
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/14855

To cite this version :

Sondes METOUI, Ivan IORDANOFF, Frédéric DAU, Etienne PRULIERE, Amine AMMAR - A
multiscale separated representation to compute the mechanical behavior of composites with
periodic microstructure - Mathematics and Computers in Simulation - Vol. 144, p.162-181 - 2018

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/14855
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

A multiscale separated representation to compute the mechanical
behavior of composites with periodic microstructure

S. Metouia,b,∗, E. Prulierea, A. Ammarb, F. Daua, I. Iordanoffa

a Arts et Métiers ParisTech, Centre de Bordeaux, I2M-DuMAS, Esplanade des Arts et Métiers, Talence 33405, France
b Arts et Métiers ParisTech, Centre d’Angers, LAMPA, 2 Boulevard de Ronceray, 49035 Angers Cedex 01, France

Highlights

• Multiscale problems are generally difficult to solve due to the computational cost.
• The cost of mechanical problem in periodic domains can be reduced impressively using an adequate separated representation.
• A Proper Generalized Decomposition is successfully used to find a solution for multiscale model of composites.
• The gain in computational cost in comparison with the classical finite element increases exponentially when the number of

periodic patterns increases.

Abstract

The requirements for advanced numerical computations are very high when studying the multiscale behavior of heterogeneous
structures such as composites. For the description of local phenomena taking place on the microscopic scale, the computation must
involve a fine discretization of the structure. This condition leads to problems with a high number of degrees of freedom that lead
to prohibitive computational costs when using classical numerical methods such as the finite element method (FEM). To overcome
these problems, this paper presents a new domain decomposition method based on the proper generalized decomposition (PGD) to
predict the behavior of periodic composite structures. Several numerical tests are presented. The PGD results are compared with
those obtained using the classical finite element method. A very good agreement is observed.

Keywords: Model reduction; Multiscale simulations; Proper Generalized Decomposition; Composite structures

1. Introduction

One of the main challenges in mechanics and engineering is to account for physical phenomena that occur at
different scales. A coupling between scales is often observed, generating a real need for multiscale models in many

∗ Corresponding author at: Arts et Métiers ParisTech, Centre de Bordeaux, I2M-DuMAS, Esplanade des Arts et Métiers, Talence 33405, France.
E-mail addresses: sondes.metoui@ensam.eu (S. Metoui), Etienne.Pruliere@ensam.eu (E. Pruliere), amine.ammar@ensam.eu (A. Ammar),

frederic.dau@ensam.eu (F. Dau), ivan.iordanoff@ensam.eu (I. Iordanoff).

http://dx.doi.org/10.1016/j.matcom.2017.07.010

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2017.07.010&domain=pdf
http://www.elsevier.com/locate/matcom
http://dx.doi.org/10.1016/j.matcom.2017.07.010
http://www.elsevier.com/locate/matcom
mailto:sondes.metoui@ensam.eu
mailto:Etienne.Pruliere@ensam.eu
mailto:amine.ammar@ensam.eu
mailto:frederic.dau@ensam.eu
mailto:ivan.iordanoff@ensam.eu
http://dx.doi.org/10.1016/j.matcom.2017.07.010

applications. In composite materials, for example, there are at least two or three characteristic scales: the fiber scale,
the ply scale and the laminate scale. A major difficulty related to multiscale modeling is the need of multiscale solvers
that require a lot of computational resources. Therefore, there is a real need for computational methods able to reduce
the cost of such simulations.

In this paper, we focus on problems related to structural mechanics of composite materials, that results in elliptic
partial differential equations. The multiscale solvers available in literature can be divided into two main classes:

• The first class considers a set of microscopic volumes, generally representative volume element (RVE). For
example, one RVE can be defined in each Gaussian point of the macroscopic finite element mesh. The size of
the RVE is often much smaller than the size of the macroscopic finite elements i.e. the fine-scale mesh covers
only a very small part of the macroscopic domain. Some well known methods are the Heterogeneous Multiscale
Methods (HMM) [10] or the FE2 methods [12] in engineering literature. This kind of methods is generally based
on an extension of the homogenization theory for non linear materials.

• The second class take into account the microscale (solution) in each point of the macroscopic domain. The
fine-scale mesh covers the whole macroscopic computational domain. In this case each fine-scale degree of
freedom (DOF) has to be treated at least one time in the algorithm. Therefore, these methods are generally
more expansive than the method belonging to the first class. In this class, we find in particular the multigrid
methods and the Domain Decomposition Methods (DDM) [11,13,17–19,24].

The approaches belonging to the first classes are efficient in a computational point of view. However, they assume
a well separated definition of scales that is not always relevant, in particular when considering the characteristic
length of composite materials. Furthermore, this kind of methods requires to introduce some additional hypothesis to
make the link between the microscale and the macroscale (generally boundary conditions applied to the microscopic
domain [15]). For periodic microstructures, the natural choice is to assume periodic boundary conditions on the RVE
but this lead to a loss of precision near the boundaries of the domain.

The approach presented in this paper belongs mainly to the second class in the sense that the whole problem is
described. However, the objective is to reduce the number of degrees of freedom as in the methods belonging to the
first class, by the use of some additional hypothesis.

The main hypothesis is that only materials with periodic structures are considered with an obvious application in
composite materials. The periodicity of the microstructure enables to separate two scales: the scale of the periodic cell
and a macroscopic scale. The idea is to use this hypothesis to build the full solution assuming a separated form in the
context of the Proper Generalized Decomposition (PGD). With the PGD solver, the number of degrees of freedom to
treat can theoretically be reduced by several orders of magnitude.

The PGD philosophy was originally proposed by Ladeveze with space–time problems in the context of the LATIN
(LArge Time INcrement) method, which was called radial decomposition [16]. Ammar et al. have generalized this
method for multi-dimensional problems in the context of the kinetic theory description of complex fluids [3,4]. This
method enables the reduction in size of multidimensional and parametric problems [7,21,23]. The idea of the PGD
is to build an approximation of the solution based on a separated representation. Assume that we are looking for a
field u : Ω → R that depends on some coordinates x j for j = 1, . . . , D where the domain Ω ⊂ RD is defined by:
Ω = Ωx1 × Ωx2 × · · · × ΩxD with Ωxi ⊂ R for i = 1 . . . D. A separated representation of u can be defined as a sum
of N products of some functions F j

i (x j) : Ωx j → R such as:

u(x1, . . . , xD) ≈

N∑
i=1

F1
i (x1) × · · · × F D

i (xD). (1)

All these functions F j
i are a priori unknown. This representation is injected into the weak formulation of the

partial differential equations depending on the considered problem. This leads to non-linear equations that are
solved iteratively. Separated representations have been used for a wide range of problems. In particular, the PGD
has been applied to compute full 3D solutions using an in-plane/out-of-plane separated representation in composite
laminates [6] and for the modeling of laminated and sandwich composite plates [26,27]. In our previous works, we
have employed this method to simulate delamination of composite laminates [20].

