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A Classification Approach to Efficient Global Optimization in
Presence of Non-Computable Domains

Matthieu Sacher · Régis Duvigneau · Olivier
Le Maı̂tre · Mathieu Durand · Élisa Berrini ·
Frédéric Hauville · Jacques-André Astolfi

Abstract Gaussian-Process based optimization methods have become very popular in re-cent 
years for the global optimization of complex systems with high computational costs. These 
methods rely on the sequential construction of a statistical surrogate model, using a training 
set of computed objective function values, which is refined according to a pre-scribed 
infilling strategy. However, this sequential optimization procedure can stop prema-turely if the 
objective function cannot be computed at a proposed point. Such a situation can occur when 
the search space encompasses design points corresponding to an unphysical configuration, an 
ill-posed problem, or a non-computable problem due to the limitation of numerical solvers. To 
avoid such a premature stop in the optimization procedure, we propose to use a classification 
model to learn non-computable areas and to adapt the infilling strat-egy accordingly. 
Specifically, the proposed method splits the training set into two subsets composed of 
computable and non-computable points. A surrogate model for the objective function is built 
using the training set of computable points, only, whereas a probabilistic classification model 
is built using the union of the computable and non-computable train-
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ing sets. The classifier is then incorporated in the surrogate-based optimization procedure
to avoid proposing new points in the non-computable domain while improving the classi-
fication uncertainty if needed. The method has the advantage to automatically adapt both
the surrogate of the objective function and the classifier during the iterative optimization
process. Therefore, non-computable areas do not need to be a priori known. The proposed
method is applied to several analytical problems presenting different types of difficulty, and
to the optimization of a fully nonlinear fluid-structure interaction system. The latter problem
concerns the drag minimization of a flexible hydrofoil with cavitation constraints. The effi-
ciency of the proposed method compared favorably to a reference evolutionary algorithm,
except for situations where the feasible domain is a small portion of the design space.

Keywords Global optimization · Gaussian process model · constrained optimization ·
classification

1 Introduction

The use of surrogate models is a classical approach to reduce the computational burden re-
lated to the optimization of complex systems [1]. Polynomial models were first used as sur-
rogates, thanks to their ease of construction. More recently, sophisticated surrogate models
such as Gaussian processes (GP) [2] or Support Vector Machines (SVM) [3] have emerged.
Gaussian Process (GP) modeling is a statistical method to approximate functions from a
finite set of observations, possibly noisy, at arbitrary points. Using the observations, it ex-
plicitly updates the prior mean and covariance functions into their posterior counterparts,
minimizing the mean-squared-error of the estimator. In the case of Gaussian observation
noise, the estimator corresponds to the optimal Bayesian posterior. Contrary to alternative
regression-type approaches, GP modeling does not require to prescribe explicitly a basis for
the approximation space. GP surrogates have been applied to several problems such as un-
certainty quantification [4, 5], binary classification [6], multi-levels system [7], multi-fidelity
surrogate [8] or clustering-based space exploration [9].

GP models have also been found especially appealing for optimization, in the framework
of the Efficient Global Optimization (EGO) [10] method, because their statistical nature al-
lows to provide both a prediction of the objective function, in terms of model mean, and an
error estimate, in terms of model variance. EGO strategies have been used in several engi-
neering applications, such as aerodynamic drag reduction of transonic wings [11], vibration
reduction for rotating aircrafts [12, 13], optimization of FSI problems [14] and sail trim-
ming optimization [15]. The EGO efficiency has been demonstrated for the optimization of
complex systems with costly objective function evaluations [1].

In all these problems, a statistical criterion accounting for the Expected Improvement
(EI) [16], usually referred to as merit function, is used to select a new (or multiple [17]) de-
sign point, at which the objective function should be evaluated. This new evaluation is used
to improve the accuracy of the surrogate. However, in some situations, the analysis may not
be possible for the newly selected design point. In the context of simulation-based optimiza-
tion, such situations can be related for instance to the existence of unphysical configurations,
ill-posed problems, or the lack of numerical robustness (weak convergence of the solvers,
non-convergence to a steady solution, unstable computation, poor mesh quality for extreme
configuration, etc). The origin of such failures is dependent on the application domain and
an example will be provided below in the context of hydrodynamic design. Note that the au-
tomatic detection of non-computable points is a real issue in practical applications. Indeed,
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the origins of the failures can be very diverse and their detection is therefore not obvious.
In some cases, the failure can be relatively easy to detect by monitoring the evolution of
residuals or any variable of interest (e.g. forces). In other cases, the computational time
might be a way to identify the simulations that are not converging. The use of clustering
approaches [18] may also be an alternative to detect such computational failures. All these
situations will be referred generically as cases of non-computable design points. The occur-
rence of such non-computable points is critical to sequential EGO method because it leads
to a premature halt of the optimization process, due to the impossibility to update the sur-
rogate model. A possible way to overcome this problem would be to interpolate/extrapolate
the non-computable objective function values, using directly the current GP model or more
sophisticated methods [19]. However, the accuracy of these values and their impact on the
convergence of the optimization procedure are questionable. Moreover, such methods are
not always satisfactory since we may not be interested in non-computable points that corre-
spond to unphysical designs.

Unphysical or ill-posed situations typically arise from the definition of the design space
that is too large and includes non-feasible situations. Similarly, the presence of design points
that are not computable because of numerical issues should be traced back to a design space
that is too rich and contains extreme situations that should not be considered as potential
candidates for the optimum. Otherwise, it implies that the numerical solvers considered for
the evaluation of the objective function are simply not suitable for the optimization task.
However, even though the numerically critical areas of the design space may not be close to
the sought optimum, the EGO eventually visit them because of the infilling strategy. A naive
fix to the encounter of a non-computable point consists in associating to it a prescribed high
(resp. low) value for the objective function to be minimized (resp. maximized). This avoids
halting the EGO procedure and prevents the future exploration of the non-computable point
neighborhood. Unfortunately, the selection of an appropriate value for the non-computable
points is not a trivial task with, in practice, detrimental consequences such as a significant
loss of accuracy on the whole GP model approximating the objective function and a possibly
strong deterioration of the EGO convergence. Alternative remedies are a better definition of
the design space, to explicitly remove design points leading to unphysical or ill-posed prob-
lems, and the improvement of the numerical robustness through, e.g., the tuning of solvers
parameters. Unfortunately, depending on the situation these two tasks can be extremely cum-
bersome, if possible at all.

In this work, we propose to combine a classical EGO method and a classification ap-
proach in order to deal with the possible existence of non-computable design areas. In this
approach, the subset of the design space corresponding to computable points is progres-
sively determined, by the Least-Squares Support Vector Machine (LS-SVM) classification
method [20], on the basis of previously classified computable / non-computable points. The
SVM classification method was first proposed in the EGO context by [21] for the treatment
of discontinuous or binary constraints. We extend this idea to the case of non-computable
design areas, with the suggestion of using LS-SVM instead of SVM models. Indeed, LS-
SVMs are computable at a lower cost than SVMs since the SVM formulates the classifier
as a quadratic programming problem while LS-SVM deals with a set of linear equations.
Specifically, each iteration step in the iterative method for solving the SVM consists of a
linear system to be solved which has the same complexity as one single LS-SVM. More-
over, benchmarks in [22] have shown that LS-SVMs are performing consistently very well
in comparison with many other methods. The LS-SVM classifier provides a probability that
a new point is computable. We incorporate this probabilistic information in the definition
of the merit function when selecting the new design point to be analyzed. The merit func-
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tion also involves a classical EI criterion, based on the GP model of the objective function
constructed on the subset of computable design points. Therefore, the key advantages of
the proposed method, called EGO-LS-SVM hereafter, are the following: it does not halt
when a non-computable point is proposed; it does not require an explicit definition of the
computable domain, but rather it constructs it; the GP model of the objective function uses
only computable values and so is not polluted by arbitrary values at non-computable points.
Finally, the EGO-LS-SVM method can handle optimization problems with inequality con-
straints and non-computable points, in a unified fashion employing the same classification
strategy.

