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Abstract. In this paper we present a-priori model reduction technique that enables

to take full advantage of the periodicity existing in the stator and rotor geometrical

structures of electrical machines in order to reduce the computational time. Firstly,

a  change  of  basis  is  performed  by  applying  two  distinct  discrete  Fourier

transformations on the stator and rotor periodic structures independently. Secondly,

the Schur complement is introduced in the new spectral basis, to allow a parallel

solving of the resulting block-diagonal matrix systems. Moreover, the using of a

matrix-free Krylov method based on the conjugate gradient solver has verified an

efficient  solving  of  the  equation  system associated  to  the  stator-rotor  interface.
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Furthermore,  in  the peculiar  case of  balanced supply conditions,  a  model  order

reduction  can  be carried  out  by  considering  only the  dominant  discrete  Fourier

transform  components.  This  model  reduction  approach  is  applied  on  a  buried

permanent  magnet  machine  and  has  successfully  shown  its  efficiency  under

balanced and unbalanced conditions.

Keywords. Finite-element  analyses,  Model  reduction,  Geometrical  periodicity,

Discrete  Fourier  transform,  Electromagnetic  fields,  Rotating  electrical  machines,

Buried permanent magnet machines, Schur complement.

1. Introduction

The main challenge in numerical  modeling is  to  search for a

compromise between a good accuracy and a reduction in memory

storage and computing time requirements. To advance towards this

objective,  the  model  reduction  techniques  become  increasingly

used,  and  this  especially  in  electromagnetic  fields  computation.

These can be a-posteriori model reduction techniques like proper

orthogonal decomposition [1] and perturbation zooming methods

[2] or a-priori reduction techniques like the ones dealing with the

magnetic symmetry or further geometrical periodicity exhibited in

most rotating electrical machines [3] [4] [5].

The  difficulties  encountered  in  the  a-posteriori  techniques

remain the determination of a well-conditioned reduced basis as in

the  case  of  the  model  order  reduction  methods  [6]  and  the

association of equitable boundary conditions as in the case of most

subdomain reduction methods [7]. In the a-priori techniques, we

can  list  likewise  several  limitations.  In  fact,  the  reduction

technique  using  magnetic  symmetries  takes  advantage  of  the

symmetrical  magnetic  flux  lines  distribution.  Let’s  take  the

example of a permanent magnet machine with N s stator teeth and
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2 p rotor  permanent  magnets.  In  case  of  a  kind  of  consistent

distribution of the  2 p permanent magnets with respect to the  N s

stator teeth, which means a greatest common divisor (GCD) of N s

and 2 p greater than 1, the modeling of a single 1/GCD(N s , 2 p)

section is enough to determine effectively the full model solution

by simple periodic or anti-periodic relationships [8]. Nevertheless,

such magnetic symmetry can be exploited only in case of balanced

supply conditions. The geometrical periodicity on the other hand,

considers only the materials  permeability  regardless the sources

distribution and the supply regime whether it is under balanced or

unbalanced conditions. In the case of a buried permanent magnet

machine (BPMM) for example with  N s and  N r stator and rotor

teeth respectively, one can model only 1/GCD(N s , N r) machine

section [9]. The modeling of this single elementary section which

can  regenerate  the  full  geometrical  model  by  simple  rotation

transformations, is enough to determine the full model solution if

one uses the group representation theory [3] [4]. However, such

classical exploitation of the geometrical periodicity does not allow

to  take  advantage  of  the  total  geometrical  periodicity  existing

separately in the stator and rotor domains. 

To tackle this issue, we investigate in this paper a-priori model

reduction technique that  takes full  advantage of the geometrical

periodicities existing in the stator and rotor structures, and goes

further than the classical approach by allowing to only model a

single  1/ N selementary section of the stator with a single  1/ N r

elementary  section  of  the  rotor.  When  it  deals  with  the
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symmetrical  properties  of  the  block  circulant  matrices,  this

reduction technique is akin to the group representation theory [10]

[11] and can be applied regardless of the sources distribution. In a

first step, this reduction technique is implemented by means of two

distinct  discrete  Fourier  transforms  (DFT)  applied  to  the  two

distinct periodic structures of the stator and rotor domains. In a

second step when the rotor motion is taken into account, the Schur

complement is used to solve the matrix system obtained from the

coupling of both stator and rotor problems [12] [13]. We should

denote  that  the  continuous rotor  motion is  performed using the

spatial Fourier interpolation method (SFIM) [14] [15] which is an

extension of the locked step method [16]. We should also point out

that the presented approach in this paper is applied to reduce the

computational time in the case of linear finite element analysis. In

fact, the homogeneous magnetic property of the materials with a

linear  behavior  retains  effectively  the  geometrical  model

periodicity. Nevertheless, such geometrical periodicity is broken in

the  case  of  a  non-linear  analysis.  In  the  non-linear  case,  some

techniques  have  been  proposed  to  keep  the  block  circulant

property  by  using  iterative  algorithms based  on  the  fixed-point

technique or the transmission-line method. Such techniques allow

not only to apply the DFT but also to account for the non-linearity

by introducing an additional fictitious source term on the righthand

side of the equation system [5] [17].

The proposed model reduction technique is applied to study a 9

teeth / 8 poles BPMM. In fact, this particular machine does not

present  neither  any  magnetic  symmetry  nor  any  consistent
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geometrical periodicity between the stator and rotor structures, and

thus requires a full modeling with the classical approach.