Fig. 1. 1D mesh and decomposition in elementary parts.

2. A multiscale separated representation

2.1. Domain decomposition method for periodic 1D domains

2.1.1. Separated description of the 1D problem
For the sake of simplicity, the method will be described firstly for a simple problem defined in a 1D domain

Ω = [0, L]. The 2D and 3D cases will be addressed in the next section.
Then, an 1D problem with a periodic geometry and periodic material properties is considered in this section. The

weak formulation of the static equilibrium equation for a beam in traction/compression with an elastic material is:∫ L

0
AE

dU ⋆(X)
dX

dU (X)
dX

dX =

[
AE U ⋆(X)

dU (X)
dX

]L

0
∀U ⋆

∈ V (2)

E is the elastic modulus, A is the area of the beam, X is the coordinate along the beam axis, U ∈ H 1(Ω) is the
longitudinal displacement, and U ⋆

∈ V = { f ∈ H 1(Ω)} is a test function. L denotes the length of the beam. We also
define: [f (X)]L

0 = f (L) − f (0) for any function f .
The right hand term is related to the boundary conditions on the left (X = 0) and on the right (X = L) of

the domain. To enforce the boundary conditions, a penalty method will be used. This method will be described
in Section 2.1.4. For now, only the left hand term of the equation will be considered.

In the finite element method, this weak form is approximated using some shape functions over each element of
a mesh. The proposed strategy takes advantage of the periodicity of the geometry and material properties to build a
periodic mesh. The periodicity assumption, in this context is that the domain may be sliced into identical elementary
parts with: E(X + ∆L) = E(X) and A(X + ∆L) = A(X). ∆L is the length of each part. If loads are added to this
problem, the periodicity is not required.

Then, the mesh can be built as the sum of identical mesh with common nodes on the edge as depicted in Fig. 1
for the 1D mesh. Each occurrence of the periodic cell is associated to an integer denoted k as shown in Fig. 1. k is an
integer such as k ∈ {1, . . . , Nk}, and Nk =

L
∆L denotes the number of cells. Nx denotes the number of nodes in the

periodic mesh.
The coordinate X defining the horizontal position in the beam is written using k:

X = (k − 1) ∆L + x (3)

x ∈ [0,∆L] is the position in each part.
The continuous form of the displacement field found using the separated approximation of the solution is given by:

U (X) = U ((k − 1) ∆L + x) =

n∑
i=1

Fi (x)G i (k) (4)

where Fi (x) : [0,∆L] → R and G i (k) : {1, . . . , Nk} → R are some unknown functions. In the following, the
notation U (k, x) = U ((k − 1) ∆L + x) will be used.

Using k and x instead of X leads to a double definition of the position at the edge of the elementary parts:
U (k,∆L) = U (k + 1, 0). This is problematic from a numerical point of view because it leads to a multiplication
of degrees of freedom on these points. There are two possibilities to treat the edge of the elementary part:

1. Solving the problem using more degrees of freedom than necessary and using boundary conditions to enforce
the continuity: U (k,∆L) = U (k + 1, 0).

2. Deleting some nodes when discretizing the domain in order to suppress the non-necessary degrees of freedom.

The first method requires to enforce some continuity conditions at the interface of each cell. With the separated
representation of the solution Eq. (4), the continuity conditions give:

n∑
i=1

Fi (∆L)G i (k) =

n∑
i=1

Fi (0)G i (k + 1). (5)

As the separated representation is generally built term by term, the continuity must be satisfied for each term of the
sum. This leads to:

Fi (∆L)G i (k) = Fi (0)G i (k + 1) ∀(i, k) ∈ {1, . . . , Nk} × {1, . . . , n}. (6)

Thus, if Fi (0) ̸= 0 the function G i is completely defined from the values of Fi (0), Fi (∆L) and G i (1):

G i (k) =

(
Fi (∆L)

Fi (0)

)k−1

G i (1).

This constraint on G i decreases dramatically the convergence rate of the PGD. To circumvent this problem, a
possibility is to compute many terms of the separated approximation at the same time instead of a classical term by
term algorithm.

In the following, only the second strategy is described.
Let us consider a finite element discretization of the domain with equally distributed nodes as shown in Fig. 1. This

distribution of nodes is only for sake of clarity without loss of generality. The size of an element is denoted ∆x . Then,
the weak formulation Eq. (2) can be rewritten:

Nk∑
k=1

(∫ k∆L−∆x

(k−1)∆L
AE

dU ⋆(X)
dX

dU (X)
dX

dX
)

+

Nk−1∑
k=1

(∫ k∆L

k∆L−∆x
AE

dU ⋆(X)
dX

dU (X)
dX

dX
)

+

∫ Nk∆L

Nk∆L−∆x
AE

dU ⋆(X)
dX

dU (X)
dX

dX =

[
AE U ⋆(X)

dU (X)
dX

]L

0
∀U ⋆

∈ V.

(7)

The first sum
∑Nk

k=1

(∫ k∆L−∆x
(k−1)∆L AE dU⋆(X)

dX
dU (X)

dX dX
)

contains integrals defined on the elements that are inside the

elementary parts. The second sum
∑Nk−1

k=1

(∫ k∆L
k∆L−∆x AE dU⋆(X)

dX
dU (X)

dX dX
)

contains integrals defined over the interface
elements. The element located on the right boundary needs a special treatment that will be detailed in Section 2.1.4.

With a change of variable between X and x it comes:
I1

Nk∑
k=1

(∫ ∆L−∆x

0
AE

dU ⋆(k, x)
dx

dU (k, x)
dx

dx
)

+

I2
Nk−1∑
k=1

(∫ ∆L

∆L−∆x
AE

dU ⋆(k, x)
dx

dU (k, x)
dx

dx
)

+

∫ Nk∆L

Nk∆L−∆x
AE

dU ⋆(X)
dX

dU (X)
dX

dX =

[
AE U ⋆(X)

dU (X)
dX

]L

0
∀U ⋆

∈ V.

(8)

2.1.2. First iteration
The approximation defined by Eq. (4) is built term by term. For now, we focus on the first iteration. The

displacement is then approximated by:

U (X) = F1(x)G1(k) = R(x)S(k). (9)

To avoid the redundant use of subscripts, we denote R = F1 and S = G1. The determination of R and S involves a
non-linear problem that is solved using the classical alternate direction strategy [3]. At the beginning, R is computed
assuming a random value for S. Then S is computed knowing R. And again R is computed knowing S and so on until
R and S have converged.

