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Direct numerical simulations of supersonic
turbulent channel flows of dense gases
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The influence of dense-gas effects on compressible wall-bounded turbulence is
investigated by means of direct numerical simulations of supersonic turbulent channel
flows. Results are obtained for PP11, a heavy fluorocarbon representative of dense
gases, the thermophysics properties of which are described by using a fifth-order
virial equation of state and advanced models for the transport properties. In the
dense-gas regime, the speed of sound varies non-monotonically in small perturbations
and the dependency of the transport properties on the fluid density (in addition
to the temperature) is no longer negligible. A parametric study is carried out by
varying the bulk Mach and Reynolds numbers, and results are compared to those
obtained for a perfect gas, namely air. Dense-gas flow exhibits almost negligible
friction heating effects, since the high specific heat of the fluids leads to a loose
coupling between thermal and kinetic fields, even at high Mach numbers. Despite
negligible temperature variations across the channel, the mean viscosity tends to
decrease from the channel walls to the centreline (liquid-like behaviour), due to its
complex dependency on fluid density. On the other hand, strong density fluctuations
are present, but due to the non-standard sound speed variation (opposite to the mean
density evolution across the channel), the amplitude is maximal close to the channel
wall, i.e. in the viscous sublayer instead of the buffer layer like in perfect gases. As
a consequence, these fluctuations do not alter the turbulence structure significantly,
and Morkovin’s hypothesis is well respected at any Mach number considered in
the study. The preceding features make high Mach wall-bounded flows of dense
gases similar to incompressible flows with variable properties, despite the significant
fluctuations of density and speed of sound. Indeed, the semi-local scaling of Patel
et al. (Phys. Fluids, vol. 27 (9), 2015, 095101) or Trettel & Larsson (Phys. Fluids,
vol. 28 (2), 2016, 026102) is shown to be well adapted to compare results from
existing surveys and with the well-documented incompressible limit. Additionally, for
a dense gas the isothermal channel flow is also almost adiabatic, and the Van Driest
transformation also performs reasonably well. The present observations open the way
to the development of suitable models for dense-gas turbulent flows.
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1. Introduction
Turbulent flows of dense gases represent a research field of great importance for a

wide range of applications in the fields of process engineering and energy conversion
cycles. Dense gases are usually defined as single-phase fluids with complex heavy
molecules, which operate in the vapour phase at pressures and temperatures of
the order of magnitude of those of the liquid/vapour critical point. The dynamics
of dense-gas flows is governed by the fundamental derivative of gas dynamics
(Thompson 1971):

Γ = 1+
ρ

c

(
∂c
∂ρ

)
s

, (1.1)

where ρ is the fluid density, c is the speed of sound and s is the entropy, which
measures relative variations of the speed of sound in isentropic transformations
(Cramer & Kluwick 1984) and is directly related to the molecular complexity of the
gas (Guardone & Argrow 2005). It is usual to identify dense gases as fluids that
exhibit values of Γ lower than one in their vapour phase. In such conditions, the speed
of sound tends to decrease in isentropic compressions and increase in expansions,
contrary to the behaviour of lighter, ‘classical’ gases, like air or steam. The reversed
variations of the speed of sound deeply modify the behaviour of dense-gas flows
in the transonic and supersonic regime compared to more standard fluids. The most
striking differences are expected for the so-called Bethe–Zel’dovich–Thompson (BZT)
fluids, which exhibit a region of negative Γ values in their vapour phase (inversion
zone), leading to the appearance of non-classical phenomena like expansion shocks in
some ranges of thermodynamic conditions (Cramer & Kluwick 1984). More details
about the peculiar gas dynamics of dense gases and more specifically of BZT fluids
can be found in Cinnella & Congedo (2007).

Despite the increasing interest in using dense gases in applications, such as organic
Rankine cycles (ORC) (see, e.g. Monaco, Cramer & Watson 1997; Brown & Argrow
2000; Congedo, Corre & Cinnella 2011), the influence of dense-gas effects on
turbulence remains unexplored because experimental measurements are very difficult.
In particular, understanding and modelling high-speed flow effects is of utmost
importance for the design and performance analysis of supersonic ORC turbine
expanders (Bufi & Cinnella 2015). The dynamics of compressible turbulence in the
presence of strong dense-gas effects was first investigated in Sciacovelli et al. (2016a).
In this work, Euler-based numerical simulations were used to study the large-scale
dynamics of compressible homogeneous isotropic turbulence (HIT) of a BZT gas,
for which expansion shocks may occur at particular thermodynamic conditions in the
transonic and supersonic flow regions. At sufficiently high turbulent Mach number,
compressible HIT is significantly modified by dense-gas effects. Specifically, it was
observed that the reversed speed of sound behaviour leads to large density and speed
of sound fluctuations despite negligible temperature fluctuations, and to much more
symmetric probability distribution functions, e.g. of the local dilatation, due to the
weakening of compressive structures and the enhancement of expansion ones. For
the dense-gas, strong expansion regions are characterized by sheet-like structures,
unlike the perfect gas which exhibits tubular structures. Moreover, expansion eddy
shocklets may appear in the dense gas. Additionally, viscous studies were carried out
to elucidate dense-gas effects on the small-scale dynamics (Sciacovelli & Cinnella
2015; Sciacovelli, Cinnella & Grasso 2016b). Strong expansion regions are found to
contribute to the dilatational dissipation by an amount comparable to compression
regions. This is due to the occurrence of steep expanding structures and possibly
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of expansion shocklets which contribute to enstrophy generation and counterbalance
enstrophy destruction introduced by eddy-like structures.

Wall turbulence includes several phenomena that are absent in HIT, such as the
mean shear or variations of mean density. A peculiar feature in the dense-gas regime
is that the dynamic viscosity µ and the thermal conductivity κ depend both on
temperature and pressure through complex relationships. Consequently, a dense gas
can exhibit both gas-like behaviour, with strong compressibility effects due to the
non-standard variations of its sound speed, and liquid-like features with a viscosity
decreasing as the temperature increases. We also stress here that, differently from
perfect gases, the transport properties of dense gases also depend on density (or
pressure) and not on temperature only. This dependency also represents a major
difference with respect to variable-property liquids, whose density and viscosity
depend on the temperature only. Note that the heat capacity cp of a dense gas is
generally much larger than the one of a classical gas, implying a weaker coupling
between the dynamic and thermal boundary layers, so that isothermal transformations
are also almost adiabatic. Even for supersonic flows, characterized by high values
of the Mach number, friction heating is expected to be reduced, leading to small
temperature variations, like in the incompressible flow limit. The overall behaviour
is nonetheless unforeseen due for instance to strong variations of Prandtl number
Pr in regions where cp becomes large. In summary, the peculiar variations of the
thermodynamic and transport properties in dense gases are expected to alter the
conventional behaviour of turbulence via complex nonlinear couplings.

The coupling between turbulence and state variables is a problem of fundamental
interest and has been discussed notably for high-speed flows, where compressibility
effects come into play, or in the context of strong variations of properties where the
temperature can no longer be considered as a passive scalar.

The question of the effects of compressibility on the structure of wall-bounded
turbulence is tightly related to variations of the density, temperature, viscosity and
thermal conductivity, leading to variations of the Reynolds and Mach numbers across
the flow. Chu & Kovasznay (1958) proposed a general decomposition into vorticity,
acoustic and entropic modes and analysed systematically their interactions up to
the second order. The effects of variable transport properties on heat transfer or
large-scale coherent structures can then be viewed as interactions between vorticity
and entropy modes. For supersonic wall-bounded flows, the main lesson learned from
previous studies is that the vortical motions are weakly affected by variations of mean
properties and the large-scale organization of wall turbulence remains close to the
one that has been extensively described for incompressible wall-bounded turbulence
(Spina, Smits & Robinson 1994). The nonlinear coupling with acoustic or entropy
modes (Chu & Kovasznay 1958) does not generate substantial sources of the vorticity
mode. This passive character of compressible wall turbulence is well summarized by
Morkovin’s hypothesis (Morkovin 1961), i.e. that compressibility mainly influences
the turbulence through variations in mean density, whereas the density fluctuations
have a negligible effect. Compressibility mainly modulates the turbulence through
variations in the mean values of thermodynamic quantities. Since the flow dynamics
essentially follows an incompressible pattern, a lot of studies have focused on the
incompressible–compressible correspondence. Indeed, since no universal theory for
wall-bounded compressible flows is available so far, the incompressible limit remains
an interesting reference to quantify the alteration of turbulence structure. In particular,
efforts have been made to extend conventional scaling laws for constant property
flows to compressible conditions (Bradshaw 1977).
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Understanding how the peculiar variations of the thermodynamic and transport
properties typical of dense gases influence the behaviour of wall-bounded turbulent
flows is of primal importance for providing a correct description of friction drag
and heat fluxes in many applications, and to develop suitable models for predicting
them. Measurements of dense-gas flows are hardly available due to the difficulty of
conducting measurements of this kind of flows. Furthermore, most of the facilities
presently under development are thought to provide average pressure and temperature
profiles and, in some cases, flow visualizations, but are not expected to provide a
detailed description of the turbulence structure, at least in the short term. A review of
recent experimental research on dense-gas flows can be found in Spinelli et al. (2013)
and Mathijssen et al. (2015). For these reasons, in this work we choose to investigate
wall-bounded turbulent dense-gas flows by means of direct numerical simulations
(DNS) of the Navier–Stokes equations, supplemented by suitable thermodynamic
and transport property models. More specifically, we conduct parametric numerical
experiments for the compressible turbulent channel flow. This configuration is well
suited for a systematic study of wall-bounded turbulence without complicating features
such as streamwise development, shocks or separation.

The first DNS of compressible turbulent channel flow of a perfect gas have been
performed by Coleman, Kim & Moser (1995) and Huang, Coleman & Bradshaw
(1995). They considered a plane channel flow between two (cooled) isothermal walls
for two values of the bulk Mach number, namely 1.5 and 3, and two values of
the Reynolds number based on bulk quantities and wall viscosity (3000 and 4880,
respectively). They found that the flow is influenced by the strong wall-normal
gradients of the mean density. One of the main results was the confirmation of the
validity of the Morkovin hypothesis. Data were further analysed by Huang et al.
(1995) who introduced a semi-local scaling where local thermodynamic properties
for density and viscosity replaces wall values to collapse turbulent statistics. The
agreement with incompressible data is improved for mean streamwise velocity
profiles compared to the Van Driest transformation (Van Driest 1951) often used
for turbulent boundary layers with adiabatic walls. Lechner, Sesterhenn & Friedrich
(2001) reproduced the DNS of Coleman et al. (1995) at M= 1.5 and Re= 3000 and
studied scatter plots to analyse sweeps and ejections in the wall layer. They reported
a slight change in Reynolds stresses anisotropy compared to the incompressible
case. Foysi, Sarkar & Friedrich (2004) investigated turbulent channel flow with
isothermal walls using DNS with Mach numbers up to 3.5 and Reynolds numbers
based on friction velocity (Reτ ) up to 1030. They focused on the behaviour of
pressure fluctuations and also found that turbulent stresses are mainly affected by
mean property variation so that the semi-local scaling is well suited for comparison
with incompressible cases. Morinishi, Tamano & Nakabayashi (2004) complemented
the study of Coleman et al. (1995) by investigating the influence of the thermal
condition at the wall. They performed DNS of compressible channel flows between
both adiabatic and isothermal walls at Mach number 1.5. Tamano & Morinishi
(2006) considered the asymmetric case of a channel with a cold and a hot wall,
either adiabatic or isothermal. Heat transfers can reduce compressibility effects but
remain of limited importance, and the Morkovin hypothesis is still applicable. Brun
et al. (2008) performed large-eddy simulations of fully developed channel flows with
specific focus on wall modelling. They proposed a variant of the semi-local scaling
for both amplitude and distance and arrive at the same conclusions as Huang et al.
(1995) or Morinishi et al. (2004). Wei & Pollard (2011) studied the influence of
the Mach number, M = 0.2, 0.7 and 1.5, at constant bulk Reynolds number and

https://doi.org/10.1017/jfm.2017.237
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


proposed budgets of transport properties. Gerolymos & Vallet (2014) performed a
series of DNS and derived transport equations to study in detail the variance of
thermodynamic fluctuations. Trettel & Larsson (2016) gave a theoretical framework
to the semi-local scaling of Huang et al. (1995) showing that the scaling of the wall
distance is important to take into account the variable mean properties. A good match
with incompressible distributions is found for a wide range of Reynolds and Mach
numbers. Recently, Modesti & Pirozzoli (2016) produced an extensive DNS database
increasing the bulk Reynolds number up to Re = 34 000. They applied the different
scalings proposed in previous studies and showed that the transformation of Trettel
& Larsson (2016) very well reproduces the behaviour of the mean velocity profile by
matching the friction Reynolds number based on semi-local quantities.

In terms of coherent motions in the wall layer, Coleman et al. (1995) identified
an enhanced coherence of near-wall streaks when compared to the incompressible
references. Greater streak elongation was also reported for supersonic boundary layers
with cooled walls, whereas a tendency towards shorter streaks is noted for heated
walls (Duan, Beekman & Martin 2010; Lagha et al. 2011). Morinishi et al. (2004)
noted that streaks do not become more coherent if the semi-local scaling is used
instead of wall units to non-dimensionalize the lengths. This was confirmed later by
Patel et al. (2015) for low Mach number flows with variable properties.