2. Classical Exploitation of Geometrical Periodicity in the Finite 
Element (FE) Modeling

2.1. Linear Magnetostatic FE Modeling

Let us consider a domain  Ω of boundary  Γ  (Γ=Γ1∪Γ 2 and

Γ1 ∩ Γ2={ø }).  In  magnetostatics,  the Maxwell’s  equations  that

describe the problem and the associated medium relationship are

given by the following: 

curl H=J s,     ¿ B=0 (1)

H=ν (B−Br ) (2)

with  B the magnetic flux density,  H  the magnetic field,  Js the

excitation source current density, Br the residual magnetization in

the permanent magnets, and ν the magnetic reluctivity property of

the materials. To insure the uniqueness of the solution, Neumann

and Dirichlet boundary conditions must be considered on Γ1 and

Γ2:

H ∧n=0 on Γ1;     B .n=0 on Γ2 (3)

with n the outward unit normal vector.

To  solve  the  previous  problem,  the  magnetic  potential  A (

B=curl A) is introduced. The unicity of  A is imposed with the

addition of a gauge condition; this can be a Coulomb gauge which

is implicitly verified in our case of 2D modeling. Adding now the

magnetic potential to (1) and (2),  the new resulting equation to

solve will be:

curl ν (curl A )=curl ν Br+J s
(4)

2.2. Incidence of the geometrical periodicity in the FE modeling 
problems
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Let us generalize and consider the case of an electromagnetic

device made up of N  periodic sections (Fig. 1). We suppose that

the  periodicity  holds  only  on  the  permeability  but  not  on  the

source  produced  by  the  currents  or  the  residual  magnetic  flux

density.

Since the partial differential equation (4) cannot be determined

analytically,  solving  technique  by  FE  discretization  is  used.

Therefore,  to  take  into  account  the  geometrical  periodicity  we

have  to  fulfill  a  numerical  periodicity  homologous  to  the

geometrical  one.  To do so,  we  impose that  all  the  sections  are

discretized by the same mesh and have thus the same number and

distribution of nodes. To achieve this, it is sufficient to discretize

only the elementary periodic section, as the one presented in Fig.

1, in such a way that the full model can be deduced by a simple

concatenation of the elementary model.  n is supposed to be the

number of the degrees of freedom in each section. It represents the

total number of inner nodes excepting in the one hand, the nodes

located on the boundary where a Dirichlet condition is imposed

and in the other hand, the ones located on the common side with

the previous section (Fig. 1).

Now, the geometrical periodicity on the material characteristics

of the N  sections is in agreement with the numerical discretization

periodicity. Taking into account the latter, and applying a 2D FE

formulation of the linear magnetostatic problem described by the

equation (4), a linear system of matrix equations is obtained:
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(
S S ' 0⋯ 0S ' '
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⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
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⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
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)(
A0

A1

⋮
⋮
⋮
⋮

AN −1

)=(
F0

F1

⋮
⋮
⋮
⋮

FN −1

) (5)

[ Sc ] [A ]=[F] (6)

with  [ Sc ] a  block  circulant  matrix,  [A ] the  vector  of  nodal

magnetic potential unknowns of size  ([N × n]× 1) and  [F ]  the

source vector. The matrix [S ] of size (n× n)  account for the inner

nodes contribution of each section i (0 ≤ i≤ N−1), [S ' ' ] accounts

for the contribution of the previous section (i−1) on the section i

due to the nodes located on the common boundary between the

two sections and  [S ' ], likewise, accounts for the contribution of

the next section  (i+1).  In each section  i,  [ A i ] and  [F i] of size

(n×1) represent  respectively  the  vector  of  nodal  magnetic

potential unknowns and the source vector.

2.3. Model reduction by exploitation of geometrical periodicity

In this section, we will spell out the incidence of the geometrical

periodicity on the model reduction. In fact, since  [ Sc ] in (6) is a

block circulant  matrix,  it  can be decomposed,  by using a  DFT,

under the following form [18] [19]:

[ Sc ]=[ W ] [S Δ ] [ W ]
−1 (7

)
[ W ] is the change of basis matrix from the original spatial basis

into the spectral one and  [ SΔ ] is block diagonal.  They are given

with their following explicit forms:

[ W ]=[U N ]⨂[ Idn ] (8)
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⋯
0
S2

⋮
⋮
⋮
⋯
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⋯
0
⋮
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⋮
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) (9)

with  [I dn] the  identity  matrix  of  size  (n× n),  and  ⨂ the

Kroenecker  product  symbol.  The  DFT  matrix  [UN ] of  size

(N × N ) is given by its general term [20]:

U N (c ,l )=
1

√ N
e

j 2 π
N

(c−1) (l−1 )

;1≤ c ≤ N  and

1 ≤l ≤ N

(10)

Finally,  in the spectral  basis the new system to solve can be

deduced combining (6) and (7):

[ SΔ ] [Z ]=[C ], with (11)

[Z ]=[W ]
−1

[ A ]    and    [ C ]=[W ]
−1

[F ] (12)

[A ] and  [F ],  which  are  defined  in  the  spatial  basis,  are

represented  now  in  the  spectral  basis  by  their  corresponding

vectors  [Z ] and  [C] respectively.  In the equation (11),  [ SΔ ] is a

block diagonal  matrix;  the  original  system (6)  of  size  n× N  is

therefore transformed into a set of  N  independent subsystems of

size n.  We don’t longer need to solve for the full model solution [

A ¿ but for the vector [Z ¿=[(Z i)0 ≤ i≤ N ] by solving independently

the following N  reduced subsystems:

[ Si ] [Z i ]=[C i ];0≤ i≤ N−1 (13)

Moreover, solving these N  independent subsystems can be done

using  a  parallelization  process.  Accordingly,  it  will  lead  to  a

considerable reduction of the computational time. Finally, we can

deduct  from  (12)  the  scattered  full  model  solution  on  the  N

different sections; it is given by [ A ]= [W ][ Z].
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Now, let's apply the previously described method exploiting the

geometrical periodicity on the modeling of an electrical machine

example. We take therefore a BPMM consisting of N s=¿9 stator

teeth wound by a three phase winding, and  2 p=¿8 rotor poles

(Fig. 2). From the point of view of the distribution of the magnetic

field lines, even when the stator windings are fed with a balanced

supply conditions, we can expect that this machine will not present

any magnetic symmetry since the  GCD between  N s and  2 p is

equal  to  1 (GCD(N s=9,2 p=8)=1)  [8]  [9].  Therefore,  we can

denote that, for reasons of simplifications, the stator windings can

be left unloaded. On the other side considering now the materials

permeability  point  of  view  regardless  the  excitation  sources

distribution,  no  global  consistent  stator-rotor  geometrical

periodicity is exhibited since the rotor salient structure represents

N r=8 rotor  teeth  -due  to  the  presence  of  8  buried  permanent

magnets-  which  means  in  fact  that  GCD(N s=9,N r=8)=1 [9].

Based on the forgoing, there is neither a magnetic symmetry nor a

classical consistent geometrical periodicity as the one described in

Fig. 1 and therefore the full machine should be considered for a

magnetostatic  finite  element  modeling.  However,  we  can

distinguish two independent geometrical periodicities in the stator

and rotor structures regardless of the sources distribution (current

sources  and  residual  magnetic  flux  densities).  (Fig.  2).

Consequently,  we  find  9  identical  periodic  cells  in  the  stator

involving each a single stator tooth and 8 identical periodic cells in

the rotor representing each one rotor pole. These two elementary

cells are represented in Fig. 2. In the next section 3, we will show



10
Moustafa Al Eit et al.

how we can totally exploit such independent periodicities existing

in  the  most  stator  and  rotor  domains  of  rotating  electrical

machines. This will be applied to study the 9/8 BPMM considered

example, later in section 4.

3. Total Exploitation of Distinct Stator and Rotor Geometrical 
Periodicities in Rotating Machines

3.1 Methodology

We suppose now the case of a rotating electromagnetic device,

consisting of a fixed stator and a movable rotor, and disposing –as

it is in the general case– of a distinct periodicity in the stator and

the rotor geometrical structures.

We assume to perform the rotor motion using the SFIM [14]

[15] which is an extension of the locked step method [16]. To do

so, the presence of a fictive interface between the stator and the

rotor  is  assigned  (Fig.  3).  Since  the  full  model  of  the  device

represents  N s identical  periodic  sections  in  the  stator  and  N R

identical periodic sections in the rotor, the geometrical periodicity,

as it has been developed before, is now exploited in the stator and

rotor domains separately;  the elementary model  is  consisting of

one  1/ N s elementary  section  of  the  stator  and  another  1/ N r

elementary section of the rotor (Fig. 3).

In Fig. 3, we can notice that in each elementary section of the

electromagnetic device we can distinguish the elementary stator

domain Ω si (0≤ i≤ N s−1) whose number of degrees of freedom is

ns from the  one  of  the  rotor  domain  Ωrj (0≤ i≤ N r−1)  whose

number  of  degrees  of  freedom is  nr.  The  stator-rotor  interface,
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where the motion is considered is duplicated to create dual Γ si and

Γrj separation interfaces which belong respectively to Ω si and Ωri.

The relationship between the discretization nodes of the different

interfaces Γ si and Γrj allows, according to the locked steps method

[16] or the SFIM [15], to consider the rotor motion. Based on the

foregoing, we can summarize that there are N s periodic sections in

the stator,  the degree of freedom of each is  ns and  N R periodic

sections in the rotor, and the degree of freedom of each is nr. The

use  of  the  geometrical  periodicity  which  makes  it  possible  to

construct  the  stator  and  the  rotor  full  models  of  the

electromagnetic  device  independently  by  concatenation  of  the

stator and rotor elementary models leads to obtain, according to

the equations (5) and (6), the following redundant overdetermined

system to solve:

([ Scs ] [0]

[0] [Scr ])(
[A s]

[A r])=(
[F s]

[F r]) (14)

Since the problem is treated independently within the stator and

the rotor subdomains,  the matrix system (14) is  overdetermined

thanks  to  the  duplicated  nodes  of  the  stator-rotor  interface;  the

equations relating to these nodes are written twice:  the first  for

their relation with the inner nodes of the stator and the second for

their relation with the inner nodes of the rotor.  [ Scs ] and [ Scr ] are

two block circulant matrices linked to stator and rotor geometrical

subdomains respectively. [A s] and [ A r] which are respectively of

size ([N s× ns ]×1) and ([N s× nr]×1), represent the set of nodal

magnetic potential unknowns in the stator and the rotor, and [F s]
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and  [F r] are the source terms. The vectors  [A s],  [ A r],  [F s] and

[F r] are given with their following explicit forms:

[ A s ]=(
( A ss)0

( AΓ s)0
( A ss)1
( AΓ s)1
⋮
⋮

( A ss )( Ns−1)

( A Γs) ( N s−1 )

); [ A r ]=(
( A rr )0

( AΓr )0
( Arr )1
( AΓr )1
⋮
⋮

( A rr )( Nr−1)