Then, two different problems must be treated:

1. Computing R knowing S
2. Computing S knowing R.

The test function is U ⋆(k, x) = R⋆(x)S(k) for the first problem and U ⋆(k, x) = R(x)S⋆(k) for the second problem
where R⋆(x) ∈ H 1([0,∆L]) = VR and S⋆(k) : {1, . . . , Nk} → R are some associated test functions.

The first problem is considered in the following. The first integral of Eq. (8) can be simply rewritten using the
separated approximation:

I1 =

Nk∑
k=1

∫ ∆L−∆x

0
AE

dR⋆(x)
dx

dR(x)
dx

S2(k) dx

=

(∫ ∆L−∆x

0
AE

dR⋆(x)
dx

dR(x)
dx

dx
) Nk∑

k=1

S2(k). (10)

After a finite element discretization it remains:

I1 =
(
R⋆TKR

)
×
(
STINkS

)
(11)

R is the column vector containing the nodal values of R:

R =
[
R1 R2 · · · RNx

]T (12)

S is the column vector containing the values of S:

S =
[
S1 S2 · · · SNk

]T (13)

R∗ is a vector containing the nodal values of the test function R∗.
K is the stiffness matrix related to the periodic cell and INk is the Nk × Nk identity matrix.
The second integral in Eq. (8) requires a little more development since the degree of freedom corresponding to

Uk(∆L) = Uk+1(0) is defined only on the part k + 1. This integral is defined on the interface elements between two
parts. For 1D linear elements the shape function vector over the interface element is: Φ(x) =

[
φNx (x) φ1(x)

]
(see

Fig. 1) where φi (x) denote the shape function associated to the node i . For 3 nodes quadratic elements the shape
function vector becomes: Φ(x) =

[
φNx−1(x) φNx (x) φ1(x)

]
.

The matrix of DOF is for linear elements:

Qk =

[
RNx Sk

R1Sk+1

]
(14)

or for quadratic elements:

Qk =

⎡⎣RNx −1Sk

RNx Sk

R1Sk+1

⎤⎦ . (15)

Using this finite element approximation, I2 can be written as:

I2 =

Nk−1∑
k=1

∫ ∆L

∆L−∆x
AE

dU ⋆(k, x)
dx

dU (k, x)
dx

dx =

Nk−1∑
k=1

Q⋆T
∫ ∆L

∆L−∆x
AE

dΦ(x)
dx

T dΦ(x)
dx

dxQ. (16)

Defining αi j =
∫∆L
∆L−∆x AE dφi

dx
dφ j
dx dx and developing the previous equation in the case of linear elements, I2

becomes:

I2 = R⋆
Nx

αNx Nx RNx

Nk−1∑
k=1

S2
k + R⋆

Nx
α1Nx R1

Nk−1∑
k=1

Sk Sk+1 + R⋆
1α1Nx RNx

Nk−1∑
k=1

Sk+1Sk + R⋆
1α11 R1

Nk−1∑
k=1

S2
k+1. (17)

S. Metoui et al. / Mathematics and Computers in Simulation 144 (2018) 162–181 167

In general, four operators may be defined as follows:

I2 =
(
R⋆TMNx ,Nx R

)
×
(
STDk,kS

)
+
(
R⋆TMNx 1R

)
×
(
STDk,k+1S

)
+
(
R⋆TM1,Nx R

)
×
(
STDk+1,kS

)
+
(
R⋆TM1,1R

)
×
(
STDk+1,k+1S

)
(18)

where Dk,k , Dk+1,k+1, Dk+1,k and Dk,k+1 are the following Nk × Nk square matrices:

Dk,k =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · 0 0 0

⎤⎥⎥⎥⎥⎥⎦ Dk+1,k+1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎦ (19)

Dk,k+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 1
0 · · · 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ Dk+1,k =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
1 0 0 · · · 0

0 1 0
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ (20)

and MNx ,Nx , M1,1, MNx ,1 and M1,Nx are some Nx × Nx square matrices coming from the development of Eq. (16). In
the case of linear elements, these matrices are identified from Eq. (17):

MNx ,Nx =

⎡⎢⎢⎢⎣
0 0 · · · 0
...

. . .
. . .

...

0 · · · 0 0
0 · · · 0 αNx Nx

⎤⎥⎥⎥⎦ M1,1 =

⎡⎢⎢⎢⎣
α11 0 · · · 0
0 0 · · · 0
...

. . .
. . .

...

0 · · · 0 0

⎤⎥⎥⎥⎦ (21)

MNx ,1 =

⎡⎢⎢⎢⎣
0 0 · · · 0
...

... . ..
...

0 0 · · · 0
α1Nx 0 · · · 0

⎤⎥⎥⎥⎦ M1,Nx =

⎡⎢⎢⎢⎣
0 · · · 0 α1Nx

0 · · · 0 0
... . ..

...
...

0 · · · 0 0

⎤⎥⎥⎥⎦ . (22)

In the separated formulation some operators are non symmetric. However it is interesting to notice that the global
problem remains symmetric because: Dk+1,k = DT

k,k+1 and M1,Nx = MT
Nx ,1. The stiffness matrix K defined in Eq. (11)

is also symmetric.
The weak formulation Eq. (8) without boundary gives eventually after eliminating R∗:

(KR) ×
(
STINk S

)
+
(
MNx ,Nx R

)
×
(
STDk,kS

)
+
(
MNx 1R

)
×
(
STDk,k+1S

)
+
(
M1,Nx R

)
×
(
STDk+1,kS

)
+
(
M1,1R

)
×
(
STDk+1,k+1S

)
= B1(R, S). (23)

And the system for the second problem, that is to compute S knowing R writes:(
RTKR

)
×
(
INk S

)
+
(
RTMNx ,Nx R

)
×
(
Dk,kS

)
+
(
gRTMNx 1R

)
×
(
Dk,k+1S

)
+
(
RTM1,Nx R

)
×
(
Dk+1,kS

)
+
(
RTM1,1R

)
×
(
Dk+1,k+1S

)
= B2(R, S) (24)

B1(R, S) and B2(R, S) are vectors associated to boundary conditions that are defined in Section 2.1.4.
The linear systems Eqs. (23) and (24) are some reduced version of a more global system (i.e, the full FEM system).

The nodal values of the global solution U (X) = R(x)S(k) can be built a posteriori using a simple tensor product
U = R ⊗ S. These two systems are then well-posed if the equivalent global problem is also well-posed and if the
global solution U computed from S and R satisfies the boundary conditions.