The present paper is organized as follows. The EGO-LS-SVM method is progressively
introduced in Section 2, starting with the classical EGO method, presenting next the LS-
SVM classification method to handle non-computable domains and inequality constraints,
and finally deriving several merit functions. The efficiency of the EGO-LS-SVM method is
first assessed on a series of analytical optimization problems in Section 3. A comparison
with the reference evolutionary algorithm CMA-ES [23] is also provided. The optimiza-
tion of a fully nonlinear Fluid-Structure Interaction (FSI) system involving non-computable
domains is subsequently considered in Section 4. It consists in the minimization of the hy-
drodynamic drag of a two-dimensional flexible hydrofoil, with non-cavitation constraints,
for a 5-dimensional design space defining the unloaded geometry and mechanical properties
of the hydrofoil. Finally, the conclusions of the work are proposed in Section 5.

2 GP-based constrained optimization

Our objective is to estimate the solution xopt of the following generic optimization problem

xopt = argmin
x∈Ω

f (x), s.t. Q(x)≥ 0, (1)

where x is the vector of design parameters, Ω ⊂ Rd is the optimization domain, f : Ω 7→ R
the objective function and Q : x 7→ Rm is the vector of (non-linear) constraints. Even in the
unconstrained case, m = 0, finding the global optimum of f can be very costly, in particular
when its evaluation is numerically expensive. The use of surrogate models in place of f
is then a classical approach to reduce the computational burden related to the optimization
of complex systems [1]. In this work, we consider the use of Gaussian processes (GP) [2]
which, owing to their statistical nature, provide both a prediction of the objective function
and a measure of the uncertainty (variance) in the prediction. These features are appeal-
ing in optimization, as they can be used to derive rigorous optimization strategies based
on the maximization of the Expected Improvement (EI) criterion. These methods are glob-
ally referred to as the Efficient Global Optimization (EGO) [10] methods. A summary of
the construction of the GP model for f is provided in Section 2.1, as well as the resulting
optimization strategy in the unconstrained case. The classification approach to account for
constraints and non-computable subsets of points is considered in Section 2.2.

2.1 Unconstrained EGO using GP

Consider a set of n training inputs points Xn = {x1, . . . ,xn}, each associated to a noisy ob-
servation yi of the objective function f . It is assumed that yi = f (xi) + εi, where the εi
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are Gaussian measurement noises, assumed for simplicity independent and identically dis-
tributed with variance σε

2. The GP construction considers that f (x) is a realization of a
zero-mean multivariate Gaussian process with covariance function C f . In this work, we
consider the multidimensional squared exponential covariance functions defined by

C f (x,x′;Θ)
.
= θ1

d

∏
i=1

exp
(
−(xi− x′i)

2

2l2
i

)
+θ2, (2)

where Θ = {θ1,θ2,l1,l2, . . . ,ld} is a vector of hyper-parameters to be inferred from the obser-
vations. Denoting C(Θ) ∈ Rn×n the covariance matrix with entries Ci, j(Θ)

.
=C f (xi,x j;Θ),

1≤ i, j≤ n, the joint Gaussian distribution of the noisy observation vector, Yn =(y1, . . . ,yn)
T,

and the predicted observation y(x) is given by(
Yn

y(x)

)
∼N

(
0,
[

C+σε
2I k(x)

kT(x) κ(x)+σε
2

])
. (3)

In (3) we have denoted κ(x) .
=C f (x,x;Θ), k(x) .

=
(
C f (x,x1;Θ) · · ·C f (x,xn;Θ)

)T and I the
identity matrix of Rn. From the conditional rules of joint Gaussian distributions [24], the
best prediction f̂ (x) of f (x), i.e. the mean of y, and the prediction variance σ̂2

f (x) are given
by

f̂ (x) = kT(x)
(
C(Θ)+σε

2I
)−1 Yn, (4)

σ̂
2
f (x) = κ(x)+σε

2−kT(x)
(
C(Θ)+σε

2I
)−1 k(x). (5)

The hyper-parameters Θ and noise variance σε
2 can be determined by maximizing the log-

marginal likelihood [24] using the “Covariance Matrix Adaptation Evolution Strategies”
(CMA-ES) algorithm [23]. This powerful evolutionary based optimizer is an improvement
of the original (µ/ρ

+
, λ )-ES variants [25], thanks to the covariance matrix adaptation prop-

erty. Indeed, the CMA-ES allows generations of new individuals that are possibly not dis-
tributed along the principal axis of the covariance matrix. In the present work, we apply this
evolutionary algorithm by using the recommended parameters values (step-size σ = 0.5,
population size λ = 4+b3logdc, number of parents for recombination µ = λ

2 , etc.) of [23].
A complete tutorial of the CMA-ES algorithm, including a source code and best uses, is
available in [26]. More details on GP meta-models can also be found in [24].

Let x̂n be the optimum of f̂ (x). It is expected that x̂n ≈ xopt if the approximation error
f̂ − f is small enough. The advantage of minimizing f̂ instead of f is that GP models are
usually inexpensive to evaluate compared to the original objective function. To control the
error in the approximation, one proceeds sequentially by adding progressively new points
in the area of interest. A deterministic optimization procedure would choose the next point
xn+1 as the optimal point of f̂ . However, the GP model provides probabilistic information
that can be exploited to propose more robust strategies based on merit functions, which
combine the prediction and its variance. In this work, we use the Augmented Expected
Improvement (AEI) merit function [27], which estimates the expected progress in the cost,
taking into account the noise in the observed values and the prediction variance:

AEI(x) = EI(x)

1− σε√
σ̂2

f (x)+σε
2

 , (6)
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where the Expected Improvement EI(x) is defined by

EI(x) = σ̂ f (x) [u(x)Φ (u(x))+φ (u(x))] , (7)

u(x) =
f̂ (x∗,n)− f̂ (x)

σ̂ f (x)
, (8)

with Φ and φ the cumulative and density functions of the standard Gaussian distribution,
and x∗,n ∈ Xn is the current effective best solution (see [27]). The optimum xn+1 of the
AEI is added to Xn, and f is evaluated at the new point providing yn+1. Setting n← n+
1, a new iteration can start updating the GP model. Overall, each iteration requires one
computation of the cost and the resolution of two optimization problems: a first one for
the hyper-parameters of the GP model, and a second one to find the AEI optimum. The
iterations of the GP-based optimization problem are continued until a stopping criterion is
satisfied or the resources allocated to the optimization have been exhausted. Obviously, if f
is not computable for the proposed xn+1, the optimization process is stopped prematurely,
because xn+1 and yn+1 cannot be added to Xn and Yn.

2.2 Classification method

As underlined in the introduction, the proposed approach based on a classification method
is closely related to the handling of inequality constraints in the optimization problem (1).
Indeed, the non-computable simulations are usually located in some specific regions of the
design space. Therefore, the presence of non-computable points can be managed as inequal-
ity constraints if these regions of failures can be identified thanks to a probabilistic formula-
tion. In this framework, a failure probability would be used within the optimization process
to avoid the non-computable simulations.

EGO methods with inequality constraints were considered by [28]. The key idea fol-
lowed in this reference is to rely on m additional surrogates to estimate the constraints Qi(x).
For Gaussian Process models, one can easily determine the probability Pi(Qi ≥ 0|x) that the
constraint Qi is satisfied at x. Assuming the independence of the constraints probability,
the consolidated probability P(Q≥ 0|x) = Π m

i=1Pi(Qi ≥ 0|x) is obtained. This probability is
used to modify the unconstrained AEI criterion and favor regions feasible with a probability:

AEIQ(x) = AEI(x)P(Q≥ 0|x). (9)

Although effective in many problems, this GP modeling of the constraints faces several lim-
its. First, its computational cost increases with the number m of constraints and can be an
issue for problems with large m. Second, the approximation by GP models assumes a suffi-
cient smoothness of the Qi. This rules out the case of binary constraints (feasible/infeasible).
Another situation, non-amenable to the GP approximations of the constraints, is when the
search domain Ω possesses a sub-domain Ω

Af
over which f is non-computable, i.e. unde-

fined, but there is no explicit expression or a priori knowledge of this sub-domain. As a
result, Ω

Af
cannot be expressed in terms of inequality constraints.