( AΓ r) (N r−1 )

)

[ F s ]=(
( F ss )0
(FΓ s

)0

( F ss )1
(FΓ s

)1

⋮
⋮

( F ss )(N s−1 )

(FΓ s
)( Ns−1 )

); [F r ]=(
( F rr )0
(FΓ r

)0

( F rr )1
(F Γr

)1

⋮
⋮

( F rr )(N r−1)

(FΓr
)(N r−1)

)

(15)

with  [ ( A s )i]=[( A ss )i
T ,( AΓs

)i
T
]
T
 represents  the  set  of  the  total

nodal magnetic potential unknowns in the stator domain Ω si of the

section  i.  ( A ss) i represents  the  set  of  nodal  magnetic  potential

unknowns in the stator domain excepting the ones on the interface

Γ Si which  are  represented  by  the  vector  ( AΓs
)i.

[ ( F s )i]=[( F ss )i
T ,(F Γs

)i
T
]
T
 is  the  source  term  calculated  in  the
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stator domain Ω si. ( F ss )i is the source term calculated in the stator

domain but referring to the nodes belonging to the stator domain

excepting those on the interface Γ si whose associated source term

is given by (FΓ s
)i. The rotor domain vectors  ( Ar) j,( A rr ) j,  ( AΓr

) j,

( F r ) j, ( F rr ) j and  (FΓr
)j are homologous to the previously defined

stator domain vectors ( A s)i, ( A ss)i, ( AΓs
)i, (F s)i, (F ss)i and  (FΓ s

)i

.

According to (7), the block circulant matrices [ Scs ] and [ Scr ] can

be  decomposed,  using  two  distinct  DFT,  under  the  following

forms:

[ Scs ]=[W s ] [S Δs ] [W s ]
−1

(16)
[ Scr ]=[W r ] [ SΔR ] [W r ]

−1

[ SΔs ] and [ SΔr ] are two block diagonal matrices and the change

of basis matrices [W s ] and [W r ] are given respectively in terms of

the DFT matrices [U Ns ] and [U Nr ] as follow:

[W s ]=[U N s
]⨂[ I dns

] (17)

[W r ]=[U N r
]⨂[ I dnr

] (18)

where [I d ns
] of size (n s× ns) and [I d nr

] of size (n r× nr) are the

identity matrices and  [UN s
] and  [UN r

] are the DFT matrices of

size (N s× N s) and (N r × N r) respectively.

Combining now the matrix system (14) with the equations in

(16), we obtain in the spectral basis the new system to solve:

([ SΔs ] [0]

[0] [ SΔr ])(
[Zs]

[Zr])=(
[C s]

[C r]) (19)

where the vectors  [Z s ],  [Zr ],  [Cs] and  [Cr] are given by the

following expressions:
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[Zs]=[W s ]
−1

[ A s]  and  [C s ]=[W s ]
−1

[F s] (20)

[Z r ]=[W r ]
−1

[A r]  and  [C r ]=[W r ]
−1

[F r ] (21)

Since  [ SΔs ] is  a block diagonal  matrix,  we have therefore  N s

independent sub-systems of size ns each and since [ SΔr ] is a block

diagonal matrix, we have likewise N r independent subsystems of

size nr each:

[(SΔs)i ] [(Zs)i ]=[(C s)i ]; 0≤ i≤ N s−1

[(Z s)i ]=[(Z ss)i
(Z Γs

)i] ; [(C s)i ]=[(C ss)i

(CΓ s
)i]

(22)

[(SΔr)j ] [(Z r)j ]=[(C r) j ];0≤ j ≤ N r−1

[(Z r)j ]=[(Zrr)j

(ZΓ r
)j ] ; [(C r)j ]=[(C rr) j

(C Γr
)j]

(23)

3.2. Consideration of the rotor motion using SFIM

To  properly  solve  the  overall  problem  consisting  of  these

different  independent  subsystems  in  the  stator  and  the  rotor

domains,  they  must  be  coupled  together  at  the  stator-rotor

interface. To do so, we have to express the different  [(ZΓr
) j] as

functions of the different [(ZΓs
)i]. In other words, where [ ZΓs ] and

[ ZΓr ] are  respectively  the  set  of  [(Z Γs
)i ] and  [(ZΓr

) j] we  must

express [ ZΓr ] in terms of [ ZΓs ]. This can be done by performing the

rotor motion using the SFIM. It allows considering any rotation

angle θ of the rotor and not only the discrete few angle steps given

by θm=m ∆ θ, where m∈Z  and ∆ θ is a previously fixed rotation

angle step.
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Unlike the locked step method which takes into account discrete

rotation steps [16], the SFIM allows therefore to take into account

the continuous rotor motion. Assuming that [ AΓS ]=[( AΓ s
)0≤i ≤ Ns−1]

and  [ AΓr ]=[(A Γr
)0≤ j ≤ N r−1] are  the  vectors  of  total  magnetic

potential unknowns on the stator-rotor interface in the stator and

rotor side respectively, the SFIM consists in expressing the DFT of

both vectors [AΓ S
] and [ AΓ r

] under the following equation [15]:

[ZF Γ r
]=[ D(θ)] [ZF Γ s

] (24)

where [ D(θ)] is the diagonal matrix linking the DFT [ZF Γ R
] of

[ AΓ r
] to the DFT [ZF Γ s

] of [AΓ s
]. It allows to add a phase lag of

amplitude θ to a signal, by multiplying its k th harmonic by e jθk. In

our case,θ represents in fact the rotor mechanical position. When

mD is  the  total  number  of  the  stator-rotor  interface  nodes,  the

entries of the matrix  [ D(θ)] of size  (mD× mD) are given by the

following expression [15]:

D (i , i )=¿

where mD
+¿=[(mD+1)/2] ¿

(25)

Now, given that  [W F ] of size (mD × mD) is the transformation

matrix corresponding to the DFT based on the local discretization

of  the  stator-rotor  interface,  the  vectors  [ZF Γ s
] and  [ZF Γ r

] are

given by the following equations:

[ZF Γ s
]=[W F ]

−1
[A Γ s

] (26)

[ZF Γ r
]=[W F ]

−1
[ A Γr

] (27)
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We should denote furthermore that the vectors  [ AΓs ] and  [ AΓr ]

can be expressed in function of their DFT vectors [ ZΓs ] and [ ZΓr ]

by the following expressions respectively:

[Z Γs
]=[W Γs ]

−1
[ZΓ s

] (28)

[Z Γ r
]=[W Γr ]

−1
[ZΓ r

] (29)

where:

[W Γs ]=[U N s
]⨂ [I

d (
m D

N s

)

]
(30)

[W Γr ]=[U Nr
]⨂ [I

d (
mD

Nr

)

]
(31)

Combining  now the  equations  (24),  (26),  (27),  (28)  and (29)

leads to the following expression:

[ ZΓr ]=[W Γr ]
−1

[W F ] [D (θ ) ] [W F ]
−1

[W Γ s ] [ ZΓS ]

[ ZΓr ]=[Q (θ)][ ZΓ s ]
(32)

In the spectral basis,  [Q(θ)] is the matrix linking the interface

variables of the stator to those of the rotor at the rotor position θ

and then defining the continuous rotor motion. The matrix [ D(θ)]

being  diagonal,  therefore  the  matrix  [W F ] [ D(θ) ] [W F ]
−1

 is

circulant. However, in our case of a non-consistent periodicity in

the stator  and  the rotor,  [W Γs ]≠ [W Γr ],  and  therefore  the  matrix

[Q(θ)]=[W Γr ]
−1

[W F ] [ D(θ) ] [W F ]
−1

[W Γ s] is not a block diagonal

matrix. In the following and for reasons of simplification we will

replace [Q(θ)] by [Q ].

The matrix  [Q ] being not a block diagonal matrix, each sub-

vector  [(ZΓr
) j] must be expressed as a function of all the vectors

[(ZΓs
)i].  This will  not have any advantage if one wants to have

independent subproblems resulting from the stator-rotor coupling.
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For this reason, we will proceed to tackle this issue by the use of

the Schur complement method.

3.3 Using of the Schur complement

The application  of  the  Schur  complement  actually  requires  a

particular form of the matrix to be solved. This indeed requires a

reordering of the variables in the vectors [Zs] and [Zr]. After such

reordering  of  the  variables,  these  two  vectors  will  be  written

henceforth by the following expressions:

[ Zs ]=( [Zss ]

[Z Γs ])=(
( Zss )0
⋮
⋮

( Zss) ( N s−1 )

(ZΓs )0
⋮
⋮

(ZΓ s)( N s−1 )

)
[ Zr ]=(

[Zrr ]

[Z Γr ])=(
(Zrr)0

⋮
⋮

(Zrr)(N r−1)

(ZΓr
)0

⋮
⋮

(Z Γ r
)(N r−1)

)
(33)

Using the expressions of the vectors  [ Zs ] and  [ Zr ] in (33) by

separating the variables associated within the inner domain from

those located on the interface, the matrix system in the equation

(19) can be now written in the following form:

(
[SΔss ]

0

[ SΔs Γ s ]
0

0
[ SΔrr ]

0
[S Δr Γr ]

[ SΔ Γs s ]
0

[ SΔ Γ s ]
0

0
[ SΔ Γ rr ]

0

[S Δ Γr ]
)(

[ Zss ]
[Zrr ]

[ ZΓ s ]
[ ZΓr ]

)=(
[C ss ]
[C rr ]

[CΓ s ]
[CΓ r ]

)
(34)
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[ST ](
[ Zss ]
[ Zrr ]

[ZΓ s ]
[ZΓ r ]

)=(
[C ss]
[Crr ]
[Cs ]

[CΓr ]
)

where  the  bock-diagonal  matrices  [ SΔss ],  [ SΔ Γ ss ],  [ SΔs Γ s ] and

[ SΔ Γ s ] and the vectors [C ss ] and [CΓ s] can be deduced respectively

from the block diagonal matrix [ SΔs ] and the vector [C s ] in (19) by

means  of  simple  separation  and  reordering  of  the  variables

according to (33). Same explanation is used for the determination

of the matrices  [ SΔrr ],  [ SΔ Γr r ],  [ SΔr Γ r ] and  [ SΔ Γr ] and the vectors

[C rr ] and  [CΓr ] from the  matrix  [ SΔr ] and  the  vector  [C r ].  The

equation  (34)  represents  the  full  model  problem  which  is

characterized by an overdetermined algebraic system due to the

duplication of the variable on the stator-rotor interface, as we have

mentioned  before.  To  tackle  this  issue  in  order  to  obtain  a

consistent  algebraic  equation  system,  we  can  introduce  the

equation (32); [ ZΓr ] and [ ZΓs ] are dependent and therefore a change

of basis matrix [P ], which is given in the following, must be used

in the system of equation (34):