Algorithm 1 General PGD algorithm used to make the link between the elementary cell and the global mesh
1: n = 0
2: initialize Fn+1 and Gn+1 to random values
3: Fold

n+1 = Fn+1 ; Gold
n+1 = Gn+1

4: Compute Fn+1 knowing Gn+1 (update the function related to the elementary cell)
5: Compute Gn+1 knowing Fn+1 (update the function related to the global mesh)
6: if max(

Fn+1 − Fold
n+1

2 ,
Gn+1 − Gold

n+1

2) > ϵ1max(∥Fn+1∥2 , ∥Gn+1∥2) then go to 3

7: n = n+1
8: U (x, k) =

∑n
i=1 Fi (x)G i (k) (no need to compute U explicitly)

9: If the normalized Euclidean norm of the residual of the system (Eq. 26) > ϵ2 then go to 2

2.1.3. Other iterations
For other iterations, Fi and G i are assumed known for i = 1, . . . , n. Now, we are looking for R = Fn+1 and

S = Gn+1 such as:

U (x, k) =

n∑
i=1

Fi (x)G i (k) + R(x)S(k). (25)

The test function is the same as in the first iteration:

• U ⋆(k, x) = R⋆(x) S(k) if the unknown is R.
• U ⋆(k, x) = R(x) S⋆(k) if the unknown is S.

We focus on the case where the unknown is R. Introducing this expression into the weak form, and using a finite
elements discretization as described for the first iteration we get:

(KR) ×
(
STImS

)
+
(
MNx ,Nx R

)
×
(
STDk,kS

)
+
(
MNx 1R

)
×
(
STDk,k+1S

)
+
(
M1,Nx R

)
×
(
STDk+1,kS

)
+
(
M1,1R

)
×
(
STDk+1,k+1S

)
= B1(R, S)

−

n∑
i=1

[
(KFi) ×

(
STImGi

)
+
(
MNx ,Nx Fi

)
×
(
STDk,kGi

)
+
(
MNx 1Fi

)
×
(
STDk,k+1Gi

)
+
(
M1,Nx Fi

)
×
(
STDk+1,kGi

)
+
(
M1,1Fi

)
×
(
STDk+1,k+1Gi

)]
(26)

where Fi and Gi contain the nodal values of Fi (x) and the values of G i (k).
A very similar system can be easily written when the unknown is S.
The global PGD algorithm is summed up in algorithm 1. In this algorithm ϵ1 and ϵ2 are error tolerances related to

the convergence criteria. The convergence of this algorithm has been discussed in [2].

2.1.4. Boundary conditions
For now, the method has been described without accounting for boundary conditions. As the method is based on

a finite element discretization, stress conditions can naturally be introduced by adding a vector of generalized force
to the system to be solved. The only difference with the classical finite element method is that it must be written on a
separated form. The direct application of Dirichlet conditions on the separated representation is generally not possible.
For instance, if the beam is clamped in x = 0 the boundary condition is:

U (k = 1, x = 0) = 0. (27)

As the solution is built iteratively, the boundary conditions must be satisfied at each iteration, i.e.:
n∑

i=1

Fi (0)G i (1) = 0. (28)

It is easy to prove that this leads to:

Fi (0) = 0 or G i (1) = 0 ∀i ∈ {1, . . . , n}. (29)

If we enforce G i (1) = 0 ∀i ∈ {1, . . . , n}, the solution is zero over the first cell and we can get the true solution
only in the very restrictive case where there is actually no displacement over this cell. In other hand, if we enforce
Fi (0) = 0 ∀i ∈ {1, . . . , n}, that leads to:

U (k, 0) = U ((k − 1)∆L) = 0 ∀k ∈ {1, . . . , Nk}. (30)

In that case, the displacement vanishes on the left of each cell. In this case again, we cannot get the real
displacement or only in some very restrictive cases.

Then, the best solution to apply Dirichlet conditions is to use a penalty method. It consists in adding some new
operators that describe the boundary conditions. For instance, to enforce a unitary displacement on the left, the
operators related to boundary conditions are:

Mbc = β

⎡⎢⎢⎢⎣
1 0 · · · 0
0 0 · · · 0
...

. . .
. . .

...

0 · · · 0 0

⎤⎥⎥⎥⎦ Dbc =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 0 · · · 0
...

. . .
. . .

...

0 · · · 0 0

⎤⎥⎥⎥⎦

Bx
bc = β

⎡⎢⎢⎢⎣
1
0
...

0

⎤⎥⎥⎥⎦ Bk
bc =

⎡⎢⎢⎢⎣
1
0
...

0

⎤⎥⎥⎥⎦
where β ∈ R+ is the purely numerical penalty parameter. Mbc is a Nx × Nx matrix, Dbc is a Nk × Nk matrix, Bx

bc is a
Nx × 1 matrix and Bk

bc is a Nk × 1 matrix.
The boundary conditions are specified by defining B1 and B2 in Eqs. (23) and (24):

B1(R, S) = Bx
bc ×

(
STBbck

)
− (MbcR) ×

(
STDbcS

)
B2(R, S) =

(
RTBbcx

)
× Bk

bc −
(
RTMbcR

)
× (DbcS) .

The system given in Eq. (23) becomes with this boundary condition:

(KR) ×
(
STImS

)
+
(
MNx ,Nx R

)
×
(
STDk,kS

)
+
(
MNx 1R

)
×
(
STDk,k+1S

)
+
(
M1,Nx R

)
×
(
STDk+1,kS

)
+
(
M1,1R

)
×
(
STDk+1,k+1S

)
+ (MbcR) ×

(
STDbcS

)
= Bx

bc ×
(
STBk

bc
)
. (31)

This define a linear system whose unknowns are the component of R. This system may be solved by the conjugate
gradient method or any other classical method.

Another problem has to be discussed relating to boundary conditions. On the right side, there is obviously no
interface element. In comparison to other elementary parts, the right part has one node less on the right. This may
be a problem. A simple solution to overcome this difficulty is to add a “virtual” elementary part on the right that is
only used for one node. The other nodes are only virtual and the element inside this virtual part have to be ignored.
In operators Dk,k , Dk,k+1, Dk+1,k and Dk+1,k+1, the row corresponding to the virtual part (the row Nk) must be filled
with 0 in order to prevent the effect of virtual element. There is no undesirable numerical error related to the presence
of virtual element even if there is no unique solution (the solution inside the virtual element can be anything). As
detailed previously, the enrichment of the separated representation is performed using an alternate direction strategy
that is a type of fixed point method. The solution will converge to one among the possible solutions according to the
initial values of the vectors R and S (random values in general) [2].