Classification methods recently proposed by [21] are better suited to deal with discon-
tinuous and binary constraints in GP-based optimization procedures. Therefore, we aim at
using this approach to define a unique framework to deal with inequality constraints and
non-explicit feasible domain definition in presence of a non-computable domain Ω

Af
⊂ Ω .
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In essence, classification is based on the reformulation of problem (1) into the unconstrained
form

min
x∈Ωadm

f (x), Ωadm := ΩQ \ (Ω
Af
∩ΩQ), (10)

where ΩQ := {x ∈ Ω ,Qi=1,...,m(x) ≥ 0} is the subset of Ω satisfying the inequality con-
straints. As the admissible set Ωadm has no explicit form, in general, we rely on a binary
classifier with two classes C+ and C− over Ω , corresponding to the admissible (x satisfies
all constraints and f (x) is computable) and non-admissible (x does not satisfy all constraints
or f (x) is not computable) domains respectively. To construct this classifier, each xi of Xn
is equipped with a value zi =±1 depending on its membership C±. To predict the class of a
new point x we introduce a classification function h : x ∈Ω →R, such that z(x) = signh(x).
A Least-Squares Support Vector Machine (LS-SVM) [20] is used to construct h. The LS-
SVM method extends the original Support Vector Machine (SVM) classifier [3] to quadratic
penalization, resulting in a linear (but non-sparse) system to be solved (see below). Further
details and discussion on SVM and LS-SVM methods can be found in [29].

The LS-SVM method [20] is a linear classifier, for C+ and C−, in a feature space induced
by the transformation φ : Ω →F :

h(x) = wT
φ(x)+b. (11)

Here, w and φ(x) are the weights and features vectors, while b∈R is a constant. The feature
space F is generated by a reproducing kernel r : Ω×Ω →R representing the inner product
between images in F of vectors: r(x,x′)= φ(x) ·φ(x′). We use the classical Gaussian kernel,

r(x,x′) = exp
(
−‖x−x′‖2

2λ 2

)
, (12)

with scale factor λ ∈ R to be adjusted. The LS-SVM parameters (w,b) satisfy the primal
constrained optimization problem

min
w,b,e

1
2
‖w‖2 + γ

1
2

n

∑
i=1

e2
i ,

s.t. zi = wT
φ(xi)+b+ ei, i = 1, . . . ,n,

(13)

with trade-off parameter γ ∈ R+ (to be fixed) and relaxation variables ei allowing for miss-
classification. The Lagrangian of this optimal problem is

L (w,b,αn,e) =
1
2
‖w‖2 + γ

1
2

n

∑
i=1

e2
i −

n

∑
i=1

αi
(
wT

φ(xi)+b+ ei− zi
)
, (14)

where the αi ∈R are the Lagrange multipliers of the constraints. Denoting Zn = (z1 · · ·zn)
T,

the optimality conditions of the Lagrangian (15)

∂L

∂w
= 0 −→ w = ∑

n
i=1 αiφ(xi),

∂L

∂b
= 0 −→ ∑

n
i=1 αi = 0,

∂L

∂αn
= 0 −→ αi = γei, i = 1, . . . ,n,

∂L

∂e
= 0 −→ wTφ(xi)+b+ ei− zi = 0, i = 1, . . . ,n,

(15)
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are used to derive a linear system for the dual model parameters b and αn = (α1 · · ·αn)
T,[

R+ γ−1I 1

1T 0

][
αn

b

]
=

[
Zn

0

]
, (16)

where R ∈ Rn×n is the kernel matrix with Ri, j = r(xi,x j). This system is solved via a
Cholesky factorization [29], and h in (11) is expressed in terms of dual model parameters to
obtain

h(x) =
n

∑
i=1

αir(xi,x)+b. (17)

The LS-SVM classifier depends on two parameters, γ and λ , to be determined when
solving (16). This step is called model selection and it is usually performed with cross-
validation approaches [30]. The most common method is the k-fold cross-validation, in
which the training set is split into k disjoint subsets. Then, the LS-SVM model is sequen-
tially trained on k−1 subsets and the remaining subset is used to evaluate the classification
efficiency by computing the error rate. The global k-fold estimate of the error rate is the
average of the k error rates. The extreme case where k = n is called the Leave-One-Out
(LOO) cross-validation and it allows an almost unbiased estimate of the error rate [31]. Un-
fortunately, the LOO computation is too expensive to be applied on common training sets.
However, in the specific case of LS-SVM classifiers, it was shown [32–34] that exact LOO
can be performed in only O(n) operations. In this work, we rely on this efficient LOO pro-
cedure to determine γ and λ that minimize the Predicted Residual Sum-of-Squares (PRESS)
criterion [35],

PRESS =
n

∑
i=1

(
zi− ẑi

(−i)
)2

, (18)

where ẑi
(−i) is the predicted output z(xi) of the LS-SVM, when the i-th training point (xi,zi)

is disregarded from the construction of the classifier. A simple expression for the predicted
residuals is proposed in [34],

zi− ẑi
(−i) =

αi

D−1
ii

, i = 1, . . . ,n, (19)

where the D−1
ii are the diagonal entries of the inverse of D, the matrix of system (16). An ex-

plicit expression is also provided in [34] to compute D−1
ii during the factorization of D. The

minimization of the PRESS (18) for λ and γ is performed with the CMA-ES algorithm [23]
in all the examples presented below.

The LS-SVM binary classifier is finally extended to a probabilistic classification, relat-
ing h in (17) to the probability of the class C+, denoted P(C+|x). A comparison of several
probability models for the LS-SVM classification is provided in [36]. We use the sigmoid
function [37] and expressing the probability of C+ as

P
(
C+|x

)
=

1
1+ exp(Ah(x)+B)

. (20)

The parameters A and B of the sigmoid are determined by minimizing the probability of
misclassification, see [37, 38]. In practice, the probability P goes to 1 (resp. 0) as the classi-
fier is certain that x ∈Ωadm and belongs to C+ (x /∈Ωadm and belongs to C−), while a value
of P = 1/2 denotes a complete uncertainty in the classification. This can occur when x is far
from any observations in Xn or close to the interface between the two classes.
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2.3 EGO-LS-SVM method

2.3.1 Extended merit functions

We now return to the optimization problem and introduce the EGO-based method that we
call EGO-LS-SVM for it is based on the LS-SVM classifier. The EGO-LS-SVM method
uses the probability P(C+|x) to derive a merit function from the AEI, in order to select a
new point xn+1 ∈ Ω . Following [21, 28], the selected point should present high expected
improvement (relatively to another point) of the objective function value and a high proba-
bility of belonging to Ωadm. These considerations lead us to propose the following sequen-
tial infilling strategy, selecting alternatively one of the following definitions for xn+1 in the
EGO-LS-SVM method:

xn+1 =argmax
x∈Ω

AEI(x)P(C+|x), (21)

xn+1 =argmax
x∈Ω

AEI(x) s.t. P(C+|x)≥ ρ, (22)

xn+1 =argmin
x∈Ω

f̂ (x) s.t. P(C+|x)≥ ρ, (23)

xn+1 =argmax
x∈Ω

[
AEI(x)P(C+|x)

(
1−P(C+|x)

)]
. (24)

The first definition in (21) corresponds to the extension of the AEI favoring points with high
chance of feasibility. The second expression (22) maximizes the original AEI definition by
enforcing a minimal probability ρ of feasibility; we use ρ = 0.5 in all subsequent computa-
tions. In (23), the predicted objective function is directly minimized over the approximated
feasible domain defined by {x ∈ Ω ,P(C+|x) > ρ)}. Finally (24) combines the two classes
probabilities to favor areas where the classification is the most uncertain (P ∼ 0.5), to im-
prove the exploration along the estimated feasible domain boundaries.