(
[Z ss ]
[Zrr ]

[ ZΓ s]
[ ZΓr ]

)=[P](
[Zss ]
[Zrr ]

[Z Γs ]
)

(35)

(
[Z ss ]
[Zrr ]

[ ZΓ s]
[ ZΓr ]

)=(
[ I dns

]

0
0
0

0
[I d nr

]

0
0

0
0

[ I dm]

[Q ]
)(

[ Zss ]
[ Zrr ]

[ZΓ s ]
)
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Using now the equation (35)  in  (34),  and multiplying by the

transposed matrix  of  [P ] in  order to  add the contribution from

both sides of the stator-rotor interface,  the new matrix equation

system that yields will be therefore:

[P ]
T
[ ST ] [P](

[Zss ]
[Zrr ]

[Z Γ s ]
)=[ P]

T (
[C ss ]
[C rr ]

[CΓs ]
[CΓr ]

)
(36)

(
[SΔss ]

0

[ SΔs Γ s ]

0
[S Δrr ]

[Q ]
T

[ SΔr Γ r ]

[ SΔ Γ ss ]
[S Δ Γr r ] [Q ]

[ SΔ Γ s]+ [ Q ]
T

[S Δ Γr ] [ Q ])(
[ Zss ]
[ Zrr ]

[Z Γ s ]
)=(

[C ss]
[Crr ]

[CΓ s]+ [ Q ]
T

[CΓr ]
)

This particular  type of matrix system equation can be solved

using the Schur complement [12] [13]. This can be done by using

a simple substitution method. Let’s rewrite therefore the first and

the second equation in (36) by determining the expressions of [ Zss ]

and [ Zrr ] in terms of [ ZΓs ] as the following:

[ Z ss ]=[S Δss ]
−1

( [C ss ]−[ SΔ Γ s s ] [Z Γs ])

[ Zrr ]=[S Δrr ]
−1

([C rr ]−[ SΔ Γ rr ] [ Q ] [ ZΓ s] )
(37)

Now  replacing  [ Z ss ] and  [ Zrr ] by  their  values  given  by  the

equations in (37), in the third equation of the full system (36), we

will obtain therefore the following system to solve whose size is

equal to the number of nodes on the interface, and which is very

small in comparison with the initial full problem.:

[ Ssr ] [ ZΓs ]=[C sr ]

(38)[ Ssr ]=[S Δ Γs ]+ [Q ]
T

[ SΔ Γ r] [ Q ]−[ SΔs Γs ] [ SΔss ]
−1

[ SΔ Γ ss ]−[Q ]
T

[ SΔr Γr ] [ SΔrr ]
−1

[ SΔ Γ rr ] [ Q ]

[C sr ]=[CΓ s ]+ [ Q ]
T

[CΓ r ]+[S Δs Γs ] [ SΔss ]
−1

[C ss ]+ [Q ]
T

[ SΔr Γ r] [S Δrr ]
−1

[C rr ]
At the end, the Schur complement will lead us to the following

system that  can be solved in the opposite direction now with a

back substitution method:
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(
[ SΔss ]

0
0

0
[ SΔrr ]

0

[S Δ Γs s ]
[ SΔ Γr r ] [ Q ]

[Ssr ]
)(

[ Z ss ]
[ Zrr ]

[ ZΓ s]
)=(

[C ss ]
[C rr ]
[C sr ]

) (39)

The determination of [ ZΓ s ] by solving the system (38) in a first

step allows us to calculate  [ ZΓ r ] using the equation (32) and to

determine  [ Zss ] and  [ Zrr ] in  a  second  step  and  this  by  solving

respectively the two following matrix equations:

[ SΔss ] [Zss ]= [C ss ]−[ SΔ Γ s s ] [ ZΓ s ]

[ SΔrr ] [ Zrr ]=[Crr ]−[S Δ Γr r ] [Z Γr ]
(40)

3.4. Efficient solver using the conjugate gradient method and an 
implicit LU decomposition

We should denote that, to solve (38), we can avoid the implicit

calculation of the matrix  [Ssr ]. This can be done using a matrix-

free Krylov method based on the conjugate gradient solver [21]. It

is an iterative method that does not deal with the direct solving of

the  system  (38)  but  with  an  iteration  process  of  matrix-vector

multiplications. At each iteration, the matrix [Ssr ] is multiplied by

the kth iteration vector denoted [ yk ].

Since [ SΔss ] and [ SΔrr ] are block-diagonal matrices with N s and

N r matrix blocks respectively; the system (40) will lead to (N s+

N r)  independent  subsystems that  can be solved effectively in  a

parallel computation process. Moreover, this parallel computation

can be used also to solve for [ SΔss ]
−1

[C ss ] and [ SΔrr ]
−1

[C rr ] within

the calculation of  [C sr ] and to  solve for  [ SΔss ]
−1

[S Δ Γs s ][ yk ] and
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[ SΔrr ]
−1

[ SΔ Γr r ] [ Q ] [ y k] within each conjugate  gradient  solver for

the solution [ ZΓ s ] of the system (38). Henceforth, the solving of the

matrix system (39)  using a  back  substitution  method combined

with a parallelization process can lead to an effective acceleration

in the computational time which will be verified in the following

example.