2.2. Domain decomposition method for periodic 2D and 3D domains

2.2.1. Mechanical model
In this section, a 2D or 3D static problem is considered.

U denotes the displacement vector expressed in the canonical basis:

U (X) =

⎡⎣Ux (X)
Uy(X)
Uz(X)

⎤⎦ (32)

where X = (X, Y, Z)T is the coordinate vector. ε denotes the strain tensor using Voigt notation:

ε =

⎡⎢⎢⎢⎢⎢⎢⎣
εxx

εyy

εzz

2εyz

2εxz

2εxy

⎤⎥⎥⎥⎥⎥⎥⎦ . (33)

The stress tensor using the Voigt notation is written as:⎡⎢⎢⎢⎢⎢⎢⎣
σxx

σyy

σzz

σyz

σxz

σxy

⎤⎥⎥⎥⎥⎥⎥⎦ = H

⎡⎢⎢⎢⎢⎢⎢⎣
εxx

εyy

εzz

2εyz

2εxz

2εxy

⎤⎥⎥⎥⎥⎥⎥⎦ = Hε (34)

H is the matrix describing the constitutive equation. In small displacements, ε is the symmetric gradient of the
displacement. With these notations, the weak formulation of the equilibrium equation without dynamic effect and
volume forces is expressed as:∫

Ω

ε(U ⋆)T (Hε(U)) dΩ =

∫
Γ

U ⋆.(σ.n) dΓ ∀U ⋆
∈
(
H 1(Ω)

)2
: (35)

Ω is the domain taken by the structure, Γ is the boundary of the domain, U ⋆
∈ H 1(Ω) is a test function and n is the

unit vector normal to Γ directed toward the exterior of Ω . The right part of this weak formulation is only used for
boundary conditions. It is not included in the following for the sake of readability.

2.2.2. Separated description of 2D problems
As for the 1D case, the domain Ω is decomposed into Nk periodic elementary cells Ωk . Ωi denotes the set of

elements inside the elementary cell and Ωe is the set of interface elements. The integral over Ω in Eq. (35) can be
decomposed as a sum of integrals over Ωk = Ωi ∪ Ωe(k). The weak form gives then for all U ⋆

∈
(
H 1(Ω)

)2:

Nk∑
k=1

∫
Ωi

ε(U ⋆)T (Hε(U)) dΩ
I1

+

Nk∑
k=1

∫
Ωe(k)

ε(U ⋆)T (Hε(U)) dΩ
I2

=

∫
Γ

U ⋆.(σ.n) dΓ . (36)

To avoid the double definition of degrees of freedom at the interface between cells, some nodes need to be deleted at
the interface. We choose to delete the nodes on the right and up faces for the 2D case as shown in Fig. 2.

The local coordinates in the elementary cells are noted x . approximation associated to a 2D or a 3D problem is
then:

U (x) =

n∑
i=1

F i (x)G i (k). (37)

Here, G i is a scalar function and F i is a vector function:

F i (x) =

⎛⎝F x
i (x)

F y
i (x)

F z
i (x)

⎞⎠ . (38)

Fig. 2. Examples of 2D meshes and decomposition in elementary parts.

2.2.3. First iteration and operators assembly
The integral I1 is treated as for the 1D case. For the first iteration with U (x) = R(x)S(k), I1 reads:

I1 =

(∫
Ωi

ε(R⋆)T (Hε(R)) dΩ
) Nk∑

k=1

S(k)2

≈
(
R⋆TKR

)
×
(
STINkS

)
R⋆

∈
(
H 1(Ωi)

)2 is a test function, K is the stiffness matrix related to Ωi and INk is the Nk × Nk identity matrix. R
is the column vector containing the nodal values of Rx , R y and Rz and S is the column vector containing the values
of S.

The second integral I2 needs an assembly of new matrices that are representative of interactions between
neighboring cells. The element stiffness matrices of interface elements must be assembled in some global operators
written from a tensor product of matrix operators either associated to the nodal values of Ωi or associated to the list
periodic cells {1, . . . , Nk} .

For instance, in the first 2D problem depicted in Fig. 2, I2 can be written as:

I2 =

4∑
m=1

(
R⋆TMr

mR
)
×
(
STDr

mS
)

Dr
m are the matrices defined by:(

Dr
1

)
i, j =

{
1 if i = j and the cell i has a right neighboring cell
0 otherwise

(
Dr

2

)
i, j =

{
1 if i = j and the cell i has a left neighboring cell
0 otherwise

Fig. 3. Corner element: nodes and neighboring cells definition.

(
Dr

3

)
i, j =

{
1 if the cell j is at the right of the cell i
0 otherwise

(
Dr

4

)
i, j =

{
1 if the cell i is at the right of the cell j
0 otherwise

and the matrices Mr
m are matrices that result from the assembly. It is interesting to notice that Dr

2 =
(
Dr

1

)T and
Mr

2 =
(
Mr

1

)T .
The second problem depicted in Fig. 2 is more complicated. There are now 3 types of interface elements:

• elements between the cell and its right neighbor (subscript r),
• elements between the cell and its top neighbor (subscript t),
• an element in the top-right corner that is at the interface of 4 different cells (subscript c).

The assembly results in the following sum:

I2 =

4∑
m=1

(
R⋆TMr

mR
)
×
(
STDr

mS
)

right interface elements

+

4∑
m=1

(
R⋆TMt

mR
)
×
(
STDt

mS
)

top interface elements

+

16∑
m=1

(
R⋆TMc

mR
)
×
(
STDc

mS
)

corner interface element

.

The right interface elements bring the same operators as in the first case. The operators related to the top interface
elements are also very similar.

The element on the corner is assembled with 16 operators because it is at the interface of 4 different cells. The
assembly of the corner element is detailed as follows.

We assume for illustration that the corner element is the 4 nodes quadrilateral element as shown in Fig. 3.
The nodes belonging to the corner element of a cell k ∈ {1, . . . , Nk} are numbered from 1 to 4. Each one of these

nodes i ∈ 1, 2, 3, 4 belong to a different cell ci (k).
Fig. 3 shows that c1 = k, c2 is the cell on the right of k, c3 is on the top-right of k and c4 is on the top of k. Using

these notations, the matrix containing the degrees of freedom of the corner element is:

Qe
k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rx
1 Sc1

Rx
2 Sc2

Rx
3 Sc3

Rx
4 Sc4

R y
1 Sc1

R y
2 Sc2

R y
3 Sc3

R y
4 Sc4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (39)

Fig. 4. Example of composite structure with periodic geometry.