Finally the new points xn+1 are determined using CMA-ES algorithms without [23] or
with constraints [39], depending on the considered definition. Whence the new point has
been selected, the constraints Qi and the objective function f are evaluated at the selected
point. If xn+1 /∈ Ω

Af
, that is f (xn+1) is computable we add f (xn+1) to the training set and

update the GP model of f . Otherwise the new point is simply considered as a missing data
and disregarded in the subsequent constructions of the GP model of f . In any cases, we set
zn+1 =+1 if f (xn+1) is computable and Q(xn+1)≤ 0, and zn+1 =−1 otherwise. Therefore,
the GP model of f and the LS-SVM classification may involve different numbers of obser-
vations if some of them fall in Ω

Af
. Note that if xn+1 ∈ Ω

Af
, we have f̂n+1 = f̂ , but because

of the update of P(C+|x) we shall have in general xn+2 6= xn+1. Consequently, the EGO-LS-
SVM method will improve the estimation of Ωadm till it proposes a new point xn+1 ∈Ωadm
to update f̂ .

Compare to the similar classification based approach proposed in [21], we remark that
our approach is based on the original sigmoid probability in (34) such that P(C+|x) remains
differentiable, facilitating the search of xn+1. Second, a single point is added and have to be
evaluated per EGO iteration, where the approach in [21] enriches the training set with d+1
new points at each iteration. The computational cost to perform these d + 1 evaluations of
f is expected to be too important in many application and is not necessary for the LS-SVM
classification procedure. This is demonstrated on a numerical example later, in section 3.5,
where we discuss further the differences and respective efficiencies of the method of [21]
and our.
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The work-flow of one iteration step of the EGO-LS-SVM method is summarized in the
Algorithm 1 below. In the full optimization process, the Algorithm 1 is called iteratively
until a convergence is reached or a maximum workload has been reached. The lines 1 and 2
correspond to the GP surrogate construction of the objective function f . This allows comput-
ing the mean and variance predictions given in (4) and (5). Lines 3 to 5 concern the LS-SVM
classification model with the classification probability in (20) as output. To do this, a first
optimization problem is solved for the parameters (γ,λ ) (line 3). Then, the system (16) is
solved, at line 4, to determine (αn,b) in (17). Finally, the coefficients A and B in (20) are
computed by Newton’s method [38]. To the end, the new point xn+1 is determined at line 6
by solving a last optimization problem for one of the merit functions in (21-24).

Algorithm 1: Work-flow of one EGO-LS-SVM iteration.
Input: Sample set points Xn, objective function values Yn, class labels Zn
Output: New selected point xn+1

!Build GP surrogate!

1 Find (Θ ,σε
2) maximizing the log-likelihood !Using CMA-ES

2 Factorize
(
C(Θ)+σε

2I
)

!With LU decomposition

!Build LS-SVM model!
3 Find (γ,λ ) minimizing the PRESS criterion (18) !Using (19) LOO expression and CMA-ES
4 Compute (αn,b) solving system (16) !Using Cholesky factorization
5 Find (A,B) minimizing the misclassification probability !Using Newton’s method

!Merit function!
6 Find xn+1 the extended merit optimum !Using one of equations (21-24) and CMA-ES

2.3.2 Convergence assessment

In the following sections, we are assessing and comparing the efficiency of the proposed
EGO-LS-SVM method on several problems. To this end, we need to monitor the conver-
gence of the sequence of optimization iteration. The convergence can be characterized in
different ways. For instance one may report the best point in the training set, xbest ∈ Xn,
corresponding to the smallest objective function value fbest

.
= f (xbest). Note that fbest is an

upper bound of the true optimal value, and that fbest can only improve as the optimization
iterations proceeds. Alternatively, in the analytical tests presented in the next section, where
the objective function is easily evaluated, one can determine at each iteration the approxi-
mated optimal point x∗opt and objective function value f ∗opt

.
= f (x∗opt) associated to the current

state of knowledge of f and computable domain P(C+|x). Specifically, one can solve for x∗opt
the following constrained optimization problem

x∗opt = argmin
x∈Ω

f̂ (x) s.t. P(C+|x)≥ 0.5, (25)

and subsequently evaluate f ∗opt = f (x∗opt). It is noted, however, that x∗opt may not be a com-
putable point since the classifier may have a non-zero misclassification rate. Further, when
the exact solution of the optimization problem is known, one can report the distance to
current estimate x∗opt to the optimum true optimum xopt, in terms of Euclidian distance
‖xopt−x∗opt‖ or objective function values f (x∗opt)− f (xopt)≥ 0.
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2.3.3 Illustration of the infilling strategy

Before applying the EGO-LS-SVM method to generic problems, we first illustrate the prop-
erties of the different merit functions in the criteria (21-24), and the benefit of applying them
in a sequential fashion. To this end, we consider the one-dimensional domain Ω = [0,1] and
the Ricker Wavelet objective function f (x) =

(
1−2π2x2

)
exp
(
−π2x2

)
. We define the set of

non-computable points through

Ω
Af
= {x ∈Ω : |x− xmin|< 0.2} , (26)

where xmin =

√
3/2
π

is the minimum of f in Ω . Letting Ωadm = Ω \Ω
Af

, the optimization
problem becomes

min
x∈Ωadm

f (x) =
(
1−2π

2x2)exp
(
−π

2x2) . (27)

The optimum of (27) is found on the boundary of Ωadm at xopt = xmin + 0.2. We solve this
problem for several infilling strategies, with an initial sample set with size nLHS = 10. ob-
servations, and fix the maximum number of calls to f to Nf = 50 (thus 40 optimization
iterations are performed). Figure 1 compares the distances to the optimum as a function
of Nf for the sequential use of all the merit functions (21-24), or using systematically only
one of them. It is seen that using only (21) (pink curve) or (24) (black curve) to drive the
procedure does not yield satisfactory results on this example. In contrast, using (22) alone
(blue curve) or (23) alone (green curve) yields a convergence similar to that obtained using
the four merit functions sequentially (red curve). These behaviors can be explained on this
simple problem: because the criteria (22) and (23) produce points closer to the boundary
than the unconstrained merit functions in (21) and (24), they are more efficient to recover
an optimum located on the boundary. Nevertheless, using sequentially all the merit func-
tions (21-24) does not impact negatively the convergence. We thus advise for the alternative
use of all the four merit functions in a sequential infilling strategy. This setting favors both
the exploration of promising areas (with large AEI) of the design space and of the most
uncertain boundaries of the computable domain (P∼ 0.5).
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23 | r = 0.5
24

Fig. 1 Convergence with the number of calls Nf of the distance to optimum, ‖xopt− x∗opt‖. Values are only
reported for computable optimum x∗opt solution of (25). Case of problem (27).
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Finally, we report in Figure 2 the convergence of EGO-LS-SVM when using the merit
functions (22) alone (left plot), or (23) alone (right plot), and for different values of the
threshold probability ρ = 0.2, 0.5 and 0.8. Again, the curves depict the distance to the
optimum as a function of the total number Nf of calls to f . These plots show that the value
of ρ seems to have a moderate effect on the convergence in the present example. In addition,
using ρ = 0.5 appears to be the best choice for the two merit functions. This value will be
considered as the default value in the following experiments.
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(a) Merit function (22).
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(b) Merit function (23).

Fig. 2 Convergence with the number of calls Nf of the distance to optimum, ‖xopt− x∗opt‖, for the infilling
strategy based on single merit function (22) (left) or (23) (right), and for different threshold probabilities ρ .
Values are only reported for computable optimum x∗opt solution of (25). Case of problem (27).

3 Analytical test problems

In this section, we illustrate the accuracy and the computational efficiency of the EGO-
LS-SVM approach by solving few optimization problems defined analytically. We consider
problems with objective functions that are not computable over a subset Ω

Af
of the full design

space Ω . The classification approach is used to estimate the admissible (i.e. computable)
domain Ωadm := Ω \Ω

Af
, and the GP model of f is constructed using only evaluations at

points proposed in Ωadm. For reference and comparison purposes, we rely on the evolution-
ary algorithm CMA-ES [23] to solve the different problems, employing a high penalization
value f (x) = f∞ for the individual x /∈ Ωadm. This penalization f∞ and other parameters of
the CMA-ES method (population size, cross-over parameter. . . ) are carefully set for each
optimization problem, following the recommendations [23].