Given the importance of mean density and viscosity variations, other studies have
considered turbulent channel flow with variable properties without compressibility
effects due to high speed. Some studies have investigated heat transfers in turbulent
channel flow by treating temperature as a passive scalar. For instance, Teitel &
Antonia (1993) considered the influence of different thermal wall conditions and
noted the importance of the value of the Prandtl number for heat transfers. Nicoud
& Poinsot (1999) investigated by DNS the effects of variable density and molecular
viscosity on a channel flow between two isothermal walls for different temperature
ratios or viscosity laws. Low Mach simulations are used and support Van Driest
scaling for mean velocity profiles and semi-local scaling for Reynolds stresses.
Several works have investigated the effects of temperature-dependent properties using
a nonlinear coupling algorithm (Bae, Yoo & Choi 2005; Li et al. 2008; Sewall & Tafti
2008; Zonta, Marchioli & Soldati 2012). In all of these studies the viscosity, density
and thermal conductivity vary with the temperature. Zonta et al. (2012) considered
temperature gradients in water channel flow and examined the turbulent kinetic energy
budgets. Lee et al. (2013) showed that the viscosity stratification and associated wall
heating can alter the ejections and sweeps events in an incompressible turbulent
boundary layer. Bae et al. (2005) studied the turbulent heat transfer mechanisms of
supercritical carbon dioxide (CO2) performing DNS in heated vertical tubes. They
focused on the well-known heat transfer deterioration phenomenon in supercritical
flows. Li et al. (2008) investigated the same fluid in a long plane channel by imposing
wall temperature variations in the streamwise direction, i.e. considering heating and
cooling regions at the beginning and at the end of the channel, respectively. They
found that the effects of density fluctuations, particularly near the pseudo-critical
temperature, on turbulent kinetic energy cannot be ignored, and that the different
temperature values cause a modulation of the near-wall turbulent structures. Patel
et al. (2015) conducted numerical experiments by imposing different distributions for
the fluid properties to investigate separately the effects of mean density or viscosity
gradients in low Mach number turbulent channel flow. They showed that various
laws bearing similarities either with liquid-like or gas-like behaviour can be taken
into account for turbulent statistics by using the semi-local scaling introduced in the
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compressible regime. In particular, a good similarity was observed for an equivalent
friction Reynolds number constructed with semi-local quantities.

To the authors’ knowledge, compressible wall-bounded flows have been almost
exclusively investigated for air, modelled as a perfect polytropic gas. A few studies
have considered variable-property or supercritical fluids with a low Mach number
assumption. In this work, we present new direct numerical simulations of compressible
turbulent channel flows for PP11, a heavy fluorocarbon representative of dense gases.
The thermodynamic and transport property behaviour of the fluid are described by
means of advanced models. A parametric study for different bulk Mach and Reynolds
numbers is conducted and the results are compared with perfect-gas flows (air flows)
at the same bulk conditions. The present paper is organized as follows. The governing
equations and numerical set-up are provided in § 2. The present DNS data and global
characteristics are presented in § 3. In § 4, the effects of dense-gas flows on mean
and fluctuating properties are explained. In § 5, the profile of turbulence intensities,
turbulent kinetic budgets and near-wall structures are investigated. The analysis is
performed by comparing with the flows for an ideal gas. Validation test cases and
details about the transport properties laws for dense gases are given in the appendices.

2. Methodology
2.1. Governing equations

In the present study we consider flows of gases in the single-phase regime, governed
by the compressible Navier–Stokes equations, written in differential form as

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 (2.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+
∂ p
∂xi
−
∂τij

∂xj
= ρfui (2.2)

∂(ρE)
∂t
+
∂((ρE+ p)uj)

∂xj
−
∂(τijui)

∂xj
+
∂qj

∂xj
= ρfuiui, (2.3)

where ui is the velocity vector, ρ the density and p the pressure. The specific total
energy E and the viscous stress tensor τij are defined as

E≡ e+ 1
2 u2

j (2.4)
τij ≡ 2µSij + λθδij, (2.5)

where e is the specific internal energy, µ the dynamic viscosity, Sij= (1/2)((∂ui/∂xj)+

(∂uj/∂xi)) is the strain rate tensor, θ ≡ ∂uk/∂xk the velocity divergence or dilatation,
δij the Kronecker symbol and λ = −2µ/3 the second viscosity according to Stokes’
hypothesis. Finally, qj represents the heat flux, modelled by means of the Fourier’s
law:

qj =−κ
∂T
∂xj
, (2.6)

where κ is the thermal conductivity. The system is supplemented by thermal and
caloric equations of state, respectively:

p= p(ρ, T) and e= e(ρ, T). (2.7a,b)
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These variables satisfy the compatibility relation:

e= er +

∫ T

Tr

cv,∞(T ′) dT ′ −
∫ ρ

ρr

[
T
∂p
∂T

∣∣∣∣
ρ

− p

]
dρ ′

ρ ′2
, (2.8)

where the subscript (·)r indicates a reference state, cv,∞(T) is the specific heat at
constant volume in the ideal-gas limit, and the superscript (·)′ denotes auxiliary
integration variables. For a thermally and calorically perfect gas, equations (2.7)
become:

p= ρRT and e= cvT, (2.9a,b)

where cv = R/(γ − 1)= const., and R=R/M with R the universal gas constant and
M the gas molecular weight. Moreover, thermodynamic models relating the dynamic
viscosity µ and thermal conductivity κ to the gas temperature and pressure are
needed. In the following simulations, we consider the perfluoro-perhydrophenanthrene,
(chemical formula C14F24), called hereafter PP11 (commercial name), whose
thermodynamic properties are provided in table 1 (see Cramer 1989). This fluid
has been often used in the literature since it exhibits a wide inversion zone and thus
significant dense-gas effects. The thermodynamic behaviour of the fluid is modelled
through the Martin–Hou thermal equation of state (Martin & Hou 1955), which
provides a reasonably accurate description of the gas behaviour and of the inversion
zone size. Such an equation involves five virial terms and ensures high accuracy with
a minimum amount of experimental information. The equation reads:

p=
RT

(v − b)
+

5∑
i=2

fi(T)
(v − b)i

, (2.10)

with b= vcr(1− β/Zcr), β = 20.533Zcr − 31.883Z2
cr, and

fi(T)= Ai + BiT +Ci exp (−kT/Tcr), (2.11)

where v=1/ρ denotes the specific volume, vcr, Tcr and Zcr the critical specific volume,
temperature and compressibility factor, respectively, and k= 5.475. Ai, Bi and Ci are
gas-dependent coefficients that can be expressed in terms of the critical temperature
and pressure, the critical compressibility factor, the Boyle temperature (which may
be expressed as a function of the critical temperature) and one point on the vapour
pressure curve. A power law of the form:

cv∞(T)= cv∞(Tcr)

(
T

Tcr

)n

(2.12)

is used to model variations of the low-density specific heat with temperature, where
n is a material-dependent parameter. The fluid viscosity and thermal conductivity are
evaluated by means of the generalized laws derived by Chung et al. (1988), which
contain a correction term that takes into account the strong density dependence of
the transport properties in the dense-gas region. These laws, extensively used in
previous works (Cramer & Tarkenton 1992; Cramer & Park 1999), are described
in appendix A. In the modelling, the bulk viscosity µb = λ + 2µ/3 is set to zero,
assuming a Stokesian fluid. Since this coefficient is multiplied by the divergence
of the velocity θ , the hypothesis is exact in the incompressible limit. This is also
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M Tcr ρcr pcr Zcr ω ξ Tb cv(Tcr)/R n
g mol−1 K kg m−3 MPa — — D K — —

PP11 (C14F24) 624.11 650.2 627.14 1.46 0.2688 0.4963 0.0 488.15 97.3 0.5776

TABLE 1. Thermodynamic properties of PP11: molecular weight (M), critical temperature
(Tcr), critical density (ρcr), critical pressure (pcr), critical compressibility factor (Zcr),
acentric factor (ω), dipole moment of the gas phase (ξ ), boiling temperature (Tb) and
ratio of ideal-gas specific heat at constant volume over the gas constant (cv(Tcr)/R) at
the critical point.

a very good approximation for low Mach numbers, for monoatomic gases, but can
be questioned for a complex molecular fluid (Cramer & Bahmani 2014). The study
of Cramer (2012) provides some numerical estimates for the bulk viscosity of ideal
gases. It shows that the latter can vary significantly with the temperature and can be
as large as hundreds or thousands of times the shear viscosity, even for some common
diatomic gases. Interestingly, the bulk viscosity ratio µb/µ is a decreasing function
of the temperature for most gases, except, e.g. methane (CH4) which exhibits a peak
around T ≈ 400 K (µb/µ ≈ 350). Specifically, for the fluorocarbon SF6, commonly
considered as a dense gas (Anderson 1991), µb/µ decreases quickly with T , dropping
from approximately 300 at 300 K to less than 50 at temperatures between 600 and
700 K, like the ones of interest in the present study. Even if the value of µb is
unknown for a dense gas such as PP11, the effect of the bulk viscosity has been
tested by taking a large value µb = 500µ. The results are almost unaffected (see
appendix B) so that Stokes hypothesis (µb = 0) is retained in the following.

2.2. Numerical methods
Calculations are based on an in-house computational fluid dynamics (CFD) code
(Gloerfelt & Berland 2013) equipped with high-order dispersion relation preserving
schemes. The convective flux derivatives are approximated by using a fourth-order
optimized finite-difference scheme on an eleven-point stencil, described in Bogey &
Bailly (2004), while standard fourth-order finite differences are used to discretize the
viscous fluxes. Non-uniform mesh sizes are taken into account by means of coordinate
transforms. To ensure accuracy, mesh stretching rate is kept below 1.5 %. As a part
of the algorithm, the optimized selective sixth-order filter of Bogey, De Cacqueray &
Bailly (2009) is applied in each direction in order to eliminate grid-to-grid unresolved
oscillations. Finally, time integration is carried out by means of a low-storage six-step
Runge–Kutta scheme optimized in the wavenumber space (Bogey & Bailly 2004).

The numerical strategy has been widely employed for jets (Bogey & Bailly 2009;
Bogey, Marsden & Bailly 2012) as well as turbulent boundary layers (Aubard,
Gloerfelt & Robinet 2013; Gloerfelt & Berland 2013). The code has been preliminarily
validated for turbulent channel flow configurations by comparison with reference
results for both subsonic (Kim, Moin & Moser 1987) and supersonic (Coleman et al.
1995) channel flows of a perfect gas (see appendix C).

3. Numerical experiments of compressible channel flows
3.1. Set-up and definitions

Numerical experiments are conducted for the plane channel flow configuration, i.e.
the flow between two infinite parallel flat plates. This is reproduced by applying
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periodic conditions in the homogeneous streamwise (x) and spanwise (z) directions.
Isothermal no-slip wall conditions are applied on the lower and upper walls. In order
to counteract viscous friction and maintain a target bulk mass flow, the approach
described in Gerolymos, Sénéchal & Vallet (2010) and Gerolymos & Vallet (2014) is
used to compute the forcing term. Specifically, at the end of each Runge–Kutta stage,
the bulk density is explicitly constrained to maintain a fixed target value, whereas
a source term fu1 is injected in the streamwise momentum equation to enforce a
constant mass flow. It should be noted that the density correction is equivalent to
including a source term in the continuity equation. Nevertheless, this term is very
small and can be neglected (Coleman et al. 1995; Huang et al. 1995; Lechner et al.
2001; Foysi et al. 2004; Morinishi et al. 2004; Wei & Pollard 2011; Gerolymos &
Vallet 2014).

In the following, the subscripts (·)B, (·)w and (·)c denote averaging over the
whole computational domain, the walls and centreline, respectively; (·) indicates
Reynolds averaging and (·)′ are Reynolds fluctuations; similarly, (̃·) and (·)′′ denote
Favre averaging and Favre fluctuations. In the following, we also use the centreline
Reynolds and Mach numbers, respectively defined as Rec = ρcuch/µc and Mc = uc/cc.

The DNS operating point is defined by a bulk Reynolds number ReB and a bulk
Mach number MB, defined as:

ReB =
ρBũBh
µw

, MB =
ũB

cw
, (3.1a,b)

where ρB is the bulk density, µw is the dynamic viscosity and cw the sound speed at
the walls. In the definition of the bulk reference numbers, wall values for viscosity
and speed of sound are usually considered since this greatly simplifies the imposition
of the reference conditions for isothermal walls. Indeed, for a perfect-gas model, a
fixed wall temperature implies µw = µ(Tw) and cw = c(Tw) =

√
γRTw. However, this

is no longer true when using more complex thermodynamic models, since the speed
of sound and the transport properties depend on both temperature and density values.
In these cases, ρw is not known a priori and it is not possible to fix directly ReB
and MB. To enforce the reference conditions, an iterative procedure has been followed:
first, a preliminary calculation is run by choosing a reasonable value for the ratio
ρw/ρB. Once the solution is converged, the ρw obtained from the simulation is used
to compute the updated values of µw and cw, and the flow field is interpolated onto a
new grid (adapted to the updated value of the Reynolds number). In order to achieve
convergence to the desired state, about three to four iterative cycles are needed.

We recall the definition of the standard wall coordinates and friction Reynolds
number

y+ =
ρwuτ (y− yw)

µw
; Reτw =

ρwuτh
µw

, (3.2a,b)

where uτ =
√
τw/ρw is the friction velocity, τw = (µ(∂u/∂y))w being the shear stress

at the wall. It is widely known that the Reynolds number based on the friction
velocity does not correctly represent the effect of rapid wall-normal variations for
density and viscosity profiles in presence of high compressibility effects. Huang et al.
(1995) proposed an empirical semi-local scaling based on both wall and local mean
quantities:

y∗ =
ρ(y)u∗τ (y− yw)

µ(y)
; Re∗τ (y)= Reτw

√
ρ(y)
ρw

µw

µ(y)
, (3.3a,b)
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with u∗τ =
√
τw/ρ(y) the semi-local friction velocity. This mixed scaling has proven

to give quite satisfactory results in collapsing first- and second-order moments (Foysi
et al. 2004; Morinishi et al. 2004; Modesti & Pirozzoli 2016) obtained from a wide
range of MB and ReB. Recently, Patel et al. (2015) and Trettel & Larsson (2016)
have developed a mathematical framework giving a theoretical basis to the semi-local
scaling. Even if this scaling was initially introduced in order to take into account the
effects of compressibility, Patel et al. (2015) assessed its validity also for variable-
property flows, since it inherently considers the evolution of transport properties and
their relation with thermodynamic quantities.