Table 1
Material properties and geometric parameters of the virtual cell.

Material properties

E f (GPa) Em (GPa) ν f νm V f (%)

390 4.5 0.35 0.40 34

The element stiffness matrix of the corner element is noted Kc. The weak formulation restricted to the corner
elements is:

∑
k∈C

(
Qe⋆T

k KcQe
k

)
, where C denotes the set of cells having an interface element on the top-right corner.

This sum is then decomposed as follows:∑
k∈C

(
Qe⋆T

k KcQe
k

)
=

4∑
i=1

4∑
j=1

([
Rx⋆

i R y⋆

i

] [Kc
i,i Kc

i, j+4
Kc

i+4, j Kc
i+4, j+4

] [
Rx

j
R y

j

]
×

∑
k∈C

(
Sci (k)Sc j (k)

))
. (40)

There are then 16 separated operators. It remains only to assemble these element operators into global operators in
order to get Mc

m and Dc
m (with m = 1, 2, . . . , 16).

Remark. This method requires a lot of separated operators. There are 25 operators for the 2D case treated here and
129 operators for the full 3D case. Though this is a high number, all the matrices are very sparse (some matrices have
a few non-zero elements).

3. Results

In this section, the method described previously will be considered for solving some test cases in order to evaluate
its performance in terms of results precision and computational cost.

3.1. Numerical results of 2d problem

Consider a composite structure composed of unidirectional fibers. We assume that this structure has a periodical
geometry which can be described by an heterogeneous unit cell, as shown in Fig. 4.

Two modeling scales are then considered: the macroscopic scale which define the structure scale and the
microscopic scale represented by the unit cell (a single fiber surrounded by resin).

The material properties and the geometric parameters are summarized in Table 1 [5]. The subscript f is used for
the fiber properties and the subscript m for the matrix properties. V f denotes the fiber volume fraction.

In this subsection, the numerical simulations performed using the PGD are compared with results of classical
FEM implementation using the same set of parameters. The aim is to validate the PGD approach. The two methods
are based on the same mesh of the unit cell and the error related to the finite element discretization is exactly the
same in both cases. It is important to notice that the comparison between the PGD and the FEM will only show the
error due to the separated approximation. In the best case, the PGD will give the same result as the finite element.

Fig. 5. The representative unit cell at the microscale.

Fig. 6. Domain decomposed into subdomains and boundary conditions.

Therefore, the finite element method serves as a reference solution in order to assess the performance of the PGD
approximation.

The problem was divided into 20 substructures, each substructure corresponding to one cell whose length is
∆L = 9 µm. The loads and boundary conditions applied to the structure are shown in Fig. 6. The linear force is set to
−1 N mm−1 and the left and right edges are clamped. The problem is solved in 2D using a plane strain assumption
with a unity thickness.

Three meshes are considered to study the mesh convergence. A coarse one composed of 149 nodes, a fine one with
2225 node and an intermediate one with 569 nodes are represented in Fig. 5. The three meshes have been generated
by successive refinements. 2D triangular elements with 3-nodes are used for all meshes. The axis x is set to be along
the fibers and is then perpendicular to the plane.

The finite element mesh was constructed by assembling the meshes of 20 unit cells. For the fine mesh, a total of
43809 nodes involving 87618 degrees of freedom (two DOF per node) are used.

The displacements of the structure are depicted for the intermediate mesh in Fig. 7. The PGD approach and the
FEM give quite similar results for the displacements.

The stresses distributions are also plotted in Fig. 8. The results of the PGD are also in excellent agreement with the
2D FEM solution. The PGD approach is able to capture the stress distribution in the microstructure with almost the
same precision as the FEM.

Fig. 9 gives the distribution of the stresses through the thickness (coordinate z) at different positions: the center
for σyy and the left edge for σyz . These positions are chosen to be the most critical for each stress component. The
difference between the two methods is also plotted. Referring to these figures, the PGD solution performs very well
with respect to the FEM solution. However, we can see that the error increases slightly near the boundaries.

Table 2 summarizes the value obtained for some stress and displacement components at different positions and for
the three meshes. The coordinates are given using the center of the geometry for origin and using the dimension of the
unit cell denoted ∆L . We can see that the intermediate mesh gives some results very close to the ones of fine mesh.
The coarse mesh is clearly less precise, especially for the shear stress σyz . The normal stress σzz on the top should
logically converge to the external linear force −1 MPa. This is almost the case for the fine mesh. A Timoshenko beam
model using a homogenized transverse Young modulus gives an approximate deflection of 0.0657 mm. This value is
quite consistent with the deflection obtained at the center, especially for the two finer meshes.

(a) uy .

(b) uz .

Fig. 7. Displacement fields (mm) : FEM solution (left)—PGD solution (right).

(a) σyy .

(b) σzz .

(c) σyz .

Fig. 8. Stresses distributions (MPa) : FEM solution (left)—PGD solution (right).

The values obtained by the PGD for around 250 iterations are in good agreement with the one obtained by the
FEM. The 250 iterations lead to only n ≈ 30 in the separated approximation because the solution is compressed
using a SVD or a simple PGD algorithm with the identity operator. However, we can point out some significant
differences. The displacement given by the PGD seems to be more precise than the stress. The value of σzz on the
center/top is −0.748 MPa for the fine mesh, far from the −1 expected. This shows a locally non converged solution.
The tolerance in the convergence criterion is difficult to choose correctly. This remains a difficulty in the PGD solver
and the development of efficient error estimators is probably an important challenge for some future works.

For now, we have used the classical PGD solver which consist in trying to reach the convergence of the separated
approximation Eq. (37) with respect to a defined criterion. Another possible approach is to set the number of terms
n in Eq. (37) to a chosen value and to search the solution of the weak equation truncated to this n terms. For that
purpose, instead of the Algorithm 1 we can compute the n functions F i (x) (or alternately G i (k)) for i = 1 . . . n at
the same time. The interested reader can refer to [22] for more details.

176

Results of the FEM and PGD at different positions with 3 meshes: Stress components (MPa) and Displacement components (mm).

σyy σyy σyz σzz u y uz

(x, y) (0, ∆L
2) (0, −∆L

2) (−4∆L , 0) (0,∆L) (−4∆L ,∆L) (0, 0)

Classical finite element method

Coarse mesh −5.237 5.001 −3.449 −1.073 0.0101 −0.0608
Interm. mesh −5.456 5.238 −3.762 −1.033 0.0104 −0.0621
Fine mesh −5.526 5.311 −3.721 −1.012 0.0105 −0.0625

PGD—incremental strategy

Coarse mesh −5.225 5.026 −3.52 −1.097 0.0102 −0.0609
Interm. mesh −5.373 5.07 −3.532 −0.989 0.0103 −0.062
Fine mesh −5.407 5.114 −3.648 −0.748 0.0101 −0.0624

Fig. 9. Distribution of the stresses along the thickness: (a) σyy at the center, (b) σyz along the left edge.

