequent simu- 
lation results) are: 0 (which corresponds to a freestanding 
metal layer), 1 and 2. 

Bifurcation theory predictions 

The predictions obtained by applying the bifurcation theory 
are presented and discussed in the current Section. 

Before studying the effect of the addition of the elastomer 
substrate on the formability of the bilayer, we first analyze the 
evolution of three representative components (components 

significantly reduced during the deformation and becomes 
very small. This observation is a natural outcome of the 
multi-slip character of crystal plasticity, which leads to the 
formation of vertices at the current points of the Schmid yield 
surfaces of single crystals. The reduction of these shearing 
components is the main destabilizing factor responsible for 
bifurcation, thus promoting early plastic strain localization 
(see, e.g., [29, 30]). A correlation can be easily established 
between the evolution of the shearing components of the tan- 
gent modulus and the corresponding limit strains predicted by 
bifurcation theory. It is worth noting that, when a smooth yield 
function is used, the shearing components of the tangent mod- 
ulus keep practically a constant magnitude during the defor- 
mation (see, e.g., [14]). Contrary to the metal layer, the shear- 
ing component of the tangent modulus LPS corresponding to 
the elastomer layer continuously increases during the defor- 
mation, as demonstrated in Fig. 4c and d. Note that this result 
is valid for the whole range of strain paths, and is not restricted 
to the particular strain paths investigated in Fig. 4. 
Considering the evolution of the shearing component LPS , 
one can conclude that localized necking can never occur in the 
elastomer layer alone. In the same way, one may also expect a 
beneficial effect (in terms of retardation of localized necking) 
from the addition of an elastomer substrate. 

It may also be noted that the components of LPS  evolve 
smoothly during the deformation, in contrast to the compo- 
nents of LPS. Indeed, the tangent modulus LPS  of the metal 

M M 
layer is derived from the tangent moduli of the different con- 
stituent grains, using the averaging rule given by Eq. (4). In 
the current micromechanical constitutive modeling, the grains 
deform freely and the interactions between the different grains 
are obviously neglected. Consequently, the microscopic tan- 
gent modulus differs significantly from one grain to another, 
thus exhibiting high contrast in its components due to texture 
evolution. This high contrast results in a rather complex evo- 
lution for the components of the macroscopic tangent modu- 
lus, as demonstrated in Fig. 4a and b. 

The effect of adding an elastomer substrate on the evolu- 
tion of the minimum of the cubic root of the determinant of the 

→ → 

Table 1 Material parameters of the single crystals that make up the 
polycrystalline aggregate representative of the metal layer 

Elasticity Hardening 

acoustic tensor N PS:LPS: N PS, over all possible band orien- 
tations, is illustrated in Fig. 5. The onset of strain localization 
is predicted when this minimum reaches 0, as defined by the 
bifurcation criterion (31). Four representative strain paths are 

E [GPa] ν τ0 [MPa] h0 [MPa] n 
65 0.3 40 390 0.35 

considered in this figure: ρ = −0.5, ρ = 0, ρ = 0.5, and ρ = 1. By 
comparing the different evolutions displayed in Fig. 5, one can 
clearly observe that the presence of the elastomer layer 
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Fig. 4  Evolution of three 
PS LPS PS 

representative components of LM 
and LPS  for two different strain 
paths (ρ = −0.5 and ρ = 1): a 
Metal layer (ρ = −0.5); b Metal 
layer (ρ = 1); c Elastomer layer (ρ 
= −0.5); d Elastomer layer (ρ = 1) 
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substantially retards the occurrence of strain localization. This 
result is expectable considering the evolution of the different 
components of LPS and LPS investigated in Fig. 4. This neck- 

 
linearly with the initial thickness ratio R, for the different strain
paths considered, except in the case ρ = −0.5, where the limit 
strain increases more rapidly. The same trends have been ob- 

M E 
ing retardation, due to the addition of the elastomer substrate, 
is particularly clear in Fig. 5a, where bifurcation is still not 
detected for the thickness ratio R = 2, while the computations 
are stopped at a strain value of E11 = 1. 

The effect of the elastomer substrate on necking retardation 
for the whole range of strain paths (ρ ∈ [−1/2,  1]) is shown in 
Fig. 6. This figure, confirms the preliminary results obtained in 
Fig. 5: namely, the addition of an elastomer layer allows shifting 
the FLD upwards, especially in the negative range of strain paths, 
and thus a significant enhancement in the ductility of the bilayer. 

Figure 7 provides additional details and better explains the 
effect of the relative thickness R of the elastomer layer on the 
ductility limit of the bilayer. In this figure, the beneficial effect 
of the thickness ratio R on the enhancement of ductility of the 
bilayer is confirmed once again. From this figure, it is clearly 
shown that the limit strain E11 increases slowly and almost 

tained when the flow theory of plasticity is used (instead of the 
micromechanical Taylor model) to model the mechanical be- 
havior of the metal layer, as demonstrated in [14]. Also, fur- 
ther relevant details and explanations on the evolution of the 
limit strain, as a function of the initial thickness ratio R, for 
various strain paths are provided in [14]. 

M–K analysis predictions 

In this Section, the formability of both the freestanding metal 
layer and the metal/elastomer bilayer is predicted by using the 
initial imperfection approach. The results of this Section may 
be viewed as an extension of the results reported in Fig. 6. In 
the different simulations, which will be presented in the cur- 
rent Section, two different values for the initial geometric 
imperfection ratio ξ0  are used: 10−3  and 10−2. Figure 8 



Fig. 5 Effect of adding an 
elastomer substrate on the 
evolution of the minimum of the 
cubic root of the determinant of 
the acoustic tensor as a function of 
E11: a ρ = −0.5; b ρ = 0; c ρ = 0.5; 
d ρ = 1  
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illustrates the effect of the addition of an elastomer layer on 
the formability of the bilayer, as predicted by the initial im- 
perfection approach. The results of this figure confirm the 
observations made in the previous Section, where the bifur- 
cation theory has been used: namely, the elastomer substrate 
allows the formability of the bilayer to be enhanced. This 
observation is common to both initial imperfection ratios 
(namely, ξ0=10−3 and ξ0=10−2). It is also shown that the effect 
of the elastomer substrate is more significant in the range of 
negative strain paths. 