3.2. Description of the computed cases
Dense-gas effects are evaluated by means of a parametric study at three bulk Reynolds
numbers (namely, ReB = 3000, 7000 and 12 000) and three bulk Mach numbers
(MB = 1.5, 2.25 and 3.0). For PP11 cases, the bulk density was imposed to be
ρB = 0.618ρcr and the wall temperature was fixed to Tw = 1.01Tcr. The density value
ensures that the flow evolves in the dense-gas region, whereas the slightly supercritical
wall temperature condition avoids the occurrence of a two-phase flow. It should be
noted that for these conditions it is not possible to obtain negative values of the
derivative of gas dynamics Γ , so we should not expect BZT phenomena.

In the following, we refer to each simulation with a unique tag of the form
XMαRβ, where the first letter indicates the fluid (A for air and P for PP11), α refers
to MB (α = 1, 2, 3 for MB = 1.5, 2.25, 3, respectively) and β to ReB (β = 3, 7, 12 for
ReB = 3000, 7000, 12 000, respectively). For all the cases, the computational domain
has dimensions Lx × Ly × Lz = 8πh × 2h × 2πh, with h the channel half-height.
Note that the dimension in the streamwise direction is greater than the one used
in the previous compressible channel DNS (Coleman et al. 1995; Lechner et al.
2001; Morinishi et al. 2004; Wei & Pollard 2011) in order to ensure uncorrelated
inlet and outlet quantities for high-MB cases. The computational grids are chosen in
order to provide a good spatial resolution in all directions. Specifically, the chosen
spatial resolutions, expressed in semi-local units, are in the ranges 1x∗ ∈ [10, 16],
1y∗w ∈ [0.5, 0.8], 1z∗ ∈ [4, 6], according to the considered flow conditions. The
spatial resolution is also evaluated with respect to the wall-normal distribution of the
Kolmogorov length scale η= ((µ/ρ)3ρ/ε)0.25, where ε is the turbulent kinetic energy
dissipation. According to Zonta et al. (2012) and Lee et al. (2013), the resolution
requirements are 1x< 12η, 1y< 2η and 1z< 6η.

The resolutions obtained for the present cases are reported in table 3. Since a
complex equation of state is used for real gases and higher values of the effective
Reynolds number are reached, a grid sensitivity study has been conducted and is
reported in appendix D. Simulations with PP11 require higher resolution than air to
achieve grid convergence of second-order statistics, and the chosen grids in table 3
have quite satisfactory resolution. In our simulations, the overall number of grid
points varies between 3× 106 and 1.2× 109.

Table 3 summarizes the conditions used for the parametric study. Wall friction
Reynolds numbers range from 218.7 to 1017 for air, and from 191.3 to 692.8
for PP11. The semi-local scaling drastically changes the predictions in terms of
friction Reynolds number. For air, the friction Reynolds number at the centreline
Re∗τ ,c = Re∗τ (h) goes from 88.7 to 324.7, the drop for each case being roughly
proportional to MB. For PP11, an opposite behaviour is observed: Re∗τ ,c is higher than
Reτw in each case, and the deviations increase with MB. This is due to the different
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MB 1.5 1.5 2.25 3 3
ReB 3000 7000 7000 7000 12 000

-·-·-·-·-·-· ················· - - - - - - - · -··-··-··-··-··- ——
(orange) (blue) (green) (red) (black)

TABLE 2. Line styles for the employed DNS cases.

behaviour of the transport properties as it will be explained later. Thus, contrarily to
air, the resolution requirements for PP11 are more severe in semi-local scaling than
in the classical wall scaling. However, as reported in table 3 and appendix D, the
chosen grids ensure a good resolution in each case. Once Re∗τ is converged, statistics
are collected every ten computational time steps, with 1t+ ≈ 0.02–0.03 in wall units
for all the simulations and during an observation time t+obs in the range 1000–3000.

4. Influence of dense-gas effects on flow properties
In this section we first present results for general flow properties and their

dependency on the bulk parameters and fluid type. Then, we analyse cross-wise
profiles of the first-order statistics. For this purpose, we initially assess different wall
scalings, and then focus more specifically on the variations of average thermodynamic
properties across the channel, to highlight the peculiar behaviour of dense-gas
flows compared with air flows. For the sake of clarity, we investigate the role of
compressibility effects by focusing on cases characterized by ReB= 7000 and various
Mach numbers. The Reynolds number influence is also studied by considering
sets of simulations M1R3 and M3R12. We complete the analysis by discussing
dense-gas effects on second-order statistics of the thermodynamic and transport
properties. Second-order moments of the velocity fields and, more generally, effects
on turbulence structure are discussed in § 5. For these sets of results, each case is
uniquely identified with the line style defined in table 2, unless otherwise stated.

4.1. Global flow properties
Table 4 summarizes the main characteristic values of the simulations. Figure 1
provides a first insight into the behaviour of PP11 cases compared to air cases. In this
figure, MB and Tc

+

= Tc/Tw are plotted as functions of the average centreline Mach
number Mc. Values obtained for air cases are in good agreement with reference DNS
(Coleman et al. 1995; Foysi et al. 2004; Gerolymos & Vallet 2014). For MB > 1.5,
Mc is systematically lower than MB, since the walls are cooler than the channel
core. Indeed for perfect gases, Mc increases nonlinearly since Tc grows rapidly
and c ∝

√

T . The average centreline temperature in figure 1(b) is approximately
1.4 times higher than the wall temperature for AM1R3 and more than 2.5 times
higher for AM3R3 due to the significant increase of the viscous heating τijSij. The
dependence on the Reynolds number is weak on the considered range, with slightly
lower values of Tc

+ for higher ReB, which is more clearly appreciated for the highest
Mach number conditions. PP11 flows exhibit a rather different behaviour since the
molecular complexity of dense gases implies high values of the specific heat cv/R
and, therefore, the coupling between the thermal and dynamic fields becomes smaller
and smaller. Inspection of figure 1(b) indeed shows that the centreline temperature is
almost equal to the wall value for any choice of the Mach and Reynolds numbers.
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FIGURE 1. (Colour online) Evolution of MB (a) and T+c (b) as a function of Mc for
different cases. Open symbols: air; filled symbols: PP11. Symbol shapes:a: MB= 1.5,u:
MB= 2.25,f: MB= 3. Symbol colours (online version): red, ReB= 3000; blue, ReB= 7000;
black, ReB = 12 000. + (cyan) Coleman et al. (1995), × (green) Foysi et al. (2004),
E (orange) Gerolymos & Vallet (2014).

Nevertheless, the evolution of Mc changes significantly because in dense gases the
speed of sound depends also on density, which decreases moving from the wall to
the centreline. In turn, cc increases leading to lower values of Mc.

For practical applications, it is interesting to investigate the modifications of
momentum and heat transfer coefficients when working with a dense gas. For that
purpose, we consider the evolutions of the skin friction coefficient Cf and the bulk
Nusselt number NuB, respectively defined as

Cf =
τw

1
2ρBu2

B

; NuB =
qwDh

κw(TB − Tw)
, (4.1a,b)

which are depicted in figure 2. Dh denotes the hydraulic diameter, Dh = 4h for a flat
channel. The values predicted by the correlation of Dean (1978), i.e. CD

f =0.073Re−1/4
m ,

are superimposed in figure 2(a). The correlation has been established in the
incompressible regime for Rem > 6000, where Rem is the Reynolds number based
on bulk quantities and channel height, i.e. Rem = 2ReBb = ρBũB2h/µB. For the
dense-gas cases, the computed skin friction coefficients are slightly lower than
the values predicted by Dean’s correlation, but follow closely the trend with respect
to the bulk Reynolds number. The deviations are greater for air ideal flows with an
underestimation more pronounced for higher Mach numbers. Some authors (Moneghan
1953; Huang, Bradshaw & Coakley 1993) have proposed compressibility corrections,
which work well for turbulent boundary layers over adiabatic walls. A similar
extension for channel flows is not without ambiguities since the definition of the
freestream values and of the dynamic pressure for normalization are more arbitrary. It
can however be concluded that in dense-gas flow decoupling of dynamic and thermal
effects dominates, so that Mach number effects are less influential on the skin friction
coefficient than in air flows, and Dean’s formula yields a reasonable correlation.

In a similar manner, the Nusselt number is compared in figure 2(b) with a classical
empirical correlation, commonly used to estimate heat transfer in hydraulic pipes
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FIGURE 2. (Colour online) Evolutions of Cf (a) and NuB (b) as a function of ReDh for
different cases. Same legend as figure 1.

(Incropera & DeWitt 2007; Zonta 2013). Specifically, we use the Sieder–Tate
correlation, NuST

B = 0.027Re4/5
Dh

Pr1/3
B (µB/µw)

0.14 (Sieder & Tate 1936). Here, the
Reynolds number at bulk conditions is based on the hydraulic diameter Dh, i.e.
ReDh = 2Rem = 4ReBb. This formula is an extension of the Dittus–Boelter/Colburn
correlations including the viscosity dependence due to temperature change between
the bulk average temperature and wall temperature. Figure 2(b) shows that the
power-law exponent of 0.8 captures well the Reynolds number dependence for both
fluids. The higher values obtained for dense-gas cases are explained by the Prandtl
number dependence, which is constant equal to 0.7 for air and varies between 2.3 and
2.4 for PP11. The enhanced heat capacities of dense gases reduce the heat conduction.
A Mach number effect can also be noticed, leading to lower Nusselt numbers when
the Mach number increases. This compressibility effect, more visible for air flows,
is not taken into account by the empirical correlation. The predicted values of Cf

and NuB are reported in table 4. The heat flux towards the walls Bq = qw/(ρwuτhw),
with hw the specific enthalpy at the wall, is also given. Its order of magnitude is
O(100–101) for air and O(10−4) for PP11 flows. Hence, for dense gases, isothermal
walls translate also into quasi-adiabatic conditions. Also given in table 4, the wall and
centreline mean values of the fundamental derivative Γ w and Γ c are globally lower
than unity. Their increase with MB is mainly associated with a higher dispersion of
the instantaneous thermodynamic states.

4.2. Scalings and first-order statistics

Figure 3 displays the mean streamwise velocity profiles for air (a–c) and PP11 flows
(d–f ). It is known that the classical incompressible scaling (a,d) fails in collapsing
the velocity profiles when compressibility effects are present. In particular, predictions
get worse in presence of a substantial heat flux towards the walls. Several attempts
have been made in the past in order to derive a transformation able to collapse
the compressible velocity profiles into an universal law of the wall for a wide
range of Mach numbers. For non-hypersonic flows, Van Driest (1951) developed the
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FIGURE 3. (Colour online) Scalings for the law of the wall for air (top) and PP11
(bottom). (a,d) Classical incompressible scaling u+; (b,e) Van Driest transformation uVD;
(c, f ) Trettel–Larsson transformation uTL in semi-local coordinates. For the meaning of the
line styles in this and subsequent figures, see table 2.

transformation:

uVD =

∫ u+

0

√
ρ

ρw
du+, (4.2)

which takes into account mean-density variations and translates the compressible
profile into an equivalent ‘constant-density’ profile keeping the same wall-normal
coordinate y+. The Van Driest transformation provides a substantial improvement of
the scaling (b,e), even if it departs from the log law as MB increases. The size of
the buffer layer increases rapidly for air since the beginning of the logarithmic zone
moves towards higher y+ values (from y+≈ 20 for AM1R7 to y+≈ 70 for AM3R12).
On the other hand, for dense gases, the heat flux is greatly reduced and uVD-scaling
provides quite satisfactory results. Indeed, this scaling was found to behave well for
adiabatic walls (Guarini et al. 2000; Pirozzoli, Grasso & Gatski 2004; Pirozzoli &
Bernardini 2011). Modifications for the value of the intercept of the log-law velocity
profile, u+= 1/κVK log y++C were proposed by Bradshaw (1977), yielding empirical
laws that relate C to the friction Mach number Mτ and to the heat flux Bq. Modesti
& Pirozzoli (2016) have recently provided a thorough review of the main scalings
available in the literature, and have shown that the transformation proposed by Trettel
& Larsson (2016),

uTL =

∫ u+

0

√
ρ

ρw

[
1+

1
2

1
ρ

dρ
dy

y−
1
µ

dµ
dy

y
]

du+ (4.3)

accurately reproduces the mean velocity profile even for cases with high wall heat
flux. Panels (c, f ) confirm its validity even for dense gases. Note that, with this
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FIGURE 4. (Colour online) Profiles of density ρ+, temperature T̃+ and pressure p/pw
for air (top) and PP11 (bottom) cases. Same legend as in table 2.

transformation, the wall-normal distance is normalized according to the semi-local
scaling y∗.

Figure 4 shows the density, temperature and pressure profiles normalized with wall
quantities. The semi-local scaling y∗ is retained from hereafter as the standard scaling
for comparing perfect- and dense-gas cases. The rise of wall density values for
increasing MB is significant for air and less pronounced for PP11 flows. For instance,
ρ/ρB = 2.51 for AM3R12 and 1.25 for PM3R12 (see values in table 4). Mean
density ρ+ decreases towards the centreline, with minimum values miny{ρc

+
} ≈ 0.39

for AM3R3 and ≈0.77 for PM3R3. An eventual influence of the Reynolds number is
hidden by the strong dependence on Mc, noticeable for both ρ+ and T̃+. As prefigured
by figure 1(b), temperature profiles are quite different, with increases lower than 1 %
of the wall temperature for PP11 flows. Pressure is roughly constant across the
channel. More precisely, it exhibits a constant value in the viscous sublayer, then it
slightly decreases in the buffer layer reaching a minimum in the logarithmic zone,
and afterwards increases in the outer region. For air, the relationship p/pw= ρ

+T̃+/ 1
(Gerolymos & Vallet 2014) holds in each case. The minimum values for air flows
are up to three times higher than for PP11 flows, with maxy{(p − pw)/pw} ≈ 1.5 %
for AM3R12 and 0.5 % for PM3R12. Although pressure is nearly constant, its mean
value can be directly related to the turbulent fluctuations. In fact, by applying the
Favre averaging to the Navier–Stokes equations, one obtains for the mean equation
in the y-direction (Huang et al. 1995):

∂p
∂y
=
∂τ yy

∂y
−
∂ρṽ′′v′′

∂y
. (4.4)

For compressible flows, the second term is not equal to zero but remains much lower
than the other two. As a consequence, the minimum value of p coincides with the
maximum of the wall-normal Reynolds stresses, as it will be shown later.
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FIGURE 5. (Colour online) Mean profiles of the speed of sound c/cw for air (a) and PP11
(b) flows.
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FIGURE 6. (Colour online) Mean profiles of the viscosity µ/µw, the friction Reynolds
number Re∗τ and the Reynolds number Re for air (a–c) and PP11 (d–f ) flows.