Table 3 gives some results given by the PGD using this strategy for n = 6, n = 8 and n = 10 with the intermediate
mesh. Using a small number of terms permits to reduce significantly the computational cost of the simulation but gives

S. Metoui et al. / Mathematics and Computers in Simulation 144 (2018) 162–181 177

Table 3
Results of the PGD with predefined number of terms at different positions with the intermediate mesh: Stress components (MPa) and Displacement
components (mm).

PGD—fixed number of terms in the separated decomposition

σyy σyy σyz σzz u y uz

(x, y) (0, ∆L
2) (0, −∆L

2) (−4∆L , 0) (0,∆L) (−4∆L ,∆L) (0, 0)

n = 6 −4.83 4.741 −4.092 −0.537 0.0092 −0.0567
n = 8 −5.084 4.869 −3.81 −0.991 0.00963 −0.0611
n = 10 −5.406 5.188 −3.736 −1.0176 0.0105 −0.0619

Fig. 10. Woven carbon fiber.

only an approximation of the solution. For instance, with 6 terms, we get mainly an order of magnitude of the solution.
With 8 terms, the solution is much closer to the FEM solution and the computational cost remains smaller than the one
of the classical PGD solver (71 s instead of 108 s for the intermediate mesh with 20 subdomains). With n = 10, the
solution is almost converged and we are even closer to the FEM solution than with the classical PGD algorithm. The
advantage of this strategy is that the computational time is weakly correlated to the number of subdomains (expected
for very high number of subdomains).

On a simple laptop (CPU Intel core i7-4510U at 2.00 GHz, 2 cores, RAM 8 Go DDR3 at 1600MHz) the
computational cost required to get the solution with 10 terms is about 115 s for 20 subdomains, 127 s for 980
subdomains, 165 s for 2000 subdomains and 1945 s for 18000 subdomains. With 6 terms, the computational cost
required to get the solution is about 34 s for 20 subdomains and 637 s for 18000 subdomains. The computational cost
is correlated to the number of degrees of freedom in the separated representation, i.e, n × (Nmicro + Nmacro), where
Nmicro is the number of DOF in the microscopic mesh and Nmacro is the number of DOF in the macroscopic mesh. The
number of terms n required to catch the physics is dependent on the complexity of the problem and not necessarily on
the number of subdomains.

The computational cost is given only for sake of illustration because it depends strongly on the implementation.
The codes related to the PGD and classical FEM are both home made codes developed in Python using Numpy [9] and
Scipy [14] for sparse matrices. However, it is important to note that the resolution of the Finite Element is only based
on Scipy sparse matrices that include some efficient compiled methods to solve sparse linear systems (umfpack [8],
superlu [28]). In the case of the PGD, there remains many loops in python (Cpython) that are non optimized and a
high factor could be saved with a good implementation using an efficient compiler.

3.2. Numerical results of 3d problem

For sake of illustration, a multiscale 3D model is used to simulate the mechanical behavior of woven composite
materials. This model is difficult to treat using a classical finite element solver with 3D solid elements. It consists in a
two-ply composite made from woven carbon fibers (taffeta) and epoxy resin.

Woven reinforcements are generally periodic media: in fact, they consist of a repeating pattern or a unit cell
to reconstruct the complete composite fabric, as shown in Fig. 10. Due to the geometrical complexity of woven
composites architecture, the 3D geometric model was built using TexGen software [25] as shown in Fig. 11(a).
TexGen is a very powerful tool to generate geometric models for composite textiles. The TexGen model is transferred
to ABAQUS [1]. As could be seen in figure Fig. 11(b), the matrix volume is then created by subtracting the yarns
volume. The next step is to construct the finite element mesh of the unit cell. In order to do the simulations, the mesh of

(a) Yarns. (b) Matrix.

(c) Unit cell mesh.

Fig. 11. Periodic tetrahedral mesh of unit cell model.

Table 4
Material property.

Matrix Effective properties of yarn

E (MPa) ν E1 (GPa) E2 (GPa) ν12/ν13 ν23 G12/G13 (GPa) G23 (GPa)

3500 0.3 234.345 45.743 0.327 0.375 20.056 16.628

the unit cell must be periodic. Fig. 11(c) shown the 3D 4 nodes periodic tetrahedral mesh of unit cell model. The unit
cell dimension is 2 × 2 × 0.42 (mm). PGD simulations were carried out using linear elastic behaviors, the matrix and
the yarns were assumed to be respectively isotropic and orthotropic. Material properties of the matrix and the effective
properties of the yarns are given in Table 4. The subscript 1 corresponds to the longitudinal direction of the yarn, and
the subscripts 2 and 3 correspond to the transverse directions. The properties of the yarn have been computed from
simple rules of mixtures assuming a fiber volume fraction of 90% (E f = 250 GPa).

The unit cell mesh is composed of 28934 nodes. The PGD problem was divided into 25 substructures which give
a total of 706390 nodes involving 2119170 degrees of freedom. The displacement along z of the composite plate is
zero on both ends (for x = 0 and x = xmax). A constant pressure of 367 MPa is applied on the top face of the unit
cell positioned at the center of the plate (surface force). A visualization of the deformed configuration is presented in
Fig. 12 and puts emphasis on the displacements. The maximum displacement value in the z direction logically appears
at the middle of the plate where the load is applied.

The stress values for the plate are analyzed and presented in Fig. 13. These stress fields are complex because of
the heterogeneity of the model and of the orthotropic behavior of the yarn. With the proposed reduced strategy, these
stress fields are accessible with a relatively low computational cost (30 min on a laptop).

4. Conclusion

This paper presents a new separated representation method for solving efficiently multiscale problems. In this work,
the Proper Generalized Decomposition is revisited using a separation of scales in periodic geometries. This separated

(a) ux .

(b) uy .

(c) uz .