To prevent a repetitive direct solving technique, we recommend

the use of an implicit LU decomposition. The LU decomposition

uses a backward and forward solving i.e.  triangular solving and

has  verified  therefore  a  more  efficient  calculation  time.  If  we

consider that (SΔss)i and (SΔrr) j are the ith (0≤ i≤ N s−1)  and the

jth  (0≤ j ≤ N r−1) matrix blocks of the block diagonal matrices

[ SΔss ] and [ SΔrr ] respectively, we can write: (SΔss)i=(Lss)i ×(U ss)i

and (SΔrr) j=(Lrr)j ×(U rr)j. These LU decomposition matrices are

calculated one time and are stored; this avoids a significant waste

of the computational time in the repetitive direct solving technique

that  will  be  requested  for  example  in  the  conjugate  gradient

iterations in (38). All these steps to solve the system (39) can be

summarized in the following diagram in Fig. 4. We should denote

that the boxes with dashed borders represent the  ith and the  jth

systems  of  the  N s and  N r systems  respectively,  that  could  be

solved  in  a  parallel  process.  Furthermore,  and  for  reasons  of

simplification,  the  conjugate  gradient  solver  box  is  represented

only by the matrix- vector multiplication of the matrix [Ssr ] with

the iterative vector [ yk ] at the kth iteration.
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4. Application Example

The application example is a 9/8 BPMM (Fig. 5). It consists of 9

stator teeth and 8 rotor permanent magnets. As we have mentioned

in section 2, there is neither an obvious magnetic symmetry nor a

whole consistent geometrical periodicity in this studied machine.

As a matter  of  fact,  the full  machine should be modeled in the

classical approach. However, the stator and the rotor represent two

different  geometrical  periodic  structures.  In  fact,  from  an

elementary 1/9 section of the stator and an elementary 1/8 section

of  the  rotor  we  can  generate  the  full  model  of  the  machine.

Therefore, to exploit the total geometrical periodicity as we have

noticed in section 2, the elementary periodic cell in the stator turns

out to be only one stator tooth and that of the rotor turns out to be

only one permanent magnet (Fig. 5).

We should denote that the 2D spatial mesh of the elementary

cell is made of  ns=738 nodes in the stator section and  nr=512

nodes in the rotor section, and that for reasons of simplifications,

as  we  have  mentioned  in  section  2,  the  stator  phases  are  left

unloaded.  From  the  mesh  of  one  elementary  cell  we  have

reconstructed a full FE model (reference) that we have compared

to  the  reduced  model.  The  exploitation  of  the  geometrical

periodicity makes it possible to switch effectively from the large

FE  system  into  9  independent  subsystems  in  the  stator,  8

independent subsystems in the rotor and one system representing

the coupling of the stator-rotor nodes on the connecting interface.



23
Moustafa Al Eit et al.

4.1 Balanced regime

The first application is the case of a balanced permanent magnet

source distribution in the rotor while the stator winding is  kept

unloaded. In fact, we have verified that the reduced model solution

matches  largely  the  one  of  the  reference  full  model.  The  post

processing global quantity compared between both models is the

magnetic  flux  flowing  through  a  tooth  coil  (Fig.  6).  The  local

quantities are the flux lines distribution (Fig. 7), the magnetic flux

density (Fig. 8) and the magnetic potential calculated at the air gap

level in function of the angular position (Fig. 9). 

The flux lines, the flux density distributions and the magnetic

potential  are  calculated  at  a  given  rotor  position  while  the

magnetic flux is calculated for a full rotor mechanical revolution.

The conjugate gradient solver converges after 72 iterations with a

stop criterium defined by a maximum residual error of 10−3. The

speed up resulting from the transformation of the large system into

the spectral basis system is 6 when using a sequential computation

and 11 if we use a parallelization process. The errors between the

full  and the reduced models are 0.15% in the calculation of the

magnetic flux and 0.3% for the air gap magnetic potential. This

error is  due to the use of a matrix-free krylov iteration method

which is characterized by a maximum number of iterations linked

to a stopping criterium that insures a minimum residual error.

4.2 Order Reduction in Balanced regimes considering only Z s 4 and
Z r4
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Each component  of the stator and the rotor DFT components

actually  represents  a  given  spectral  content  of  the  solution

distribution in the stator and the rotor  domain respectively (see

Appendix  B).  According  to  (55)  the  harmonic  spectrum of  the

stator and the rotor solution distribution can be projected to the

corresponding DFT components as presented in Tables 1 and 2.

The conjugate relationship between the different DFT components

is explained in Appendix A. In our case, the distribution of the

source in the rotor has a particular shape: it consists of 4  pairs of

permanent magnets leading to a source distribution in such a way

that the 4th harmonic is dominant. This can be verified by looking

at the spectral representation of the magnetic potential distribution

in the airgap (Fig. 10).

In Tables 1 and 2, l ϵ N ,  [ ]+¿¿ represents the positive value and

Z is the complex conjugate of Z. According to Tables 1 and 2, this

prevailing 4th harmonic corresponds effectively to the stator DFT

components Z s4 and the rotor DFT component  Zr4. Now solving

only the equation sub-system giving Z s4, instead of the all 9 sub-

systems in the stator,  and the equation sub-system giving  Zr 4 ,

instead of the all  8 sub-systems in the rotor,  can be seen as an

effective model order reduction with a speed up of 11 even with a

sequential  solver,  avoiding  therefore  the  use  of  a  complex

parallelization process.

The results are in agreement not only with respect to the global

quantity of the magnetic flux (Fig. 11) where the error does not
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exceed 1.8% but also regarding the local ones (Figs. 12, 13, 14 and

15),  but  now  with  a  slight  low  precision  where  the  error

considering the calculation of the magnetic potential in the air gap

which is about 11% from the stator side (Fig. 14) and 14% from

the rotor side (Fig. 15).