Figure 5 shows the mean profiles of the speed of sound across the channel.
Sound speed variations across the channel are related to temperature changes for
air (c/cw =

√
T+), whereas they follow density variations for PP11. We notice that

relative variations of the speed of sound are much smaller for PP11 (approximately
20 % against 60 % for air), leading to higher values of M compared to air flows.

The most striking differences between perfect- and dense-gas flow cases are
highlighted in figure 6, presenting the profiles of viscosity, semi-local friction
Reynolds number Re∗τ and average Reynolds number Re. For air flows, µ/µw increases
towards the centreline (gas-like behaviour), with a maximum deviation in AM3R3 for
which maxy{µ/µw} ≈ 2. For PP11 flows, the ratio decreases (following approximately
the ρ+ profile) up to miny{µ/µw}≈ 0.75 for PM3R3, which is a liquid-like behaviour.
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FIGURE 7. (Colour online) Mean profiles of the Prandtl number Pr (a), specific heat at
constant pressure cp/R (b) for PP11 and Eckert number Ec (c) for air and PP11.

Viscosity largely influences the profiles of Re and in particular the centreline values,
that tend to be considerably larger for dense gases. The evolution of Re∗τ follows
opposite behaviours for the two fluids, due to the aforementioned evolutions of
transport properties. For air flows, it decreases rapidly up to the logarithmic layer
and then more slowly in the outer region. For a given ReB, a higher MB leads to
higher values of Re∗τ near the wall, since µw is the same whereas ρw and (∂u/∂y)w
are increasing functions of the Mach number. At greater distance from the wall,
Re∗τ decreases even more quickly due to the strong temperature gradients in the
wall-normal direction. Outside of the viscous sublayer, Re∗τ is considerably lower
than the near-wall one for the higher MB cases, due to the combined effect of a
rapid decrease of local density and an increase of local viscosity. Specifically, the
centreline value may drop below the one obtained for lower Mach number cases,
for which the fluid properties vary less. For PP11 flows, Re∗τ exhibits an opposite
behaviour, namely, it increases when moving from the wall to the centreline. The
overall variations, of the order of 12 % at most for high Mach number cases, are
anyway much smaller than in the perfect gas (variations up to 60 %). When increasing
the wall distance, Re∗τ slightly increases up to the buffer layer and remains roughly
constant afterwards. Due to the increasing reduction of centreline viscosity for higher
Mach number cases, the growth of Re∗τ is enhanced when MB becomes higher. The
liquid-like viscosity behaviour clearly affects the profile of the local Reynolds number
Re (panel f ) compared to the perfect gas (panel c). For instance, at the centreline,
Rec is about 2.5 times higher for PM3R12 than for AM3R12 results.

A direct consequence of the constant Prandtl number assumption in the ideal model
is that κ/κw=µ/µw for air. In PP11 simulations, variations of the thermal conductivity
across the channel are smaller than the ones of viscosity (miny{κ/κw} ≈ 0.95),
nevertheless the ratio of the two transport properties remains roughly constant and
µ/κ ≈ 1.25 throughout the channel. Thus, the Prandtl number profile (figure 7a) is
essentially driven by the normalized specific heat at constant pressure cp/R (figure 7b)
which, in turn, follows a trend similar to the density profile (i.e. decreases with the
wall distance). As pointed out in the above, the latter exhibit a strong dependency on
MB in the near-wall region, which is then fed back to Pr. Specifically, the wall Prandtl
number increases by approximately 50 % when doubling the bulk Mach number and
is almost insensitive to the Reynolds number. In the outer region, Pr≈ 2.3− 2.4 for
all dense-gas cases. On the other hand, the high values of cp/R for dense gases lead
to very small values of the average Eckert number, Ec= u2/cpT , a parameter that is
representative of the degree of coupling between thermal and kinematic effects. We
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FIGURE 8. (Colour online) Profiles of the normalized root mean square density ρrms/ρ =√
ρ ′2/ρ (a,d), temperature Trms/T =

√
T ′2/T (b,e) and pressure prms/p=

√
p′2/p (c, f ) for

air flows (a–c) and PP11 flows (d–f ).

recall that for air flows, cp/R= cp/R= 3.5, which is two orders of magnitude lower
than the mean values obtained with PP11. In figure 7(c), Ec exhibits a similar trend
for both fluids, with two logarithmic zones connected near y∗ ≈ 15, but the curves
are shifted by approximately two orders of magnitude. In fact, the centreline values
are of the order of O(1) for air and O(10−2) for PP11 cases.

4.3. Second-order statistics of the thermodynamic and transport properties
Root mean square (r.m.s.) values for the density, temperature and pressure are shown
in figure 8. Gerolymos & Vallet (2014) have shown that for air flows O(Trms/T) =
O(ρrms/ρ) = O(prms/p), regardless of the y∗ location, Mach and Reynolds numbers.
The same trend has been observed for both forced (Donzis & Jagannathan 2013) and
decaying (Sciacovelli et al. 2016a) highly compressible homogeneous turbulence. As
discussed in Gerolymos & Vallet (2014), this behaviour is a direct consequence of the
perfect-gas equation of state, and does not depend on the specific flow configuration
under investigation. Indeed, writing the differential form of the ideal-gas law (dp/p)=
(dρ/ρ)+ (dT/T) and approximating differential terms by r.m.s. fluctuations, we get:

prms

p
≈
ρrms

ρ
+

Trms

T
. (4.5)

After an initial growth in the linear region, ρrms/ρ and Trms/T reach a peak in
the buffer layer at y∗ ≈ 10 and then decay. The pressure fluctuations are rather
nearly constant close to the walls, slightly peak at the beginning of the logarithmic
zone (y∗ ≈ 40) and finally decrease, reaching a minimum in the core region. Since
pressure fluctuations are of smaller order whereas ρrms/ρ and Trms/T have very similar
distributions and levels, equation (4.5) permits one to identify temperature with density
fluctuations, corresponding to the assumption of Laufer (1969) of essentially isobaric
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temperature fluctuations. Some authors (Rubesin 1990; Huang et al. 1995) propose
rather that the gas behaves generally in a polytropic manner.

For dense gases, the observed trends are very different. While the overall levels
of density and pressure fluctuations remain of the same order of magnitude as for
air cases, the relative temperature fluctuations are more than one order of magnitude
lower. The fluctuating pressure distribution is much like the perfect-gas one, since it
depends on the fluctuating velocity through a Poisson equation. Furthermore, the r.m.s.
density decreases monotonically with the wall distance, the highest density fluctuations
being observed close to the walls. The r.m.s. density levels decay at higher rates in the
linear layer and in the outer region, and exhibit only weak variations in the logarithmic
region. This behaviour can also be directly related to the equation of state, namely the
Martin–Hou equation (2.10). Following the same reasoning as for the ideal gas, the
differential form dp= (∂p/∂ρ)Tdρ+ (∂p/∂T)ρ dT is derived and the differential terms
are approximated by r.m.s. fluctuations, yielding:

ρrms

ρ
≈

1
ρ

[
prms −

(
∂p
∂T

)
ρ

Trms

]/(
∂p
∂ρ

)
T

, (4.6)

where the partial derivatives are evaluated from mean quantities:(
∂p
∂ρ

)
T

≈
RT

(1− ρb)2
+

5∑
i=2

iρ i−1fi(T)
(1− ρb)i+1

(4.7)

(
∂p
∂T

)
ρ

≈
ρR

1− ρb
+

5∑
i=2

ρ if ′i (p)
(1− ρb)i

with f ′i (T)= Bi − (kCi/Tcr) exp (−kT/Tcr).

(4.8)

The validity of the approximated relation (4.6) is checked in figure 9 for case PM3R7
against DNS results for ρrms/ρ and appears to be reasonably accurate, especially
concerning the observed trends. Then, considering that the thermal variations are weak
for the dense-gas temperature fluctuations are neglected, i.e. Trms = 0 in (4.6). The
corresponding curve follows fairly the trends of ρrms/ρ. The isothermal assumption
is then a good approximation for the dense gas, meaning (i) that density fluctuations
are correlated with pressure fluctuations and (ii) that ρrms/ρ is well approximated by
(prms/ρ)/(∂p/∂ρ)T .

Finally, using the definition of the sound speed c2
= (∂p/∂ρ)s, and replacing the

partial derivative of p with respect to ρ at constant T by the same partial derivative at
constant entropy yields (prms/ρ)/c2. The proportionality with the fluid compressibility
(inverse of the speed of sound squared) is also tested in figure 9. A good match
is obtained above the viscous sublayer, which means that the assumption that the
isothermal approximation is also close to an adiabatic approximation for a dense gas is
globally true, except very near to the wall. The preceding discussion shows that the
rise of density fluctuations near the wall is related to the peculiar behaviour of the
thermal equation of state for a nearly isothermal process. Similar results (not shown)
were also obtained for a simpler thermal equation of state (Van der Waals) with the
same qualitative behaviour, under the polytropic-gas assumption.

Despite the complex variations, fluctuations in thermophysical quantities globally
remains moderate for PP11. As a consequence, the assumption of Morkovin (1961),
stating that the entropy and vortical modes are weakly coupled, is still valid.
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FIGURE 9. (Colour online) Approximation of normalized density fluctuations for case
PM3R7. —— (red) ρrms/ρ; - - - - - (black) [prms − (∂p/∂T)ρTrms]/(∂p/∂ρ)T/ρ; -·-·-·-·-·
(blue) prms/(∂p/∂ρ)T/ρ; -··-··-·· (orange) prms/c2/ρ.

Fluctuation levels up to 18 % of the mean value are noticed very near the wall for
the density, but this region is dominated by viscous stresses, so that the conclusion
is not altered.

To further clarify the strong relations between density and pressure, correlation
coefficients are calculated. Given two flow variables α and β, the correlation
coefficient Cα′β ′ is defined as:

Cα′β ′ =
α′β ′√
α′2
√
β ′2
. (4.9)

Figure 10 shows the correlations Cρ′p′ , Cρ′u′ , Cρ′v′ and Cu′v′ . Due to the isothermal
boundary conditions, the correlation coefficient Cρ′p′ is equal to unity at the walls
for both air and PP11. Afterwards, it decreases reaching a minimum at y∗ ≈ 8,
approximately corresponding to the temperature variance peak, and then it increases
again towards the centreline. For PP11 flows Cρ′p′ approaches unity already at
y∗ ≈ 20 and then remains constant. On the other hand, it raises slowly for air
flows, with an asymptotic value close to 0.9. The correlation coefficients Cρ′u′ and
Cρ′v′ , which represent the transport of density fluctuations by the streamwise and
wall-normal velocities, exhibit a totally different evolution depending on the fluid
nature. Specifically, for air the streamwise correlation is negative and the spanwise is
positive, whereas for PP11 both coefficients tend rapidly towards zero. Furthermore,
Cρ′u′ exhibits both a Mach and Reynolds dependence for air, whereas for PP11 it
varies only with the Mach number. Lastly, the distributions Cu′v′ are similar even if a
perfect collapse can be noticed for air, whereas a slight Mach dependence is observed
for PP11.

Another way to interpret the peculiar behaviour of the thermodynamic quantities is
to look at representations in Clapeyron’s diagrams. Figure 11 shows distributions of
the p− v states in the computational box at one instant for PP11 flows. The different
panels correspond successively to the influence of MB, ReB and the wall-normal
position. The different p − v diagrams are coloured successively with values of the
speed of sound, viscosity and Prandtl number in order to highlight the differences
with respect to air. The p− v states are recorded on slices parallel to the wall. The
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FIGURE 10. (Colour online) Profiles of the correlation coefficients Cρ′p′ (a,e), Cρ′u′ (b, f ),
Cρ′v′ (c,g) and Cu′v′ (d,h) for air (a–d) and PP11 MAH (e–h) flows.

location is fixed at y∗ ≈ 10 where temperature fluctuations peak for figure 11(a,b). It
is clear from figure 11(a) that the main effect of increasing MB is a broadening of
the region spanned by the p − v states. For MB = 3 cases, the states characterized
by stronger compressions exit the dense-gas region and reach a supercritical zone
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FIGURE 11. (Colour online) Distribution of p− v states of an instantaneous flow field for
PP11 in a Clapeyron’s diagram. (a) Influence of Mach number on the distribution of p− v
states for a slice at y∗≈ 10 and ReB= 3000: (E, red) MB= 1.5; (u) MB= 2.25; (E) MB= 3.
The background colour map shows isocontours of the speed of sound. (b) Influence of
Reynolds number on the distribution of p− v states for a slice at y∗≈ 10 and MB= 3: (E,
red) ReB = 3000; (u) ReB = 7000; (E) ReB = 12 000. The background colour map shows
isocontours of the viscosity. (c) Influence of y∗ location on the distribution of p− v states
for MB= 3 and ReB= 12 000: (E, red) y∗= 798 (centreline); (u) y∗= 50; (E) y∗= 10. The
background colour map shows isocontours of the Prandtl number.

where strong variations of the thermodynamic properties are observed. Higher values
of MB imply a greater dispersion in ρw values and in variances of the thermodynamic
variables near the wall. Changing the Reynolds number ReB for a given MB in
figure 11(b) reveals that the distributions of p − v states are almost superimposed
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FIGURE 12. (Colour online) Profiles of the turbulent Mach number Mt for air (a) and
PP11 (b) and of the fundamental derivative of gas dynamics Γ for PP11 (c).

for the same y∗, providing an a posteriori check of the validity of the semi-local
scaling. Lastly, distributions for different y∗ values are shown in figure 11(c). The
thermodynamic regions spanned by the p − v states are reduced moving away from
the wall. Even if most of the states are enclosed in the dense-gas region, none of the
present simulations exhibit peculiar dense-gas effects, such as expansion shock waves.
This can be explained by the fact that the turbulent Mach number, Mt =

√
u′2i /c,

does not reach sufficiently high values. For instance, figure 12 indicates that Mt
approaches 0.4 for MB = 3, whereas Sciacovelli et al. (2016a) have shown that
significant dense-gas effects can appear for Mt above 0.8. The distributions of Mt
are similar as the simulations with air with slightly higher values for PP11 flows,
showing that, notwithstanding liquid-like characteristics of dense gases, important
compressibility is also present. The profiles of the fundamental derivative of gas
dynamics Γ , plotted in figure 12(c), confirm that mean values are indeed lower than
1 for PP11 flows, with minimal values in the channel core. The flows thus evolve in
the dense-gas region but with positive values of Γ , so that BZT phenomena are not
expected.