The selected test problems are presented in the following. A simple two-dimensional il-
lustrative example is firstly proposed in Section 3.1; a multi-dimensional optimization prob-
lem is considered in Section 3.2, which includes optimizations in increasing dimensions and
calculations with different initial sample set sizes; Section 3.3 investigate the behavior of
the EGO-LS-SVM method in the case of a multi-dimensional optimization problem with
complex domain Ω

Af
corresponding to a large portion of Ω (case of an over-constrained

problem); Section 3.4 proposes the minimization of a problem where the domain Ωadm and
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objective function f are defined probabilistically; finally Section 3.5 concerns the efficiency
comparison of the original SVM based approach [21] to our new EGO-LS-SVM method.

3.1 Two-dimensional illustrative example

We consider the two-dimensional domain Ω = [0,4]2 and the simple convex objective func-
tion f (x) = x2

1 + x2
2. We define the set of non-computable points through

Ω
Af
= {x ∈Ω : c1(x)< 0,c2(x)< 0} , (28)

where c1(x) = 0.25x2
1+0.75x2

2−1 and c2(x) = 0.75x2
1+0.25x2

2−1. Letting Ωadm =Ω \Ω
Af

,
the optimization problem becomes

min
x∈Ωadm

f (x) = x2
1 + x2

2. (29)

The exact optimum of the problem is found to be on the boundary of Ωadm at xopt = (1,1).
The EGO-LS-SVM algorithm is initialized using a Latin Hypercube Sampling (LHS)

set of 15 points drawn randomly in Ω . The optimization iterations are repeated till the AEI
merit function reaches a value less than 10−3. In the CMA-ES method, the optimization is
carried-out until the estimated optimum is in Ωadm with a value of f less than the EGO-LS-
SVM solution. As mentioned before, a large penalization f∞ = 100 is applied to points not
belonging to Ωadm in the CMA-ES algorithm.

Figure 3 shows the convergence of the error (red squares and blue triangles, left axis)
with the cumulated number of calls to (attempts to evaluate) f , denoted Nf. Note that Nf
is also accounting for calls to f with x /∈ Ωadm. The error on the solution is defined as the
Euclidian distance between the current estimate x̂opt of the optimum and the exact one, xopt.
For the EGO-LS-SVM method, x̂opt is the solution of (29) where f is substituted with its
GP model. For the CMA-ES approach, the distance to the exact optimum of each member
of the population in Ωadm is reported. The number Nadm of computable calls to f is also
reported for both methods, using red and blue lines (right axis) in the same Figure. The
EGO-LS-SVM (squares and red line) terminated at Nf = 142, with a number of computable
calls equal to 91, such that roughly 50 points have been proposed in the non-feasible region
Ω
Af

. The evolutionary method needs 599 calls to f before it finds a better optimum than the
EGO-LS-SVM one, among which 401 were for computable points. This result shows that,
in this example, the EGO-LS-SVM method is able to properly estimate the feasible domain
Ωadm in the neighborhood of the optimum, and converges to this optimum at a significantly
faster rate than the CMA-ES approach.

To better appreciate the effectiveness of the classification approach, contours of P(C+|x)
are reported in Figure 4 at Nf = 50 and 100. Also shown in the plots are the iso-value corre-
sponding to P(C+|x) = 0.5 (dashed white line), proposed computable points (white squares)
and non-computable points (black triangles). After 50 calls to f , the classification has well
discovered Ωadm and the level P(C+|x) = 0.5 is not far from the actual boundary of Ωadm.
After 100 calls to f , a large fraction of the proposed points are concentrated around the
optimum and the contour P(C+|x) = 0.5 is not following anymore the boundary of Ωadm,
except in the immediate neighbor of the optimum. Farther from the optimum in areas less
explored, the classification probability quickly returns to P(C+|x) ≈ 0.5 as we move away
from observed points. This behavior is due to the classification parameters λ and γ (see Sec-
tion 2.2) that are adjusted to capture the steep transition in P(C+|x) at the interface between
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Fig. 3 Distance to the optimum (‖xopt− x∗opt‖) and cumulated number of computable calls to f (Nadm) as
functions of the total number of calls Nf and for the EGO-LS-SVM and CMA-ES optimization procedures.
Distance is reported only for computable x∗opt solution of (25). Case of problem (29).

Ωadm and Ω
Af

, where the optimum point xopt is located. This behavior is desirable because
it allows considering the exploration of areas that were initially classified as unfeasible with
high probability if they exhibit large merit function AEI. Indeed, the plot also reveals several
calls to f for points in Ω

Af
, far from the optimum, that confirm non-feasibility and balance

large merit function values (recall that the unconstrained optimum is at the origin).

(a) At Nf = 50. (b) At Nf = 100.

Fig. 4 Contours of the classification probability P(C+|x) after 50 and 100 calls. Case of problem (29).

3.2 Higher dimensional problems

3.2.1 Influence of dimensionality

To investigate the behavior of the EGO-LS-SVM method as the dimensionality of the search
space Ω is increasing, we propose the following problem where no function value is pro-
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vided for points not belonging to the feasible domain. Let d > 1 be the dimensionality
of Ω := [−1,1]d . We denote Bd the hypersphere center on xc = (0.1 · · ·0.1) with radius
Rd =

√
0.05(d−1) and set Ω

Af
:= Bd . The optimization problem is then defined by

min
x∈Ω\Bd

f (x) =
d

∑
i=1

x2
i . (30)

As for the previous problem, the optimal solution is found on the boundary of Ω
Af

. The
initialization of the EGO-LS-SVM method uses LHS set having increasing size with d.
Specifically the tests shown below correspond to d = 2, 5, 10 and 20 and respective LHS
sizes nLHS = 15, 40, 100 and 200. The stopping criteria for the EGO-LS-SVM and CMA-ES
methods are identical to the previous one in Section 3.1.

Figure 5 shows the convergences for the different dimensionality d tested. The plot
shows the sequence of values f (x) at computable proposed points x as a function of Nf. The
evolutions of the cumulated number of computable calls Nadm are also reported.

For all the dimensionality d tested, the CMA-ES method needs more function calls than
the EGO-LS-SVM method and the ratio of numbers of calls increases with d. In other words,
the efficiency of the EGO-LS-SVM method relatively to the CMA-ES method is increasing
with d. It is remarked that for the same number of calls to f , the CMA-ES is proposing more
points in Ωadm than the EGO-LS-SVM method, but the latter is more effective at proposing
points with low f value. For the EGO-LS-SVM method, we also note the presence of distinct
branches of function values. These branches reflect the competing trends involved in the
selection of the new optimum candidates xn+1, because of the alternated use of conservative
or aggressive strategies specified by (23) and (24).

3.2.2 Influence of initial sample set size

This section aims at assessing the impact of the initial sample set size on the convergence
of the optimization procedure. Indeed, the initial design of experiments can be crucial in
the optimization process and may significantly affect the EGO procedure. To study the ro-
bustness of the EGO-LS-SVM method, we solve the problem (30), with d = 5 and three
different initial sample set sizes: nLHS = 10, 50 and 100. For these three cases, we perform
300 EGO iterations.

Figure 6 shows the convergences for the different sample set sizes nLHS. The plot shows
the sequence of objective function values f at computable points as a function of Nf (also
counting the initial sample set generation). We see that for the nLHS = 50 and 100 cases
the algorithm immediately proposed new points that improve the function values of f and
accordingly converge quickly within ≈ 200 iterations. The case of only nLHS = 10 initial
samples exhibits a very different behavior with an initial exploration phase with selected
points having high objective function values, up to Nf ≈ 150. after which the optimization
quickly converges. Overall, the convergence requires slightly more iterations for nLHS = 10
than for the larger initial sample sets. Nevertheless, this example highlights the robustness
of the EGO-LS-SVM method since the procedure converges to the optimum even when a
coarse initial sample set (10 points in 5 dimension) is employed.

3.3 Over-constrained problem

The following problem is designed to illustrate the limits of the EGO-LS-SVM method in
the case where the feasible domain Ωadm is hard to learn and explore, because of a com-
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Fig. 5 Sequence of computable values of f (xn) and cumulated number of computable calls Nadm as functions
of Nf and for the EGO-LS-SVM and CMA-ES optimization procedures. Case of problem (30) with different
dimensionality d as indicated.

plex structure. This problem which was proposed in [40] is then said over-constrained. The
domain Ωadm is here define as a subset of Ω = [−10,10]d , for d = 7, through

Ωadm = {x ∈Ω ,ci=1,...,4(x)≤ 0} , (31)

where

c1(x) = 2x2
1 +3x4

2 + x3 +4x2
4 +5x5−127, c2(x) = 7x1 +3x2 +10x2

3 + x4− x5−282,

c3(x) = 23x1 + x2
2 +6x2

6−8x7−196, c4(x) = 4x2
1 + x2

2−3x1x2 +2x2
3 +5x6−11x7.