The limit strains obtained by applying the bifurcation anal- 
ysis set an upper bound to those yielded by the M–K ap-
proach. Indeed, Fig. 9 demonstrates that the FLDs predicted 
by the M–K approach tend towards the FLD predicted by
bifurcation analysis when the initial imperfection ratio ξ0

-0.4 -0.2 0.0 0.2 0.4 
Fig. 6  Effect of the elastomer substrate on the improvement of the 
formability of the bilayer (predictions based on bifurcation theory) 

tends to zero. In other words, the effect of an initial imper- 
fection is essentially to shift the FLD downwards. This ob- 
servation is natural considering the similarity of the 
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E11 
dependent approaches (see [31, 32]) or rate-independent 
crystal plasticity modeling (see [27]). The results obtain- 
ed in the present study are in agreement with those re- 
ported in the above literature studies. 

Computation times 

The numerical tools pertaining to the current study have been 
implemented using the multi-paradigm numerical computing 
environment Matlab (R2015). This choice is motivated by the 
fact that this software offers efficient and powerful tools and 
functionalities in order to optimize the numerical implemen- 

R tation. The simulations presented in this paper are all per- 
formed on a personal computer with 2.00 GHz of CPU fre- 
quency and 6.00 Go of RAM memory. The CPU time re- 

Fig. 7  Effect of the relative thickness of the elastomer layer on the 
enhancement of ductility of the bilayer (predictions based on 
bifurcation theory) 

mathematical formulations of the two approaches (M–K and
bifurcation): if the amount of initial imperfection is set to 0 in 
the imperfection model, the problem reduces to the bifurca- 
tion analysis. This conclusion is valid for a freestanding metal 
layer as well as for an elastomer-supported metal layer. 

As demonstrated in Fig. 9, an increase in the amount 
of initial imperfection leads to a reduction in the limit 
strains. To further illustrate this feature, Fig. 10 shows 
the evolution of the limit strain E11 as a function of the 
initial imperfection size ξ0 for different strain-path ratios 
ρ. Note that, in this figure, the limit strain corresponding 
to the abscissa ξ0 = 0 is the one predicted by the bifur- 
cation criterion. It can be clearly seen that the limit strain 
decreases when the initial imperfection increases, for all 
strain-path ratios ρ investigated. This dependence of the 
predicted limit strains on the amount of initial imperfec- 
tion has been previously studied using multiscale rate- 

quired for the prediction of a single FLD by using the bifur- 
cation theory (resp. the initial imperfection approach) is about 
6400 s (resp. 60,000 s). Of course, the evaluation of these 
computation times is indicative and it is strongly dependent 
on a number of numerical parameters and choices (the incre- 
ment for the strain-path ratio, the increment selected for the 
band orientation angle when the initial imperfection approach 
is used, the size of the strain step used to integrate the con- 
stitutive equations corresponding to both the metal and elas- 
tomer layers, etc.). 

Concluding remarks 

A numerical tool to predict the onset of localized necking in 
substrate-supported metal layers has been developed in this 
paper. In this tool, the mechanical behavior of the metal (resp. 
elastomer) layer is modeled by the full-constraint Taylor 
multiscale model (resp. neo-Hookean hyperelastic model). 
The layers composing the bilayer remain bounded and are 

Fig. 8  Effect of the elastomer 
substrate on the improvement of 
the formability of the bilayer 
(predictions based on the M–K
analysis): a ξ0 = 10−3; b ξ0 = 10−2
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Fig. 9 Effect of the initial 
geometric imperfection on the 
shape and the level of the FLDs of 
the bilayer: a FM; b BL (R = 1); c 
BL (R = 2) 
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such that material damage does not occur prior to localized 
necking. Hence, other failure modes than localized necking 
(such as damage, interfacial delamination) are not considered 
in this contribution. The constitutive modeling of the bilayer 
is coupled with two strain localization criteria in order to 
predict the associated limit strains. These localized necking 
criteria consist of the bifurcation theory and the initial imper- 
fection approach. From the numerical predictions obtained by 
applying this tool, three main conclusions can be drawn: 

0.2 

0.0 0

0.000 0.003 0.006 0.009 

Fig. 10  Evolution of the limit strain E11, as a function of the initial 
imperfection ratio ξ0, for different strain-path ratios ρ 

• The presence of an elastomer layer substantially increases
the level of the limit strains for the bilayer.

• The shape and the level of the predicted FLDs are signif-
icantly influenced by the amount of initial geometric im-
perfection, which is assumed to initiate in the metal layer.

• The limit strains of the bilayer predicted by bifurcation
theory set an upper bound to those yielded by the M–K
approach.



It is worth noting that the use of the Taylor multiscale 
model in the current work has been mainly motivated by its 
simplicity and its efficiency. Indeed, with this scale-transition 
scheme, all the numerical results (for both freestanding metal 
layers and metal/elastomer bilayers), as well as the associated 
FLDs are obtained within reasonable running times. Also, we 
believe that the observed trends and the associated conclu- 
sions are valid whatever the multiscale scheme used. 

From a practical perspective, the numerical tools de- 
veloped in the current investigations can be used, in an 
industrial context, to provide guidelines and assistance in 
the design of new generations of electronic devices with 
improved ductility. 
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