5. Influence of dense-gas effects on turbulence structure
5.1. Reynolds stresses and Fukagata–Iwamoto–Kasagi (FIK) identity

Figure 13 shows the Reynolds stresses [ρu′′i u′′j ]+ = ρu′′i u′′j /τw for the selected
simulations. Patel et al. (2015) have shown that for variable-property turbulent channel
flows, gas-like transport properties tend to lower the spanwise, wall-normal and shear
Reynolds stresses with respect to the corresponding incompressible evolution, whereas
the streamwise component increases. The opposite trend is expected when liquid-like
properties are considered. In our cases the strong compressibility adds a complexity in
the sense that higher MB increase the velocity gradients near the wall (thus increasing
the Reynolds stresses) but also dramatically affect viscosity distributions. Figure 13
provides the trends of Reynolds stresses as a function of both Reynolds and Mach
number for selected air and PP11 flows. The figure shows that the Reynolds number
dependency is the same for the ideal or dense gas, and is similar to that observed
for incompressible flows, even if compressibility effects modify the effective friction
Reynolds number for a given bulk Reynolds number. For instance, case AM1R7
(Re∗τ ≈ 315) is characterized by a semi-local friction Reynolds number higher than
case AM3R7 (Re∗τ ≈ 200). On the contrary, the dependency on the bulk Mach number
is different for the two fluids. In air, the temperature increases with MB, and so does
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FIGURE 13. (Colour online) Reynolds stresses in the streamwise (a,e), wall-normal (b, f )
and spanwise (c,g) directions and Reynolds shear stresses (d,h) for air (a–d) and PP11
(e–h) flows with semi-local scaling.

the viscosity, leading to lower values of ρv′′v′′+, ρw′′w′′+, ρu′′v′′+ as MB grows. For
PP11, the viscosity (following the density) becomes lower and lower, thus enhancing
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the spanwise, cross-wise and shear Reynolds stresses. For the streamwise stress,
instead, the same behaviour is observed between air and PP11 since the effect of
viscosity is now overwhelmed by the increase of the mean velocity shear across the
channel.

Concerning the location of the peak values, for both air and PP11 flows they
are roughly constant for the streamwise and spanwise components, namely around
y∗ ∈ [10, 13] for ρu′′2

+

, and y∗ ∈ [40, 50] for ρw′′2
+

. On the other hand, a weak
dependence on Re is observed for wall-normal and shear stresses. The slight shift
towards higher y∗ is more pronounced for PP11 flows since much higher Re∗τ are
achieved. The Re influence is consistent with high Reynolds number incompressible
simulations (Lee & Moser 2015). It can be noticed that wall-normal stresses ρv′′v′′+

for PP11 flows present different centreline values, notably for cases PM3R7 and
PM3R12 at MB = 3. The levels of wall-normal fluctuations become then of the same
level as those in the streamwise direction.

The contribution of Reynolds stresses to the skin friction coefficient can be analysed
thanks to the FIK identity. This decomposition of sources of friction also reveals
important differences between ideal and dense gases. Starting from the incompressible
expression of Fukagata, Iwamoto & Kasagi (2002), Gomez, Flutet & Sagaut (2009)
derived an exact relationship for the analysis of the contribution of Reynolds stresses
to the skin friction coefficient in compressible cases. The skin friction coefficient may
be split into four contributions, namely:

CFIK
f =

6
ReB︸︷︷︸

CL

+ 6
∫ 1

0
(1− y)ρ(−̃u′′v′′) dy︸ ︷︷ ︸

CT

+
6

ReB

∫ 1

0
(1− y)µ̂

∂u
∂y

dy︸ ︷︷ ︸
CC

+
6

ReB

∫ 1

0
(1− y)µ′

(
∂u′

∂y
+
∂v′

∂x

)
dy︸ ︷︷ ︸

CCT

, (5.1)

where CL is the laminar contribution, CT the turbulent contribution, CC the
compressible contribution (in which µ̂ = µ − 1) and CCT the compressible–turbulent
interaction term. Note that all the quantities in (5.1) are non-dimensionalized using
the channel half-width h as length scale, ũB as velocity scale, ρB as density scale and
µw as viscosity scale. As observed by Fukagata et al. (2002), the turbulent term is
proportional to the Favre-averaged Reynolds stresses, and the weighting term decreases
linearly with the distance from the wall. This explains why the main contribution to
the frictional drag is due to the turbulent structures close to the wall, rather than at
the location of the peak of Reynolds stresses. The compressible term CC is related
to the mean viscosity variations and to the mean wall-normal velocity gradient. CCT

represents the interaction between compressibility and turbulent effects and is usually
very small. Table 5 gives the values of CFIK

f for different cases, as well as the relative
error with respect to the values obtained in § 4.1 and the relative percentage of each
contribution. To investigate the effect of compressibility, we consider the cases with
ReB = 7000 and different MB, such that the laminar contribution CL is approximately
constant (i.e. CL ≈ 13 %–14 %). For air flows, the contribution due to the turbulent
fluctuations CT decreases as MB increases, coherently with the decreasing of the
Reynolds stress levels. The opposite trend is observed for PP11 flows, for which
the relative weight of CT increases of approximately 1.5 %. This can be related to
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Case CFIK
f (×103) Error (%) CL (%) CT (%) CC (%) CCT (%)

AM1R7 6.41 0.3 13.28 84.63 2.04 0.05
AM2R7 6.37 1.8 13.26 82.19 4.45 0.11
AM3R7 6.36 3.8 13.15 79.08 7.60 0.17
PM1R7 6.24 −0.8 13.76 86.71 −0.48 0.02
PM2R7 6.15 0.4 14.05 87.00 −1.07 0.02
PM3R7 6.04 0.9 14.31 88.21 −2.55 0.02

TABLE 5. Contributions to the skin friction coefficient according to the compressible
extension of the FIK identity of Gomez et al. (2009) for different cases.

the liquid-like behaviour of dense gases, which also causes substantial changes in
the compressible contribution CC. In fact this term takes on higher values as MB

increases for both fluids, but it is positive for air (since µ̂ > 0) and negative for PP11
(µ̂ < 0). The compressible term is indeed related to variable-property effects. Lastly,
the compressible–turbulent interaction term is always quite small and contributes to
the total skin friction coefficient for approximately 0.1 % in air and 0.02 % in PP11
flows, for which the dynamic and thermal effects are even less correlated.

5.2. Turbulent kinetic energy budgets
For fully developed, statistically stationary channel flow, the turbulent kinetic energy
budget reads Pk + Tk + Vk +Mk + Dk + εk = 0, with

Pk =−ρũ′′v′′
dũ
dy

(5.2)

Tk =−
d
dy

1
2
(ρu′′2v′′ + ρv′′3 + ρw′′2v′′) (5.3)

Vk =
d
dy
(u′τ ′xy + v

′τ ′yy +w′τ ′yz) (5.4)

Mk = u′′
(
−
∂p
∂x
+

dτxy

dy

)
+ v′′

(
−
∂p
∂y
+

dτyy

dy

)
+w′′

dτyz

dy
(5.5)

Dk = p′
∂u′

∂x
+ p′

∂v′

∂y
−

d
dy
v′p′ + p′

∂w′

∂z
(5.6)

εk = −

(
τ ′xj
∂u′

∂xj
+ τ ′yj

∂v′

∂xj
+ τ ′zj

∂w′

∂xj

)
(5.7)

Pk is the production, Tk and Vk the turbulent and viscous transport respectively, Mk
the mass flux variation, Dk the velocity–pressure gradient tensor (composed of the
sum of pressure strain correlation and pressure transport term) and εk the dissipation
term. Figure 14 shows the turbulent kinetic energy budget for cases AM3R12 and
PM3R12 normalized by τ 2

w/µ(y) (Foysi et al. 2004). In semi-local scaling, the viscous
and turbulent transports behave similarly, whereas the mass flux variation (which is
zero for incompressible flows) is much smaller for PP11 case. In the core region, all
the budget terms collapse.

A closer inspection of the turbulent production and dissipation for the selected
simulations is provided in figure 15, which also shows their ratio, plotted both in
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FIGURE 14. (Colour online) Comparison of turbulent kinetic energy budgets for cases
AM3R12 (dashed lines) and PM3R12 (solid lines) in semi-local scaling: —— (red) Pk,
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FIGURE 15. (Colour online) Profiles of the turbulent production Pk, the turbulent
dissipation εk and the ratio of production to dissipation Pk/εk − 1 for air (a,b) and PP11
(c,d) flows.

linear and logarithmic semi-local coordinates. For both fluids, the production peak
is located at y∗ ≈ 11–12 for all the considered bulk conditions. Sarkar (1995) and
Lechner et al. (2001) showed that the main effect of compressibility is a reduction
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FIGURE 16.
√
ρu′′/
√
τw fluctuations at y∗ ≈ 12 for AM3R7 (a) and PM1R3 (b).

in the production and dissipation rate of the turbulent kinetic energy. Nevertheless,
this effect can be associated with the strong variations of properties at high Mach
numbers. The semi-local scaling τ 2

w/µ(y) is able to collapse, for instance, the budgets
for cases M1R7, M2R7 and M3R7, for which substantial differences should be
observed due to the doubling of the bulk Mach number. Globally, a common trend is
observed for air and PP11 flows, where the peaks of production and dissipation terms
slightly increase with Re∗τ . The ratio of the production and dissipation rates Pk/εk − 1
exhibits a similar evolution for similar values of Re∗τ (cases PM1R3 and AM3R7).
The ratio peaks at the same y∗ location as the production term. Furthermore, for cases
with Re∗τ > 200, a second peak starts growing in the logarithmic region. For PP11
flows, the inner peak seems roughly unaffected, as found for high Reynolds number
turbulent incompressible flows (Lee & Moser 2015), whereas in air a slight decrease
is observed with increasing Re∗τ , as shown in the inset with logarithmic scale. Since
the Re∗τ values are low in air cases, the ratio always remains negative and no effective
net turbulent production is observed in the outer layer. For PP11, the case PM3R12
is the only one with a positive region, extending between y∗ ≈ 180 and y∗ ≈ 400.

5.3. Near-wall turbulent structures
The difference in near-wall turbulent structures is now analysed by means of
instantaneous flow visualizations for iso-Re∗τ cases, namely, AM3R7 and PM1R3
(Re∗τ ≈ 200 at the centreline). Figures 16–18 show a slice of the instantaneous flow
field at different values of y∗ (namely, y∗= 12, 50 and centreline) coloured with levels
of the normalized streamwise velocity fluctuations

√
ρu′′/
√
τw for cases AM3R7 and

PM1R3 (hence for Re∗τ ≈ 200). The local density value ρ is used for normalization
instead of ρ, since it correlates better with the modulation of the streak magnitude
(Patel et al. 2015). In all cases, the computational box is scaled with respect to
semi-local coordinates (x∗, z∗) (which change with the wall distance) and the box
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τw fluctuations at y∗ ≈ 50 for AM3R7 (a) and PM1R3 (b).
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FIGURE 18.
√
ρu′′/
√
τw fluctuations at y∗ ≈ 200 for AM3R7 (a) and PM1R3 (b).

size considered is 5000 × 1200 based on non-dimensional coordinates x∗ × z∗ for
each case. For both fluids, the maps of the instantaneous streamwise velocity close
to the wall exhibits the well-known organization in streaks (Coleman et al. 1995;
Chernyshenko & Baig 2005; Gerolymos & Vallet 2014). In past years, the role of
compressibility on the modification of near-wall structures has been widely discussed.
Initially, it was argued that its effect was to increase the streamwise correlation length,
enhancing the coherence of near-wall streaks (Coleman et al. 1995; Duan et al. 2010;
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FIGURE 19. Pressure fluctuations p′+ at y∗ ≈ 12 for AM3R7 (a) and PM1R3 (b).

Lagha et al. 2011). This statement was not confirmed when the semi-local scaling
was taken into account (Morinishi et al. 2004; Patel et al. 2015). A rather universal
behaviour was then observed. The latter conclusion holds in the present comparison
between air and PP11 flows at the three heights shown in the figures. Figure 16
shows that near-wall layers are dominated by streaks with similar streamwise lengths
and spanwise separations. At y∗≈ 50, in figure 17, the structures become less coherent
and less energetic. At the centreline of the channel, as illustrated in figure 18, no
prominent coherent structures can be found.