The optimization problem finally writes as

min
x∈Ωadm

f (x) = (x1−10)2 +5(x2−12)2 + x4
3 +3(x4−11)2 +10x6

5

+7x2
6 + x4

7−4x6x7−10x6−8x7. (32)
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Fig. 6 Sequences of optimum computable values of fopt, as a function of Nf, for different initial sample set
sizes nLHS. Case of problem (30) with d = 5.

The global optimum is located at

xopt = (2.330499,1.951372,−0.4775414,4.365726,−0.624487,1.038131,1.594227) .

As before, only the proposed points in Ωadm are evaluated and used to approximate f ,
while the classification proceeds with all the points, computable or not. Therefore, a large
LHS set of 800 points drawn uniformly in Ω is needed to ensure that the initial GP model of
f uses sufficiently many points. In the experiment presented below, only 7 of the 800 LHS
points were drawn in Ωadm, a low fraction illustrating the complexity of the constrained
problem.

Figure 7 shows the evolution of the Euclidian distances to the exact optimum, ‖xopt−
x̂opt‖2 as a function of Nf. The EGO-LS-SVM method progresses during the first 500 calls
to f (EGO iterations), but subsequently stalls. Note that when the optimization procedure
is halted, only 187 evaluations have been generated for a total of 3541 calls to f . The low
ratio of computable proposed points xn indicated that for this example the EGO-LS-SVM
method is not able to properly learn the domain Ωadm. On the contrary, the CMA-ES method
performs satisfactorily on this problem and appears to be much more robust against the
complexity of Ωadm. Nevertheless, it should be underlined that this problem corresponds to
an extreme situation where the objective function is not computable over most of the search
domain Ω .

3.4 Problem with random computable domain

To complete the series of tests on analytically defined problems, we propose a problem for
which the domain of non-computable function Ω

Af
and the objective function are defined

randomly. We set Ω = [−5,5]2 and generate randomly Ω
Af

using the following procedure.
We first generate randomly 100 points xc

l=1,··· ,100 ∈ Ω . Then, for each point xc
l we decide

with a probability p
Af
∈ [0,1] if f is non-computable in the neighborhood ‖x−xc

l ‖2 ≤ 1. We
then define Ω

Af
as the intersection of Ω with the non-computable neighborhoods. For this

construction, the probability P
Af

that f is not computable at a given x ∈ Ω is approximated
from the cumulative distribution function of the binomial law B(100, π

|Ω | pAf
), where |Ω |
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Fig. 7 Distance to the optimum ‖xopt−x∗opt‖ and cumulated number of computable calls to f Nadm as func-
tions of Nf and for the EGO-LS-SVM and CMA-ES optimization procedures. Case of problem (32).

is the volume of Ω . Figure 8 presents two random realizations of Ω
Af

(grey areas) for a
probability P

Af
= 27% and 61% in the left and right plot respectively.

(a) pF = 27%. (b) pF = 61%.

Fig. 8 Realizations of the non-computable domain Ω
Cf

(grey circles) for probabilities P
Cf
= 0.21 and 0.61.

Also shown are color contours of f .

The optimization problem is finally defined as

min
x∈Ω\Ω

Cf
f (x) = ‖x−xopt‖2

2, (33)

where the solution xopt is drawn at random in Ω \Ω
Af

. In the computations, the EGO-LS-
SVM method is initialized with an LHS set of nLHS = 10 points in Ω and the optimization
procedure is stopped at Nf = 50.

We solve the optimization problem (33) for several probabilities P
Af

. For every value of
P
Af

several realizations of Ω
Af

and xopt are generated to estimate statistics of the solution.
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Figure 9 shows the convergence of the optimization procedure with Nf (optimization itera-
tion) and for increasing values of P

Af
. Figures 9(a)–9(c) correspond to increasing values of

P
Af

and reports the median (blue line) and first and third quartiles (red lines) of the distance to
the optimum. Figure 9(d) compares the convergence of the median distance to the optimum,
for several values of P

Af
. The plots show that as P

Af
increases from 0, the convergence of the

median and first quartile is only mildly affected. In contrast, the third quartile is significantly
impacted, with an O(1) distance to the optimum when P

Af
= 61%. This behavior indicates

that the EGO-LS-SVM method is quite robust and successful in finding the optimum, except
when P

Af
becomes too large with computable domains Ωadm with a low ratio of |Ωadm|/|Ω |

and complicated structures. In these situations, the EGO-LS-SVM method is not making
progress and becomes inefficient at proposing new points ∈ Ωadm to improve the model of
f . As a result, the approach is either successful or completely failing, with a significantly
skewed distribution of the distance to the optimum as evidenced by the distance between the
first and third quartiles to the median. However, the results reported in Figure 9(d) show that
the EGO-LS-SVM method is quite robust since for probabilities as high as P

Af
= 79% the

approach is still converging for at least half of the generated problems.

3.5 Comparison with EGO-SVM(d+1)

A classification approach was proposed in [21] for the treatment of constraints, and it can
be adapted to the case of non-computable domains. This section aims at contrasting this
approach with ours, and at highlighting the improved efficiency of our approach.

As mentioned before, the method proposed in [21] uses a classifier to predict the feasi-
bility of new points (i.e. whether constraints are satisfied), and so can be used in the same
way to predict if f is computable. Compared to our approach, the method in [21] differs on
four main points. First, it uses an SVM method to determine the classification function h(x),
in a polynomial space, where we use an LS-SVM method in general Reproducing Kernel
Hilbert spaces. The LS-SVM has thus generally better approximation properties when the
SVM method selects a subset of points to construct h with possibly a reduced computational
cost. Second, using a reduced training set in SVM calls for a correction of the classification
probability to ensure that disregarded training samples are correctly classified. In [21] the
following correction of the sigmoid function (20) was considered,

P
(
C+|x

)
=

1

1+ exp
(

Ah(x)+B
(

d−(x)
d+(x)+δ

− d+(x)
d−(x)+δ

)) , (34)

where d+(x) (resp. d−(x)) is the distances of x to the closest point in the training set be-
longing to C+ (resp. C−), and δ = 10−10 is used to avoid numerical overflows. This modi-
fication is introduced to account for the fact that the class of the training samples is exactly
known. Third, the method in [21] considers a single merit function based on the expected
improvement (EI). Forth and finally, the infilling strategy in [21] adds not only the point
xn+1 classified in C+ and maximizing the EI but also d additional new points in its neigh-
borhood to maintain the isotropy of the training set (a requirement made necessary by the
corrected probability in (34)). In contrast, our approach uses the simpler and smoother sig-
moid function, alternates between the criteria in (21-24) to accommodate different situations
and enrich the training set by a single element at each iteration of the iterative procedure. As
subtle as they may appear, these differences greatly impact the efficiency of the optimization
procedures.
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Fig. 9 Statistic (median, 25% and 75% quartiles) of the distance to the optimum ‖xopt−x∗opt‖ as a function
of Nf and for several failure probabilities P

Cf
.

To distinguish between the impacts of the classifier construction methods and of the
infilling strategies (classification probability, selection criteria for xn), we considered the
following methods:

– EGO-LS-SVM : the approach proposed in this paper, with LS-SVM construction of
the classification function h(x), sigmoid classification probability definition, sequential
selection using criteria (21-24).

– EGO-SVM(d+1) : the approach proposed [21], with SVM construction of h(x), mod-
ified sigmoid classification probability definition in (34), EI-only selection criteria and
d-points neighborhood exploration.

– EGO-SVM : the same as EGO-LS-SVM but with a SVM construction of h(x).
– EGO-LS-SVM(d+1) : the same as EGO-SVM(d+1) but with a LS-SVM construction of

h(x).