Fig. 12. Displacement fields and deformation of a plain weave based composite: Full model is shown (left)—only yarn type materials are shown
(right).

representation involves both the space coordinates of the microscopic scale as well as the space coordinates of the
macroscopic scale. For coupling each subdomain, an efficient algorithm is proposed and validated: the proposed
technique has a satisfying precision when the convergence tolerance and the number of terms in the separated
representation are chosen adequately. The estimation of convergence error remains a hard point in the algorithm that
may be addressed in further studies. When the number of periodic cells is high (several thousands at least), especially
in 3D problems, the method can be very impressive in terms of computational cost. Another perspective that has not to
be investigated in this article is that the method is naturally capable of treating non-linear behavior since a non linear
solver is already used to reach the convergence. However, in the case of strong non-linearity, we can expect that the
number of terms required to catch the physics will increase and therefore the computational cost will also increase. In
this context, the amelioration of the algorithm that build the Proper Generalized Decomposition for problems with a
high number of operators is a key point that also needs further developments.

(a) σ xx .

(b) σ yy .

(c) σ xy .

Fig. 13. Stress distributions of a plain weave based composite: only yarn type materials are shown. Upper surface (left) — lower surface (right).

References

[1] Abaqus cae, dassault systemes, 2014, http://www.3ds.com/products-services/simulia/products/abaqus/ (Accessed: 17.05.16).
[2] A. Ammar, F. Chinesta, A. Falcó, On the convergence of a greedy rank-one update algorithm for a class of linear systems, Arch. Comput.

Methods Eng. 17 (4) (2010) 473–486.
[3] A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations

encountered in kinetic theory modeling of complex fluids, J. Non-Newton Fluid Mech. 139 (3) (2006) 153–176.
[4] A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations

encountered in kinetic theory modelling of complex fluids: Part II: Transient simulation using space-time separated representations, J. Non-
Newton Fluid Mech. 144 (2–3) (2007) 98–121.

[5] J.-M. Berthelot, Matériaux Composites : Comportement Mécanique et Analyse des Structures, Masson, 1996.
[6] B. Bognet, F. Bordeu, F. Chinesta, A. Leygue, A. Poitou, Advanced simulation of models defined in plate geometries: 3D solutions with 2D

computational complexity, Comput. Methods Appl. Mech. Engrg. 201–204 (2012) 1–12.
[7] F. Chinesta, A. Ammar, E. Cueto, Recent advances and new challenges in the use of the proper generalized decomposition for solving

multidimensional models, Arch. Comput. Methods Eng. 17 (4) (2010) 327–350.
[8] T.A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software (TOMS) 30 (2)

(2004) 196–199.
[9] S.V. der Walt, S.C. Colbert, G. Varoquaux, The numpy array: A structure for efficient numerical computation, Comput. Sci. Eng. 13 (2011)

22–30.

http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb2
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb2
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb2
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb3
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb3
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb3
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb4
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb4
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb4
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb4
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb4
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb5
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb6
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb6
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb6
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb7
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb7
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb7
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb8
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb8
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb8
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb9
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb9
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb9

[10] W. E, B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (2003) 87–132.
[11] C. Farhat, F.X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods

Engrg. 32 (1991) 1205–1227.
[12] F. Feyel, Multiscale FE2 elastoviscoplastic analysis of composite structures, Comput. Mater. Sci. 16 (1–4) (1999) 344–354.
[13] P. Gosselet, C. Rey, Non-overlapping domain decomposition methods in structural mechanics, Arch. Comput. Methods Eng. 13 (2006)

515–572.
[14] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python, [Online; accessed <today >] (2001–). URL http://

www.scipy.org/.
[15] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative volume element for random composites:

statistical and numerical approach, Int. J. Solids Struct. 40 (2003) 3647–3679.
[16] P. Ladeveze, A. Nouy, On a multiscale computational strategy with time and space homogenization for structural mechanics, Comput. Methods

Appl. Mech. Engrg. 192 (28–30) (2003) 3061–3087.
[17] P. Lions, On the Schwarz alternating method. I, in: First International Symposium on Domain Decomposition Methods for Partial Differential

Equations, 1988, pp. 1–42..
[18] P.L. Lions, On the Schwarz alternating method. II, in: Domain Decomposition Methods, 1989, pp. 47–70.
[19] J. Mandel, Balancing domain decomposition, Comm. Numer. Meth. Engng. 9 (1993) 233–241.
[20] S. Metoui, E. Pruliere, A. Ammar, F. Dau, I. Iordanoff, The proper generalized decomposition for the simulation of delamination using

cohesive zone model, Internat. J. Numer. Methods Engrg. 99 (13) (2014) 1000–1022.
[21] A. Nouy, O.L. Maître, Generalized spectral decomposition for stochastic nonlinear problems, J. Comput. Phys. 228 (1) (2009) 202–235.
[22] E. Pruliere, 3D simulation of laminated shell structures using the proper generalized decomposition, Compos. Struct. 117 (2014) 373–381.
[23] E. Pruliere, F. Chinesta, A. Ammar, On the deterministic solution of multidimensional parametric models using the proper generalized

decomposition, Math. Comput. Simulation 81 (4) (2010) 791–810.
[24] H.A. Schwarz, Über einen Grenzübergang durch alternierendes Verfahren, in: Vierteljahrsschrift Der Naturforschenden Gesellschaft in Zürich

15, 1870, pp. 272–286..
[25] TexGen (version 3.7), University of Nottingham, 2014, http://http://texgen.sourceforge.net/ (Accessed: 17.05.16).
[26] P. Vidal, L. Gallimard, O. Polit, Composite beam finite element based on the proper generalized decomposition, Comput. Struct. 102–103

(2012) 76–86.
[27] P. Vidal, L. Gallimard, O. Polit, Proper Generalized Decomposition and layer-wise approach for the modeling of composite plate structures,

Int. J. Solids Struct. 50 (14–15) (2013) 2239–2250.
[28] S.L. Xiaoye, An overview of SuperLU: Algorithms, implementation, and user interface, ACM Trans. Math. Software (TOMS) 31 (3) (2005)

302–325.

http://refhub.elsevier.com/S0378-4754(17)30283-5/sb10
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb11
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb11
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb11
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb12
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb13
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb13
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb13
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb15
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb15
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb15
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb16
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb16
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb16
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb19
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb20
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb20
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb20
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb21
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb22
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb23
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb23
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb23
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://http://texgen.sourceforge.net/
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb26
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb26
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb26
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb27
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb27
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb27
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb28
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb28
http://refhub.elsevier.com/S0378-4754(17)30283-5/sb28

	A multiscale separated representation to compute the mechanical behavior of composites with periodic microstructure
	Introduction
	A multiscale separated representation
	Domain decomposition method for periodic 1D domains
	Separated description of the 1D problem
	First iteration
	Other iterations
	Boundary conditions

	Domain decomposition method for periodic 2D and 3D domains
	Mechanical model
	Separated description of 2D problems
	First iteration and operators assembly

	Results
	Numerical results of 2d problem
	Numerical results of 3d problem

	Conclusion
	References