Differently from velocity fields which have a similar structural behaviour if
represented with the semi-local scaling, the thermodynamic quantities are much
more sensitive. Figures 19 and 20 show the instantaneous pressure p′+ and density
ρ ′+ fluctuations at y∗ ≈ 12. Pressure fluctuations are characterized in both cases
by long-range interactions (Kim 1989; Chang III, Piomelli & Blake 1999), even if
the mean square fluctuations mainly have local contributions (Kim 1989). Higher
deviations from the mean value are observed in air. Contrary to pressure, density
fluctuations behave differently between air and PP11 flows. For air, very elongated
scales in the streamwise direction are preferentially observed and follow approximately
velocity fluctuations. In fact, the correlation Cρ′,u′ is close to −1 in the buffer
layer. Consequently, negative (positive) density fluctuations are associated with
positive (negative) velocity fluctuations. Low-speed streaks are thus characterized
by higher-density fluid and vice versa. The behaviour for PP11 flows is rather
different, as inferred from the correlation coefficients Cρ′,u′ and Cρ′,p′ in figure 10.
Cρ′,u′ being much smaller in the buffer layer, the density modulation for low and
high-speed streaks is less marked. Instead, the pressure signature is visible on the
instantaneous density since Cρ′,p′ ≈ 1 across the whole channel height.

Figure 21 show the premultiplied kinetic energy spectra kxEρuu/τw, kzEρuu/τw and
kzEρvv/τw for cases AM3R7 and PM1R3 on the whole channel height as a function

https://doi.org/10.1017/jfm.2017.237
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


4000 50000 1000 2000 3000

4000 50000 1000 2000 3000

0

500

 –500

0

500

 –500

(a)

(b)

0.02 0.06 0.10–0.02–0.06–0.10

FIGURE 20. Density fluctuations ρ ′+ at y∗ ≈ 12 for AM3R7 (a) and PM1R3 (b).

 0.5

 0

1.0

1.5

2.0

0–1–2–3

 0.5

 0

1.0

1.5

2.0

0–1–2

 0.5

 0

1.0

1.5

2.0

0–1–2

 0.5

 0

1.0

1.5

2.0

0–1–2–3

 0.5

 0

1.0

1.5

2.0

0–1–2

 0.5

 0

1.0

1.5

2.0

0–1–2

(a) (b) (c)

(d ) (e) ( f )

6 7 8 9 10 6 7 8 9 10 5 6 7 8 9

5 6 7 8 96 7 8 9 106 7 8 9 10 11

FIGURE 21. (Colour online) Premultiplied energy spectra for cases AM3R7 (a) and
PM1R3 (b).

https://doi.org/10.1017/jfm.2017.237
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


(a) (b) (c) (d )

103

105

101

10–1

10–3

10–5

10–7

103

105

101

10–1

10–3

10–5

10–7

10–2

10–4

10–6

10–8

100

102

104

10–2

10–4

10–6

10–8

100

102

104

10010–110–210–3 10010–110–210–3 10010–110–210–3 10010–110–210–3

FIGURE 22. (Colour online) One-dimensional spectra for cases AM3R7 (a,c) and PM1R3
(b,d), at y∗≈ 10 (a,b) and y∗≈ 200 (c,d). —— (red) E(x)ρuu/τw; - - - - - (red) E(z)ρuu/τw; -·-·-·-·-·
(orange) E(x)ρvv/τw; · · · · · · · (orange) E(z)ρvv/τw; -··-··-·· (blue) E(x)ρww/τw; - - - - - (blue) E(z)ρww/τw.

kxEρuu/τw kzEρuu/τw kzEρvv/τw

Air PP11 Air PP11 Air PP11
y∗ 13.9 14.1 13.5 13.2 48.8 55.2
λ∗ 1180 1220 115 114 116 116

TABLE 6. Values of y∗ and λ∗ for the peak values of the spectra shown in figure 21.

of semi-local streamwise k∗x and spanwise k∗z wavenumbers. The semi-local scaling
provides an approximate collapse over a wide range of wavenumbers, improving
substantially the classical inner scaling. The strongest modifications are obtained for
air flows, in which the high gradients of variable properties near the wall alter the
effective scaled wavenumbers up to the buffer layer. This corresponds to elongated
(shortened) structures for gas-like (liquid-like) transport properties with respect to the
incompressible regime (Coleman et al. 1995; Duan et al. 2010). The locations y∗ and
the wavelengths λ∗ corresponding to the peak values are reported in table 6. Similar
values with respect to those typically obtained in incompressible turbulence are found
for both fluids. For instance, for the streamwise velocity, an inner peak is detected
at y+ ≈ 15, where λ+x ≈ 1000 and λ+z ≈ 100 (see, e.g. spectra databases of Kim et al.
(1987) and Moser, Kim & Mansour (1999)). One-dimensional spectra for the three
velocity components, given in figure 22, show that the spanwise length scale for the
wall-normal component is approximately half of the one associated with u at the
same distance from the wall. Table 6 reports the global maximum non-dimensional
wavenumber which arises at different wall distances (y∗ ≈ 13–50 respectively).

Near-wall turbulent structures can be also analysed by means of the quadrant
analysis (Wallace 2016). This representation allows a detailed study of the physical
mechanisms producing the Reynolds shear stresses and, in a related way, underlying
the turbulent kinetic energy production. The (u, v) plane is divided into four
quadrants: Q1 (+u′′, +v′′), Q2 (−u′′, +v′′), Q3 (−u′′, −v′′), Q4 (+u′′, −v′′). The
contribution of the different quadrants can be obtained by plotting the isocontours of
the probability-weighted Reynolds shear stresses ρu′′v′′/τwP(

√
ρu′′/
√
τw,
√
ρv′′/
√
τw),
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depicted in figure 23. Near the walls probability-weighted Reynolds shear stresses
appear stretched in the streamwise direction and flatter in the spanwise direction,
with a strong contribution in the Q2 and Q4 quadrants, corresponding respectively to
ejections (u′′ < 0, v′′ > 0) and sweeps (u′′ > 0, v′′ < 0). Moving towards the centreline,
the contributions become more isotropic. The most important differences between
air and PP11 are found in the buffer layer. Namely, the contribution of ejections
events to shear stresses appear lower for PP11 flows with respect to air flows. This is
consistent with recent findings of Patel et al. (2015). Gas-like (liquid-like) transport
properties tend to stabilize (weaken) the low-speed streaks, which lift less (more)
intensely away from the wall.

6. Conclusions

Direct numerical simulations of supersonic turbulent channel flow of dense gases
were carried out by selecting a heavy fluorocarbon, called PP11, as representative of
the dense-gas behaviour in the saturated vapour region. This fluid is characterized
by an extended range of thermodynamic conditions in the vapour phase such that
the fundamental derivative of gas dynamics, Γ , is lower than one; additionally, this
fluid is predicted to exhibit a relatively wide inversion zone. Both features lead to a
non-monotonic variation of the speed of sound with density in isentropic perturbations.
Another striking point is that, in the dense-gas region, the fluid transport properties
depend both on temperature and density. Dense-gas effects on wall turbulence are
investigated by means of a parametric study at three bulk Reynolds numbers (namely,
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ReB = 3000, 7000 and 12 000) and three bulk Mach numbers (MB = 1.5, 2.25 and 3).
The thermodynamic behaviour of PP11 is well represented by the Martin–Hou thermal
equation of state. For comparison, compressible DNS with the same parameters are
also carried out for air flows, under the ideal-gas assumption. The main results are as
follows.

The analysis of mean and fluctuating thermodynamic and transport properties
reveals several peculiarities of wall-bounded dense-gas flows. Primarily, unlike perfect
gases where viscous heating leads to high centreline temperatures, in dense-gas flows
the high specific heat leads to negligible temperature variations, thus reducing the
need for wall cooling. As a consequence the wall behaves as isothermal and (nearly)
adiabatic at the same time. Since the temperature is almost constant throughout the
flow, variations of the thermodynamic and transport properties are tightly correlated to
the fluid density (or pressure). Specifically, speed of sound and viscosity variations are
essentially due to the density, which decreases from the walls toward the centreline.
On the one hand, this leads to less marked increase of speed of sound at the channel
centreline and, subsequently, to centreline Mach numbers greater than the bulk ones,
contrary to perfect gases. On the other hand, in the dense-gas region viscosity has
an opposite behaviour with respect to the density, and decreases toward the channel
centre. As a consequence, compressible dense-gas flows are found to share many
features found in variable-property liquids, albeit the driving mechanisms are deeply
different (in liquids viscosity decreases due to temperature increasing toward the
centreline). This is confirmed by global quantities such as the friction coefficient or the
Nusselt number, which are important for industrial purposes. Specifically, the former
is well described by a compressible extension of the FIK identity accounting for
fluid property variations and follows reasonably well a classical empirical correlation
for incompressible flows, unlike perfect gases with exhibit significant Mach number
effects. Despite the apparent liquid-like behaviour, supersonic flows of dense gas are
characterized by strong compressibility effects. This other facet is highlighted by the
distributions of the turbulent Mach number which are similar as those observed for
a perfect gas but with slightly higher levels, due to the overall lower speed of sound.
Note that, for this confined flows, the maximum values obtained with the considered
range of bulk Mach numbers remain below the limit where strong compressibility
effects, like eddy shocklets, are visible. Peculiar features of dense gas, such as BZT
phenomena where expansion shocks become admissible, are thus not observed. The
study of the local value of the derivative of gas dynamics Γ , which is an indicator of
dense-gas effects, indeed showed that the fluid evolves in the dense-gas region (Γ < 1)
without taking on negative values, where BZT phenomena can occur. Even without
BZT effects, the peculiar behaviour of the speed of sound in dense gases deeply
modifies fluctuating density profiles leading to, e.g. maximum r.m.s. levels located
close to the channel wall instead of in the buffer layer as in standard compressible
channel flows.

This dual behaviour that bears both liquid-like and gas-like features helps to shed
some light on the modification of wall turbulence in the presence of a dense gas. As
already shown in previous studies for both supersonic channel flows or low-speed
variable-property channel flows, the semi-local scaling introduced by Huang et al.
(1995), and later formalized by Patel et al. (2015) or Trettel & Larsson (2016), is
well adapted to compare results from existing surveys and with the well-documented
incompressible limit. Note that the Van Driest transformation already provides a
good collapse for PP11 flows since the heat transfer at the walls is weak. The
comparison of second-order statistics and instantaneous views of the velocity fields
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also gives a strong support for the validity of semi-local scaling with dense-gas
flows. Overall, this amounts to saying that Morkovin’s hypothesis is still a good
framework for this complex fluid. The fact that the order of magnitude of density
and pressure fluctuations is roughly similar to air flows and that a strong reduction
of temperature fluctuations is noticed reinforces this conclusion. The structure of
turbulence is thus not deeply altered in dense-gas supersonic channel flows. The
main effect of variable properties can be taken into account by using the semi-local
scaling, revealing the weak coupling between the vortical mode and the mode
associated with thermophysical properties. This is exemplified by comparing results
with a constant semi-local friction Reynolds number, namely cases AM3R7 and
PM1R3 with Re∗τ ,c ≈ 200. Some particular features are nonetheless observed with
PP11 flows, notably for the highest value of the Mach number, MB = 3. Furthermore
the length scales of near-wall structures have been quantified using premultiplied
one-dimensional spectra. The streamwise and spanwise non-dimensional length of the
structures are found to be universal with respect to constant property when semi-local
coordinates are used. The density field near the wall looks however different because
the streaks correspond directly to high- and low-density fluid region for a perfect
gas whereas instantaneous density follows pressure fluctuations in PP11 flows, since
density fluctuations are now correlated with pressure ones. Additionally, joint-pdfs
of streamwise and wall-normal velocity fluctuations reveal that the generation of
Reynolds stresses follows the classical picture of wall turbulence when variable
properties are included in the semi-local scaling. A slight reduction of ejection events
is observed for PP11 flows.

Although non-classical dense-gas effects (like, e.g. unconventional shocklets) are
not present in turbulent channel flows, where the turbulent Mach number remains
small even for the highest values of MB, the present results allow for the first time
to shed some light on wall-bounded dense-gas turbulence, for which no experimental
data are available, and open the way to the development of numerical models for the
prediction of more complex configurations, such as turbine cascades. In particular,
information obtained about the appropriate scalings, the behaviour of thermophysical
properties, and grid resolution requirements may serve as a reference for justifying
some assumptions in turbulence modelling for Reynolds-averaged or large eddy
simulations. A priori analyses of turbulence models applied to compressible dense-gas
flows are planned as future research.

Additional investigation is ongoing to check if the present conclusions still hold
when investigating different operating thermodynamic conditions, retaining the same
bulk Mach and Reynolds numbers, or by using other dense-gas fluids, such as
refrigerants and siloxanes, for which more accurate and complex equations of state
exist. Lastly, the study of turbulent boundary layers and the interactions with shock
waves would be a further step to investigate the effects of higher Mach numbers and
the modification of shock structure in presence of a dense gas.
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Appendix A. Transport properties for dense gases
Transport properties are generally considered to be dependent only on temperature

values. Nevertheless, when 1 < T/Tcr < 1.5 and when p > pcr (where (·)cr denotes
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critical quantities), pressure has a strong effect on viscosity and thermal conductivity.
This effect is usually taken into account by applying correction factors in the formula
used to estimate the dilute-gas properties (i.e. the values of viscosity and thermal
conductivity in the ideal-gas limit). In the following, we describe the laws derived
by Chung, Lee & Starling (1984), Chung et al. (1988).