These methods are tested on problem (30), fixing d = 5. The results of these experiments
are summarized in Figure 10. Note that the SVM and LS-SVM methods both use kernel-
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based constructions. The plots report the sequence of computable function values f (xn) as
a function of the number of function calls Nf. In the case of the EGO-SVM(d+1) and EGO-
LS-SVM(d+1), the function values are reported only for the newly selected point xn+1, if
computable, and not for its d additional companion points. In addition, the convergence of
the best feasible function value fbest is reported, using lines, and considers all evaluations of
f (including the eventual d additional points).

Figure 10(a) compares the LS-SVM methods for an initial sample set with nLHS = 10
points. It is seen that our approach EGO-LS-SVM explores the design space during about
100 function calls and converges to the computable optimum in about 250 calls. In con-
trast, the EGO-LS-SVM(d+1) method that uses the probability function and infilling strat-
egy of [21] is seen to have not converged even after 1,800 function evaluations, being unable
to focus on the correct area. Figure 10(b) shows the case of the SVM methods using again
nLHS = 10 samples. The plot shows that the EGO-SVM method converges essentially as
fast as for our proposed EGO-LS-SVM, albeit with a somehow longer exploration phase, as
one would have expected for using the SVM in place of the LS-SVM model. For the EGO-
SVM(d+1) method, corresponding to the original method proposed in [21], we observe that
it is now converging too, but it requires a few times more function evaluations to achieve a
comparable best value fbest compared to our infilling strategy. This result highlights the com-
putational overhead due to the need of adding d additional points to maintain the isotropy
of the sample points. Figure 10(c) (resp. 10(d)) corresponds to the same methods as in Fig-
ure 10(a) (resp. 10(b)) but now using an initial sample set with nLHS = 100 points. It shows
that our infilling method does not improve significantly when increasing nLHS, or conversely
demonstrating once more the robustness and interest of alternating between merit criteria.

We finally remark that the construction of the SVM classifier is much more time con-
suming than the LS-SVM one, in the presented experiments using a kernel-based approach.
This can be appreciated from the computational times reported Table 1 for different train-
ing set sizes. The differences in the computational times are mainly due to model selection
step in the SVM classifier, which involves the resolution of a quadratic problem (using an
SMO method [41]). The higher computational cost of the SVM classifier construction fur-
ther pleads for using the LS-SVM.

Training set size 50 100 150 200

CPU time (s) of LS-SVM 0.2 0.4 1.1 2.1
CPU time (s) of SVM 0.9 3.7 15.5 30.9

Table 1 Measured computational times (in seconds) for building the LS-SVM and SVM classifiers on train-
ing set with different sizes.

4 Application to flexible hydrofoil optimization

4.1 Optimization problem and solvers

We now apply the EGO-LS-SVM on a realistic problem corresponding to the optimiza-
tion of a flexible hydrofoil. The objective of the optimization is to minimize the hydro-
foil drag force at selected conditions (forward speed and lifting force) while ensuring non-
cavitating flows. The complete description of the optimization problem and the hydrody-
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Fig. 10 Sequence of computable objective function values f (xn) (symbols) and convergence of the best
value fbest (lines) as functions of the total number of calls Nf for different classifiers constructions, infilling
strategies and initial sample set sizes. Case of problem (30) with d = 5.

namical analysis of the optimized hydrofoil are not provided in this paper, which focuses
on the method; interested readers can refer to [42]. The original optimization problem pro-
posed in [42] involved 11 design variables describing the shape and elastic characteristics
of the foil flexible trailing edge, as schematically illustrated in Figure 11. In the present
work, the number of design variables is reduced to 5 in order to maintain reasonable com-
putational times and to allow extensive comparisons of the optimization methods. Among
the retained optimization variables, 4 concern the trailing edge camber geometry at rest
(p1,...,4), while the last one modifies the Young modulus EBeam of the flexible part. We set
Ω = [−0.1,1.5]× [−0.5,0.2]× [−0.3,0.5]× [−0.3,0.3]× [0.1,1.2].

As mentioned before, the optimization concerns the minimization, for 4 conditions, of
the hydrofoil drag coefficients CDi=1,...,4. Each condition corresponds to a prescribed for-
ward speed and hydrodynamic lift force developed by the hydrofoil. The optimization prob-
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Fig. 11 Illustration of hydrofoil parameters.

lem is written as

min
x∈Ωadm

f (x) =
4

∑
i=1

wiCDi(x), (35)

where the wi > 0 are prescribed weighting coefficients fixing the relative importance of the
4 conditions. Constrains Qi(x) are introduced to prevent the cavitation of the flow for 4 other
conditions. The admissible and computable domain is then defined as the intersection of the
set of design points x satisfying the cavitation constraints, with Ω \Ω

Af
the set of x having

computable function f :

Ωadm = Ω ∩{x,Qi=1,...,4(x)≤ 0}\Ω
Af
, (36)

Indeed, parts of the search domain Ω corresponds to non-computable points, because of
the lack of robustness of the simulation tool. As an example, Figure 12 shows a hydrofoil
corresponding to a non-computable point of the search space, at which the flow solver is not
able to determine the hydrodynamic forces. Although it may be possible to finely tune the
solvers to improve their robustness, automating the tuning process can be a difficult task.
In addition, these non-computable configurations often correspond to uninteresting or even
unphysical design points, such that the direct classification of these non-computable areas
has been found very effective.

Fig. 12 Configuration of the hydrofoil leading to a non computable case.

The explicit constraints Qi are expressed as

Qi(x) =−CPi(x)−λi, λi =
p̄i− pv
1
2 ρU2

i
, (37)



24

where ρ is the fluid density, pv the saturated vapor pressure, CPi the minimal pressure co-
efficient, λi the cavitation number, and Ui and p̄i are the reference velocity and pressure for

the i-th condition. The minimum of the pressure coefficient is defined by CPi(x) := p−i (x)−p̄i

0.5ρU2
i

,

where p−i is the lowest pressure over the hydrofoil surface. The condition Qi ≤ 0 expresses
the constraint that the minimum of the pressure around the hydrofoil should remain higher
than the vapor pressure: p−i (x)≥ pv.

Given a value x of the design variable, the evaluation of the objective function f and
the constraints Qi requires the resolution of 8 nonlinear fluid-structure interaction problems.
For the flow, we rely on a static vortex lattice method with viscous boundary layer equa-
tions, using the solver XFOIL [43, 44], while a nonlinear elasticity solver [45] is used for
the elastic deformations of the foil [45], modeling the elastic trailing edge with 2D Linear
Strain Triangles (LST) [46] and Timoshenko beam elements (see Figure 11(a)). The non-
linear equilibrium FSI solutions are computed by a Newton method with Aitken relaxation.
We mention that the conditions call for the enforcement of a prescribed lift force. This is
achieved in XFOIL by adjusting the Angle of Attack (AoA) of the hydrofoil.

4.2 Optimization results

In the following, we consider two EGO approaches to handle the constraints related to the
cavitation. First, the proposed EGO-LS-SVM method is used to estimate directly Ωadm from
the classification of previous points x. In other words, the LS-SVM method is employed
to predict both the satisfaction of the constraints Qi(x) ≤ 0 and the computability of fu-
ture points. For the second method, the LS-SVM classification is used only to predict the
computability, while the functionals Qi of the cavitation constraints are approximated by
individual GP models following the EGO method presented in [28]. We call this second ap-
proach the EGO-GPC. These two approaches are also compared to the reference CMA-ES
algorithm [23] with a penalty value f∞ = 100 for the non-computable points. In all compu-
tations, the two EGO methods are initialized using an LHS set of size 100. For this example,
the EGO optimizations are continued until a maximum computational budget of 36 hours is
exhausted. Both the resolutions of the non-linear FSI problems, the construction of the GP
models and the search for the maximizer of the AEI criteria are included in the computa-
tional time. Note that on a classical workstation computer it takes approximatively Tf = 75s
to decide the admissibility of a point and evaluate f at a given computable x, solving the FSI
problems corresponding to the prescribed 8 conditions.