A.1. Dynamic viscosity
The Chapman–Enskog theory describes the integral relations for the transport
properties when the interactions between colliding molecules are described by a
potential energy function. In general terms, the first-order solution for the dilute gas
viscosity can be written as:

µ0 =
26.69(MT)1/2

σ 2Ωv(T)
, (A 1)

where M is the molecular weight, T the temperature, Ωv(T) the temperature
dependence of the collision integral and σ(vcr) the collision diameter. In the derivation
of (A 1), Ωv is obtained as a function of a dimensionless temperature T∗, defined as
(Poling et al. 2001):

T∗ =
kBT
ε
, (A 2)

where kB is Boltzmann’s constant (kB = 1.38064852 × 10−23 J K−1) and ε is the
potential energy parameter. Neufeld, Janzen & Aziz (1972) proposed the following
empirical equation:

Ωv =
A

T∗B
+

C
exp(DT∗)

+
E

exp(FT∗)
+GT∗B sin (ST∗W −H), (A 3)

with A= 1.16145, B= 0.14874, C= 0.52487, D= 0.77320, E= 2.16178, F= 2.43787
G=−6.436× 10−4, H = 7.27371, S= 18.0323 and W =−0.76830.

The method of Chung et al. (1984, 1988) starts from (A 1) with ε/kB= Tcr/1.2593
and σ = 0.809v1/3

cr , where Tcr and vcr are the critical temperature and volume,
respectively. Furthermore, they multiply the right-hand side of (A 1) by a factor
Fc in order to account for molecular shapes and polarities of dilute gases. The final
result for the dilute-gas viscosity µ0 reads:

µ0 = 40.785
Fc(MT)1/2

v
2/3
cr Ωv

, (A 4)

with
Fc = 1− 0.2756ω+ 0.059035ξ 4

r +$. (A 5)

In (A 5), ω is the acentric factor, ξr is the reduced dipole moment, and $ is an
empirically determined association parameter to characterize the molecular structure
effect of polyatomic molecules, the polar effect, and the hydrogen-bonding effect,
respectively. Specifically, the reduced dipole moment ξr reads:

ξr = 131.3
ξ

(vcrTcr)1/2
, (A 6)
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i a0 a1 a2 a3

1 6.32402 50.4119 −51.6801 1189.02
2 0.00012102 −0.0011536 −0.0062571 0.037283
3 5.28346 254.209 −168.481 3898.27
4 6.62263 38.0957 −8.46414 31.4178
5 19.7454 7.63034 −14.3544 31.5267
6 −1.89992 −12.5367 4.98529 −18.1507
7 24.2745 3.44945 −11.2913 69.3466
8 0.79716 1.11764 0.012348 −4.11661
9 −0.23816 0.067695 −0.81630 4.02528
10 0.068629 0.34793 0.59256 −0.72663

TABLE 7. Parameters for evaluating the functions Ai of (A 12) for the computation of
the dense-gas viscosity.

whereas the association parameter $ is (Chung et al. 1988):

$ = 0.0682+ 4.704
[number of −OH groups]

M
. (A 7)

For non-polar fluids, the last two terms of (A 5) become zero.
In order to take into account dense-gas effects, the dense-gas viscosity µ writes:

µ=µk +µp (A 8)

being µk a modified dilute-gas viscosity and µp a correction term; specifically,

µk =µ0[1/G+ A6Y] (A 9)

µp = 36.44× 10−6 (MTcr)
1/2

v
2/3
cr

A7Y2G exp [A8 + A9(T∗)−1
+ A10(T∗)−2

]. (A 10)

In (A 9) and (A 10), Y =ρvcr/6 is a density-dependent term, G is a nonlinear function
written as

G=
A1[1− exp (−E4Y)]/Y + A2X exp (A5Y + A3X)

A1A4 + A2 + A3
, X =

1− 0.5Y
(1− Y)3

, (A 11a,b)

and parameters A1–A10 are linear functions of ω, ξr and $ :

Ai = a0(i)+ a1(i)ω+ a2(i)ξ 4
r + a3(i)$, i ∈ {1, . . . , 10}. (A 12)

Values for the coefficients a0, a1, a2 and a3 are given in table 7. One should note that
at very low densities, Y approaches zero, X and G approach unity and the dense-gas
term becomes negligible, with (A 10) reducing to (A 1).

A.2. Thermal conductivity
The dense-gas thermal conductivity is derived, in a similar way, as the sum of a dilute-
gas component and a correction term. The dilute-gas component is written as

κ0 = 7.452
µ0Ψ

M
, (A 13)
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with

Ψ = 1+ α
0.215+ 0.28288α − 1.061β + 0.26665δ

0.6366+ βδ + 1.061αβ
. (A 14)

Here, β = 0.7682 − 0.7109ω + 1.3168ω2 is a fluid-dependent parameter, whereas
α = cv,∞(T)/R − 3/2 and δ = 2 + 10.5(T/Tcr)

2 are temperature-dependent functions
(cv,∞(T) being the ideal-gas heat capacity at constant volume and R the gas constant).
The term β is an empirical correlation for the contribution of the internal degrees
of freedom of the molecule, and is applied only for non-polar materials. For polar
substances β is specific for each compound, and Chung et al. (1984) list values for
a few materials. If the compound is polar and β is not available, a default value
of β = 0.758 is used. The parameter δ represents instead the number of collisions
required to interchange a quantum of rotational energy with a quantum translational
energy.

The dense-gas thermal conductivity κ is computed by using the same approach as
for viscosity:

κ = κk + κp, (A 15)

with

κk = κ0[1/H + B6Y]; κp = 3.039× 10−4

√
T
M

1

v
2/3
cr

B7Y2H. (A 16a,b)

Again, one has

Y =
ρvcr

6
; (A 17)

H =
B1[1− exp (−B4Y)]/Y + B2X exp (B5Y + B3X)

B1B4 + B2 + B3
; X =

1− 0.5Y
(1− Y)3

; (A 18a,b)

Bi = b0(i)+ b1(i)ω+ b2(i)ξ 4
r + b3(i)$, i ∈ {1, . . . , 7}, (A 19)

with values of b0, b1, b2 and b3 given in table 8.

Appendix B. Effect of bulk viscosity

Almost no results are available about the role of the volume or bulk viscosity for
turbulent wall-bounded flows of complex molecular fluids, such as the dense gas
PP11. Cramer (2012) showed that some fluids can exhibit bulk viscosities which are
hundreds of times larger than their shear viscosities. That is why the assumption
used in the present study of a Stokesian fluid, i.e. with a negligible bulk viscosity,
is tested for one case, namely PM1R3 (MB = 1.5, ReB = 3000) keeping exactly the
same parameters (see table 3) but with µb= 500µ, as defined in § 2.1. We selected a
relatively low Reynolds number for cost reasons since the high values of the viscosity
induce a further time step restriction for the explicit time marching scheme due to the
limitation on the mesh Fourier number. Consequently, the only numerical parameter
which is modified is the time step, which is divided approximatively by a factor of
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i b0 b1 b2 b3

1 2.41657 0.74824 −0.91858 121.721
2 −0.50924 −1.50936 −49.9912 69.9834
3 6.61069 5.62073 64.7599 27.0389
4 14.5425 −8.91387 −5.63794 74.3435
5 0.79274 0.82019 −0.69369 6.31734
6 −5.86340 12.8005 9.58926 −65.5292
7 81.1710 114.158 −60.8410 466.775

TABLE 8. Parameters for evaluating the functions Bi of (A 19) for the computation of
the dense-gas thermal conductivity.
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FIGURE 24. (Colour online) Effect of bulk viscosity. (a) Reynolds stresses, (b) viscous
stresses, (c) p/pw for case PM1R3. —— (red): no bulk viscosity —— (blue): µb/µ= 500.

fifteen, implying a large number of iterations to achieve convergence of the statistics.
The results are presented in figure 24. Second-order statistics such as the Reynolds
stresses (figure 24a) are almost unaffected compared to the simulation with zero bulk
viscosity, and the semi-local friction Reynolds number Re∗τ changes approximatively
0.4 %, proving that the effects of bulk viscosity are negligible. Cramer & Bahmani
(2014) have recently examined large-Reynolds number flows of fluids having large
bulk viscosities. By using the laminar boundary layer equations, they noticed some
variations of the thermodynamic pressure across the boundary layer. The distributions
of the viscous stresses and of the mean pressure across the channel are investigated
in figure 24(b,c), respectively. In the case without bulk viscosity (red lines), the
diagonal terms of the viscous stress tensor τii

+ are almost zero, and since in the
viscous sublayer ρṽ′′v′′ ≈ 0, the pressure remains constant according to (4.4). This
is not the case when considering a high value of bulk viscosity, being τii

+ terms as
high as 10 % of the wall shear stress close to the walls, causing a decrease of the
pressure in the sublayer. Nevertheless, τ12

+ is almost unchanged with and without
bulk viscosity. Additionally, variations of thermodynamic quantities, observed only in
the viscous sublayer, are less than 0.5 % and are, therefore, negligible. These results
confirm the use of Stokes’ hypothesis in the present DNS study.
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Case ReB MB Lx × Ly × Lz Nx ×Ny ×Nz

Subsonic (Kim et al. 1987) 2795 0.3 4πh× 2h× 2πh 192× 180× 160
Supersonic (Coleman et al. 1995) 3000 1.5 8πh× 2h× 2πh 512× 256× 256

TABLE 9. Parameters used for the DNS of the selected test cases.

Case Reτw Re∗τ ,c 1x+ 1z+ 1y+w 1y+c −Bq ρw/ρB ρc/ρB Tc/Tw

Subsonic 181 178 11.9 7.2 0.81 4.1 −0.002 1.01 0.99 1.01
Supersonic 219 147 10.7 5.4 0.78 3.2 −0.049 1.36 0.98 1.39

TABLE 10. Results of the DNS computations.
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FIGURE 25. (Colour online) Validations for the subsonic channel flow case. Lines, present
simulation; symbols, data from Kim et al. (1987). (a) R.m.s. velocity fluctuations; (b)
turbulent kinetic energy budget. In (b), (———, @ red), production; (-··-··-··, C orange)
dissipation; (· · · · · · · · · , A green) turbulent diffusion; (- - - - -, E blue) viscous diffusion;
(-·-·-·-·-·,6 violet) turbulent pressure diffusion.

Appendix C. Validations
In order to validate the code and the numerical strategy, two reference test cases

have been considered, namely the incompressible channel flow of Kim et al. (1987)
and supersonic isothermal channel flow of Coleman et al. (1995). The parameters
of the DNS are summarized in table 9. Note that a low subsonic Mach number,
MB = 0.3, has been chosen for the comparison of our compressible solver with the
incompressible case. Table 10 shows the main results of our simulations. Figure 25
shows the profiles of r.m.s. velocity fluctuations and the evolution of the turbulent
kinetic energy budgets compared to the data from Kim et al. (1987). Figure 26 shows
similar comparison for the first- and second-order statistics for the supersonic case.
A very good agreement with the reference results is obtained for both cases.

Appendix D. Grid convergence study
A study of the sensitivity to the grid resolution has been performed for the case

MB = 1.5, ReB = 3000 with both air and PP11 fluids. The resolutions obtained for
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FIGURE 26. (Colour online) Validations for the supersonic channel flow case. Lines,
present simulation; symbols, data from Coleman et al. (1995). (a) Profiles of mean
quantities; (b) r.m.s. velocity fluctuations.

Air PP11

Line Grid 1x∗ 1y∗c 1z∗
1x
η

1yc

η

1z
η

1x∗ 1y∗c 1z∗
1x
η

1yc

η

1z
η

-·-·-·-·-· 256× 128× 128 14.6 6.4 7.3 13.8 1.8 6.9 19.4 8.0 9.8 12.4 2.1 6.2
(orange)
– – – – 256× 256× 256 14.5 2.2 3.6 13.7 0.7 3.4 19.3 2.3 4.8 12.2 0.7 3.0
(black)
-··-··-·· 512× 128× 256 7.2 6.4 3.6 6.8 1.8 3.4 9.7 8.0 4.8 6.1 2.1 3.0
(blue)
- - - - - 512× 256× 128 7.2 2.2 7.3 6.9 0.7 6.9 9.7 2.3 9.8 6.1 0.7 6.2
(green)
——— 512× 256× 256 7.2 2.2 3.6 6.8 0.7 3.4 9.7 2.3 4.8 6.1 0.7 3.0
(red)
E 1024× 256× 512 3.6 2.2 1.8 3.4 0.7 1.7 4.9 2.3 2.4 3.0 0.7 1.5
(black)

TABLE 11. Grid resolution in semi-local units and normalized by the Kolmogorov
length scale.

different grid levels are given in table 11 in semi-local units and normalized by the
local Kolmogorov length scale. Figure 27 presents the results for the three components
of the Reynolds stresses. At a first glance, we observe that the convergence by refining
the grid is faster for air case. This is consistent with the fact that the dense-gas effects
yield higher values of the centreline Reynolds number (figure 6). As a consequence,
the values of cell sizes expressed in the semi-local coordinates are slightly higher for
PP11 cases on a given grid. Nevertheless, the grid convergence analysis shows that
the criteria used to select the grid sizes for our study do ensure a clear convergence,
so that the results are essentially grid-independent.
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FIGURE 27. (Colour online) Grid convergence study for air (a–c) and PP11 (d–f ) for case
MB = 1.5, ReB = 3000.

REFERENCES

ANDERSON, W. K. 1991 Numerical study on using sulfur hexafluoride as a wind tunnel test gas.
AIAA J. 29 (12), 2179–2180.

AUBARD, G., GLOERFELT, X. & ROBINET, J.-C. 2013 Large-eddy simulation of broadband
unsteadiness in a shock/boundary-layer interaction. AIAA J. 51 (10), 2395–2409.

BAE, J. H., YOO, J. Y. & CHOI, H. 2005 Direct numerical simulation of turbulent supercritical
flows with heat transfer. Phys. Fluids 17 (10), 105104.

BOGEY, C. & BAILLY, C. 2004 A family of low dispersive and low dissipative explicit schemes for
flow and noise computations. J. Comput. Phys. 194 (1), 194–214.

BOGEY, C. & BAILLY, C. 2009 Turbulence and energy budget in a self-preserving round jet: direct
evaluation using large eddy simulation. J. Fluid Mech. 627, 129–160.