Figure 13 shows the evolution of the successive values of f with the number of calls to
f . It is seen that the EGO-LS-SVM and EGO-GPC methods require a significantly lower
number of function evaluations than CMA-ES to reach the optimum neighborhood. Specif-
ically, the CMA-ES optimization needs 1615 function evaluations, that is, twice as much,
to eventually produce a better point than the EGO-LS-SVM optimum (stopped after 36h
of computations). The two EGO methods have similar behavior, although the sequence of
computed values of f produced the EGO-GPC method is slightly more dispersed than for
the EGO-LS-SVM method. This difference can be explained by the additional evaluations
needed to construct the GP models of the constraints in the EGO-GPC method.

If the two EGO methods behave similarly in term of the convergence with the number
of calls to f , they do present significant differences in terms of computational times. This
can be appreciated from the plots of Figure 14. Figure 14(a) reports the cumulated computa-
tional times of the EGO-LS-SVM and EGO-GPC methods as functions of the optimization
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Fig. 13 Sequence of computable function values f (xn) as a function of the number of calls Nf for the EGO-
LS-SVM, EGO-GPC and CMA-ES methods. Case of problem (35).

iteration. The computational times are split into the time dedicated to the FSI problems res-
olution, called FSI time, and the construction of the GP models and search of maximizer of
the extended AEI, called EGO time. It is seen from the graph that the EGO time is dominant
for the two approaches and increases with the iteration index at a polynomial rate r & 2,
because of the increasing size of the GP models construction. Furthermore, the EGO time of
the EGO-GPC method is significantly higher than that of the EGO-LS-SVM method, as one
may have expected since more GP processes must be estimated. In contrast to the EGO time,
the computational times spent on the FSI problems increase roughly at a linear rate, with the
EGO-LS-SVM FSI time being half of the EGO-GPC FSI time. A closer inspection of the
results reveals that, when the computational budget of 36 hours is reached, the EGO-GPC
method called for 312 evaluations of f , including 8 non-computable points, while EGO-
LS-SVM made up to 554 calls to f , among which 294 violated the constraints and 5 were
not computable. These numbers explain the lower FSI time of the EGO-LS-SVM method,
compared to the EGO-GPC method. Indeed, the full classification approach of the EGO-LS-
SVM method allows for significant computational savings because once the constraint on
cavitation for a certain condition has been found to be non-satisfied, there is no need to solve
the remaining FSI problems for the other conditions and to compute f . For the EGO-GPC
method, on the contrary, one must solve systematically all the FSI problems for the whole
set of 8 (constraints and objective) conditions to improve the GP models of all the Qi and f .
To further illustrate this point, we compare in Figure 14(b) the current best value of f ob-
served, denoted min( f ), as a function of the computational time, for the two EGO methods.
The EGO-LS-SVM method is seen to be more efficient as it gives a better optimum than the
EGO-GPC approach. Moreover, the convergence rate seems faster for the EGO-LS-SVM
method: an excellent minimum within less than 0.1% of the terminal value of f is obtained
in just 4 hours when for the GP method a comparable point is obtained after 17 hours. These
differences are consistent with the fact that the number of EGO-LS-SVM iterations per-
formed in a given computational time is essentially twice that of the EGO-GPC: although it
is proposing a significant fraction of non-feasible points, the EGO-LS-SVM method better
explores the design space and takes advantage of a cheaper evaluation cost for non-feasible
points.

Nevertheless, it should be noted that the CMA-ES algorithm can be computationally
cheaper than the EGO methods, depending on the computational budget and the problem
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Fig. 14 Left: comparison of the computational times of the EGO-LS-SVM and EGO-GPC methods, splitting
the FSI solves (FSI time) and the GP models construction and AEI exploration (EGO time) contributions.
Right: convergence of the computable fbest value with the total computational time. Case of problem (35).

considered. For instance, Figure 15(a) shows the best admissible (and computable) value of
f obtained as a function of the computational time for the two EGO methods and the CMA-
ES procedure. It is seen that in the case of the hydrofoil optimization with the numerical
models considered here, the CMA-ES always outperforms EGO-GPC, except for a point
around 17 hours of computational time. Compared to the EGO-LS-SVM, the CMA-ES is
significantly less efficient at the beginning of the optimization procedure but eventually do
better as the computational time increases, with a better point found by the evolutionary ap-
proach after≈ 26 hours of calculation. Obviously, these results are for a single realization of
the optimization procedures that are random in essence (through the selection / re-sampling
of the population in CMA-ES and initial LHS sample in the EGO methods). A complete
comparison should consider averages over multiple realizations, but the results reported in
Figure 15(a) are representative of the relative behavior of the different methods. However,
these relative efficiencies are highly dependent on the problem and the numerical model
involved. In the present case, the important fraction of the computational time dedicated to
the GP models construction is detrimental to the relative performance of the EGO methods.
To illustrate this, we can estimate the computational times that would result if the resolution
of the FSI problems were much more demanding, so the EGO times become relatively less
significant. This is made in Figure 15(b) where we have considered the case of an evaluation
of f requiring 30 minutes of computational time, instead of 75 seconds. In this situation,
the CMA-ES optimization would need roughly 525 hours to find a better point than the one
obtained in just 125 hours by the EGO-LS-SVM. Even the EGO-GPC method would be-
come more competitive than the CMA-ES strategy for Tf large enough. In conclusion, the
EGO-based methods are most suited to the case of costly models.

5 Conclusion

In this work, we have proposed the use of a classification approach in EGO procedures to
deal with the existence of non-computable design points and inequality constraints. The key
idea of the approach is to define the admissible sub-domain of the original design space
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Fig. 15 Evolution of the best computable objective function value fbest with the total computational time
for the EGO-LS-SVM, EGO-GPC and CMA-ES methods and considering different evaluation times Tf . The
sequence of computable function values f (xn) are also reported. Case of problem (35).

consisting of points being computable and satisfying the problem constraints. The method,
named EGO-LS-SVM, relies on an LS-SVM classifier to predict the admissibility of points
in the global search domain. The LS-SVM classifier composes a Gaussian process model
with a sigmoid function, leading to an admissibility probability. It is trained on the set of pre-
viously classified points. We combine the probabilistic characterization of the admissibility
with the classical Augmented Expected Improvement (AEI) statistical criterion, to propose
several merit functions for the selection of the next EGO point. These merit functions induce
conservative or on the contrary aggressive strategies, with respect to admissibility when ex-
ploring the design space. In fact, we recommend to actually alternate between the merit
functions to yield a robust but effective sequential infilling strategy, ensuring the intensive
exploration of promising areas of the search domain and the boundaries of the admissible
domain.

The EGO-LS-SVM method has been tested on several analytical problems presenting
different types of difficulties. These tests have validated the method and revealed its robust-
ness with respect to the number of design variables. In fact, it is shown that compared to
standard evolutionary algorithms (CMA-ES) the relative efficiency of EGO-LS-SVM is in-
creasing with the number of parameters in the range tested. However, the EGO-LS-SVM
method can be challenged in extreme situations where the admissible domain consists of
a small portion of the global design set with complex geometry. For these situations, the
EGO-LS-SVM may not have found admissible points, stalling the convergence.

Finally, the method was tested on the constrained optimization of a fully nonlinear nu-
merical fluid-structure interaction system. Here we aimed at minimizing the drag of a flex-
ible hydrofoil in several operating conditions, with constraints related to the cavitation. On
this example, the EGO-LS-SVM method has been compared with the CMA-ES and EGO
methods with GP models of the constraints. This example highlighted the interest of us-
ing EGO-based methods compared to the CMA-ES on these complex problems, and the
advantages of treating the constraints and computable domain in a unified approach to the
EGO-LS-SVM method.
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Future works should focus on the current limits of the EGO-LS-SVM method. In par-
ticular, the initialization procedure must be improved in the situation where the computable
domain is small compared to the whole search domain. One possible route in this direction
could be to initiate the optimization with an evolutionary method, and subsequently switch
to EGO-LS-SVM when sufficiently many points have been found in the admissible domain.
Also, when the absolute probabilities of C± are much unbalanced (small or large computable
domain, compared to the search domain) the use of a Weighted-SVM approach [47] could
help achieving better classification performances, in particular during the initial optimiza-
tion iterations.
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