BOGEY, C., DE CACQUERAY, N. & BAILLY, C. 2009 A shock-capturing methodology based on
adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228 (5),
1447–1465.

BOGEY, C., MARSDEN, O. & BAILLY, C. 2012 Influence of initial turbulence level on the flow and
sound fields of a subsonic jet at a diameter-based Reynolds number of 105. J. Fluid Mech.
701, 352–385.

BRADSHAW, P. 1977 Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9 (1), 33–52.
BROWN, B. P. & ARGROW, B. M. 2000 Application of Bethe–Zel’dovich–Thompson fluids in organic

Rankine cycle engines. J. Propul. Power 16 (6), 1118–1124.
BRUN, C., BOIARCIUC, M. P., HAKERBORN, M. & COMTE, P. 2008 Large eddy simulation of

compressible channel flow – arguments in favour of universality of compressible turbulent
wall bounded flows. Theor. Comput. Fluid Dyn. 22, 189–212.

BUFI, E. A. & CINNELLA, P. 2015 Efficient uncertainty quantification of turbulent flows through
supersonic ORC nozzle blades. Energy Procedia 82, 186–193.

CHANG, P. A. III, PIOMELLI, U. & BLAKE, W. K. 1999 Relationship between wall pressure and
velocity-field sources. Phys. Fluids 11 (11), 3434–3448.

https://doi.org/10.1017/jfm.2017.237
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


CHERNYSHENKO, S. I. & BAIG, M. F. 2005 The mechanism of streak formation in near-wall
turbulence. J. Fluid Mech. 544 (1), 99–131.

CHU, B.-T. & KOVASZNAY, L. S. G. 1958 Non-linear interactions in a viscous heat-conducting
compressible gaz. J. Fluid Mech. 3, 494–514.

CHUNG, T. H., AJLAN, M., LEE, L. L. & STARLING, K. E. 1988 Generalized multiparameter
correlation for nonpolar and polar fluid transport properties. Indust. Engng Chem. Res. 27 (4),
671–679.

CHUNG, T. H., LEE, L. L. & STARLING, K. E. 1984 Applications of kinetic gas theories and
multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity.
Indust. Engng Chem. Fundamentals 23 (1), 8–13.

CINNELLA, P. & CONGEDO, P. M. 2007 Inviscid and viscous aerodynamics of dense gases. J. Fluid
Mech. 580, 179–217.

COLEMAN, G. N., KIM, J. & MOSER, R. D. 1995 A numerical study of turbulent supersonic
isothermal-wall channel flow. J. Fluid Mech. 305, 159–183.

CONGEDO, P. M., CORRE, C. & CINNELLA, P. 2011 Numerical investigation of dense-gas effects in
turbomachinery. Comput. Fluids 49 (1), 290–301.

CRAMER, M. S. 1989 Negative nonlinearity in selected fluorocarbons. Phys. Fluids 1 (11), 1894–1897.
CRAMER, M. S. & BAHMANI, F. 2014 Effect of large bulk viscosity on large-Reynolds-number flows.

J. Fluid Mech. 751, 142–163.
CRAMER, M. S. & KLUWICK, A. 1984 On the propagation of waves exhibiting both positive and

negative nonlinearity. J. Fluid Mech. 142 (1), 9–37.
CRAMER, M. S. & PARK, S. 1999 On the suppression of shock-induced separation in

Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 393, 1–21.
CRAMER, M. S. & TARKENTON, G. M. 1992 Transonic flows of Bethe–Zel’dovich–Thompson fluids.

J. Fluid Mech. 240, 197–228.
CRAMER, M. S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24

(6), 066102.
DEAN, R. B. 1978 Reynolds number dependence of skin friction and other bulk flow variables in

two-dimensional rectangular duct flow. Trans. ASME J. Fluids Engng 100 (2), 215–223.
DONZIS, D. A. & JAGANNATHAN, S. 2013 Fluctuations of thermodynamic variables in stationary

compressible turbulence. J. Fluid Mech. 733, 221–244.
DUAN, L., BEEKMAN, I. & MARTIN, M. P. 2010 Direct numerical simulation of hypersonic turbulent

boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419–445.
FOYSI, H., SARKAR, S. & FRIEDRICH, R. 2004 Compressibility effects and turbulence scalings in

supersonic channel flow. J. Fluid Mech. 509, 207–216.
FUKAGATA, K., IWAMOTO, K. & KASAGI, N. 2002 Contribution of Reynolds stress distribution to

the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73–L76.
GEROLYMOS, G. A., SÉNÉCHAL, D. & VALLET, I. 2010 Performance of very-high-order upwind

schemes for DNS of compressible wall-turbulence. Intl J. Numer. Meth. Fluids 63 (7), 769–810.
GEROLYMOS, G. A. & VALLET, I. 2014 Pressure, density, temperature and entropy fluctuations in

compressible turbulent plane channel flow. J. Fluid Mech. 757, 701–746.
GLOERFELT, X. & BERLAND, J. 2013 Turbulent boundary-layer noise: direct radiation at Mach

number 0.5. J. Fluid Mech. 723, 318–351.
GOMEZ, T., FLUTET, V. & SAGAUT, P. 2009 Contribution of Reynolds stress distribution to the skin

friction in compressible turbulent channel flows. Phys. Rev. E 79 (3), 035301.
GUARDONE, A. & ARGROW, B. M. 2005 Nonclassical gasdynamic region of selected fluorocarbons.

Phys. Fluids 17 (11), 116102.
GUARINI, S. E., MOSER, R. D., SHARIFF, K. & WRAY, A. 2000 Direct numerical simulation of a

supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 1–33.
HUANG, P. G., BRADSHAW, P. & COAKLEY, T. J. 1993 Skin friction and velocity profile family for

compressible turbulent boundary layers. AIAA J. 31 (9), 1600–1604.
HUANG, P. G., COLEMAN, G. N. & BRADSHAW, P. 1995 Compressible turbulent channel flows:

DNS results and modelling. J. Fluid Mech. 305, 185–218.

https://doi.org/10.1017/jfm.2017.237
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


INCROPERA, F. P. & DEWITT, D. P. 2007 Fundamentals of Heat and Mass Transfer, 6th edn. Wiley.
KIM, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid

Mech. 205, 421–451.
KIM, J., MOIN, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel flow at low

Reynolds number. J. Fluid Mech. 177, 133–166.
LAGHA, M., KIM, J., ELDREDGE, J. D. & ZHONG, X. 2011 A numerical study of compressible

turbulent boundary layers. Phys. Fluids 23 (1), 015106.
LAUFER, J. 1969 Thoughts on compressible turbulent boundary layers. NASA S.P. 216.
LECHNER, R., SESTERHENN, J. & FRIEDRICH, R. 2001 Turbulent supersonic channel flow. J. Turbul.

2 (1), 001–001.
LEE, J., JUNG, S. Y., SUNG, H. J. & ZAKI, T. A. 2013 Effect of wall heating on turbulent boundary

layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196–225.
LEE, M. & MOSER, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Reτ ≈

5200. J. Fluid Mech. 774, 395–415.
LI, X., HASHIMOTO, K., TOMINAGA, Y., TANAHASHI, M. & MIYAUCHI, T. 2008 Numerical study

of heat transfer mechanism in turbulent supercritical CO2 channel flow. J. Therm. Sci. Technol.
3 (1), 112–123.

MARTIN, J. J. & HOU, Y. C. 1955 Development of an equation of state for gases. AIChE J. 1 (2),
142–151.

MATHIJSSEN, T., GALLO, M., CASATI, E., NANNAN, N. R., ZAMFIRESCU, C., GUARDONE, A. &
COLONNA, P. 2015 The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for
wave propagation measurements in high-temperature vapours of organic fluids. Exp. Fluids 56
(10), 1–12.

MODESTI, D. & PIROZZOLI, S. 2016 Reynolds and Mach number effects in compressible turbulent
channel flow. Intl J. Heat Fluid Flow 59, 33–49.

MONACO, J. F., CRAMER, M. S. & WATSON, L. T. 1997 Supersonic flows of dense gases in
cascade configurations. J. Fluid Mech. 330, 31–59.

MONEGHAN, R. J. 1953 A review and assessment of various formulae for tubulent skin friction in
compressible flow. Tech. Rep. Aeronautical Research Council. Current Paper 142.

MORINISHI, Y., TAMANO, S. & NAKABAYASHI, K. 2004 Direct numerical simulation of compressible
turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273–308.

MORKOVIN, M. V. 1961 Effect of compressibility on turbulent flows. In Mécanique de la Turbulence
(ed. A. Favre), pp. 367–380. CNRS.

MOSER, R., KIM, J. & MANSOUR, N. N. 1999 Direct numerical simulation of turbulent channel
flow up to reτ = 590. Phys. Fluids 11, 943–945.

NEUFELD, P. D., JANZEN, A. R. & AZIZ, R. A. 1972 Empirical equations to calculate 16 of the
transport collision integrals Ω(l,s)∗ for the Lennard-Jones (12–6) potential. J. Chem. Phys. 57
(3), 1100–1102.

NICOUD, F. & POINSOT, T. 1999 DNS of a channel flow with variable properties. In Proceedings
of First International Symposium on Turbulence and Shear Flow Phenomena, TSFP-1, Santa
Barbara, USA, TSFP.

PATEL, A., PEETERS, J. W. R., BOERSMA, B. J. & PECNIK, R. 2015 Semi-local scaling and
turbulence modulation in variable property turbulent channel flows. Phys. Fluids 27 (9), 095101.

PIROZZOLI, S. & BERNARDINI, M. 2011 Turbulence in supersonic boundary layers at moderate
Reynolds number. J. Fluid Mech. 688, 120–168.

PIROZZOLI, S., GRASSO, F. & GATSKI, T. B. 2004 Direct numerical simulation and analysis of
a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16 (3),
530–545.

POLING, B. E., PRAUSNITZ, J. M., O’CONNELL, J. P. & REID, R. C. 2001 The Properties of
Gases and Liquids, vol. 5. McGraw-Hill.

RUBESIN, M. W. 1990 Extra compressibility terms for Favre-averaged two-equation models of
inhomogeneous turbulent flows. NASA Contractor Rep. 177556.

https://doi.org/10.1017/jfm.2017.237
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


SARKAR, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech.
282, 163–186.

SCIACOVELLI, L. & CINNELLA, P. 2015 Numerical simulation of dense gas compressible homogeneous
isotropic turbulence. In 15th European Turbulence Conference, EUROMECH/ETC15.

SCIACOVELLI, L., CINNELLA, P., CONTENT, C. & GRASSO, F. 2016a Dense gas effects in inviscid
homogeneous isotropic turbulence. J. Fluid Mech. 800 (1), 140–179.

SCIACOVELLI, L., CINNELLA, P. & GRASSO, F. 2016b Small-scale dynamics of dense gas
compressible homogeneous isotropic turbulence. J. Fluid Mech. (submitted).

SEWALL, E. A. & TAFTI, D. K. 2008 A time-accurate variable property algorithm for calculating
flows with large temperature variations. Comput. Fluids 37, 51–63.

SIEDER, E. N. & TATE, G. E. 1936 Heat transfer and pressure drop of liquids in tubes. Indust.
Engng Chem. 28 (12), 1429–1435.

SPINA, E. F., SMITS, A. J. & ROBINSON, S. K. 1994 The physics of supersonic turbulent boundary
layers. Annu. Rev. Fluid Mech. 26, 287–319.

SPINELLI, A., PINI, M., DOSSENA, V., GAETANI, P. & CASELLA, F. 2013 Design, simulation, and
construction of a test rig for organic vapors. Trans. ASME J. Engng Gas Turbines Power
135 (4), 042304.

TAMANO, S. & MORINISHI, Y. 2006 Effect of different thermal wall boundary conditions on
compressible turbulent channel flow at M = 1.5. J. Fluid Mech. 548, 361–373.

TEITEL, M. & ANTONIA, R. A. 1993 Heat transfer in fully developed turbulent channel flow:
comparison between experiment and direct numerical simulations. Intl J. Heat Mass Transfer
36 (6), 1701–1706.

THOMPSON, P. A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14 (9), 1843–1849.
TRETTEL, A. & LARSSON, J. 2016 Mean velocity scaling for compressible wall turbulence with heat

transfer. Phys. Fluids 28 (2), 026102.
VAN DRIEST, E. R. 1951 Turbulent boundary layer in compressible fluids. J. Aero. Sci. 18 (3),

145–160.
WALLACE, J. M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev.

Fluid Mech. 48, 131–158.
WEI, L. & POLLARD, A. 2011 Interactions among pressure, density, vorticity and their gradients in

compressible turbulent channel flows. J. Fluid Mech. 673, 1–18.
ZONTA, F. 2013 Nusselt number and friction factor in thermally stratified turbulent channel flow

under Non-Oberbeck-Boussinesq conditions. Intl J. Heat Fluid Flow 44, 489–494.
ZONTA, F., MARCHIOLI, C. & SOLDATI, A. 2012 Modulation of turbulence in forced convection by

temperature-dependent viscosity. J. Fluid Mech. 697, 150–174.

https://doi.org/10.1017/jfm.2017.237
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

	Direct numerical simulations of supersonic turbulent channel flows of dense gases
	Introduction
	Methodology
	Governing equations
	Numerical methods

	Numerical experiments of compressible channel flows
	Set-up and definitions
	Description of the computed cases

	Influence of dense-gas effects on flow properties
	Global flow properties
	Scalings and first-order statistics
	Second-order statistics of the thermodynamic and transport properties

	Influence of dense-gas effects on turbulence structure
	Reynolds stresses and Fukagata–Iwamoto–Kasagi (FIK) identity
	Turbulent kinetic energy budgets
	Near-wall turbulent structures

	Conclusions
	Acknowledgement
	Appendix A. Transport properties for dense gases
	Dynamic viscosity
	Thermal conductivity

	Appendix B. Effect of bulk viscosity
	Appendix C. Validations
	Appendix D. Grid convergence study
	References