4.3 Unbalanced regime with a demagnetization of a rotor permanent
magnet

In this section we will study the case of an unbalanced regime

characterized by a demagnetization defect of a permanent magnet

in the rotor (Fig. 16). In this case, we can no longer speak about a

particular distribution of the solution in the machine and thus of

the dominance of a single spatial harmonic as it was the case in the

balanced regime. Therefore, all the DFT components in the stator

and the rotor domain have to be calculated. The conjugate gradient

solver converges after 97 iterations with  the same stop criterium,

as in balanced conditions, defined by a maximum residual error of

10−3. The number of iterations until convergence is not the same

in  the  case  of  balanced  and  unbalanced  conditions  since  the

convergence depends on the source vector. Now the speed-up is

slightly  smaller  and  it  is  about  5  in  the  case  of  a  sequential

computation  of  the  problem  and  about  10.2  when  we  use  the

parallel  computation.  The  solution  calculated  by  the  reduced

model is compared to the one of a classical full model in the case

of the demagnetization defect: they are in a good agreement as we

can see in Figs. 17, 18, 19, and 20.
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The  error  does  not  exceed  the  0.15%  with  respect  to  the

calculation of the magnetic flux in a full  mechanical  revolution

(Fig.  17)  and  the  0.3%  with  respect  to  the  calculation  of  the

magnetic potential in the airgap (Fig. 20).

The harmonic spectrum of the magnetic potential distribution in

the airgap in Fig. 21 shows that this distribution is not governed by

a  single  spatial  harmonic  but  by  different  harmonics  of

considerable values. The solution in the stator and the rotor as well

as the magnetic potential in the airgap are calculated separately in

function  of  each  stator  and  rotor  DFT  components  and  are

represented in Figs. 22 and 23.

5. Conclusion

In  this  paper  we  have  investigated  a-priori  model  reduction

approach based on the full exploitation of the spatial periodicity

exhibited in the stator and rotor geometrical structures of the most

rotating  electrical  machines.  In  fact,  the  use  of  the  Schur

complement  has  enhanced  such  exploitation  of  the  geometrical

periodicity  by  leading  to  solve  in  parallel  the  block  diagonal

matrix  systems  in  the  stator  and  rotor  domains.  Moreover,  an

efficient  solving  of  the  stator-rotor  coupling  system  on  the

interface is carried out by means of the matrix-free Krylov method

based on the conjugate gradient solver.  A 9/8 BPMM is studied in

balanced and unbalanced regimes; it has a particular geometrical

structures  where  no  magnetic  symmetry  neither  a  classical

consistent  geometrical  periodicity can be used to reduce the FE

modeling.  However,  using  the  presented  model  reduction

approach,  we  have  successfully  managed  to  solve  the  matrix
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system  with  a  speed  up  of  about  6  in  case  of  a  sequential

computation and 11 when we use a parallel process.

Furthermore,  in  the  particular  case  of  balanced  supply

conditions,  we have verified a model order reduction of the FE

model due to the DFT properties; only one DFT component that

represent the prevailing harmonic of the solution distribution can

be only solved for, which lead to an effective acceleration in the

calculation time of about 11 within even a sequential computation

of the matrix system.

Appendix

A. Conjugate relationship between DFT components

Assuming the case of a vector X  of dimension N  given by the

following form:

[X ]=[x0 x1⋯ xm⋯ xN −1 ]
T (41)

The  DFT  vector  [ Z ] of  [ X ] will  be  given  by  the  following

expression using the inverse DFT matrix [ U ]
−1:

[ Z ]= [U ]
−1

[ X ]=[ Z0 Z1⋯Zm⋯ZN −1 ]
T (42)

where the entries of [ U ]
−1 are given by:

U−1
(l ,c )=

1
√ N

e
− j × 2 π

N
×(l−1 )× (c−1)

1 ≤l ≤ N  and 1 ≤ c≤ N

(43)

From the equations (42) and (43), the general term  Zm of the

vector [ Z ] will be given therefore by the following expression:

Zm=∑
n=0

N −1

xne
− j × 2 π

N
×m×n

(44)

Let us first suppose the case where N, the number of samples is

even, then the vector [ Z ] can be given by its general representation

form:
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[ Z ]=[
Z0

Z N
2
−α

Z N
2

Z N
2

+α
] where α∈[1 ;2…;

N
2

−1] (45)

Based  on  the  equation  (44),  the  expressions  of  both  general

terms Z N
2

−α and Z N
2

+α will be given by:

Z N
2
−α

=∑
n=0

N−1

xn e− j × π× n× e
j × 2π

N
×α × n

(46)

Z N
2

+α
=∑

n=0

N −1

xne− j ×π ×n ×e
− j × 2 π

N
×α ×n (47)

with n being an integer which takes the values 1,2,. ..N−1, the

term e− j× π ×n is then a real number that can take the values 1 or -1.

We can then deduce, from (46) and (47), that Z N
2

−α  and Z N
2

+α are

conjugate:

Z N
2

+α
=Z N

2
−α  ; α∈[1 ;2…;

N
2

−1] (48)

In  the  other  case  where  the  sampling  number  N  is  odd,  the

vector [ Z ] can be given its general representation form:

[ Z ]=[
Z0

Z N +1
2

−α

Z N −1
2

+α
] where α∈[1 ;2…;

N
2

−1] (49)

In the same way, based on the equation (44) the expressions of

both general terms Z N +1
2

−α and Z N−1
2

+α will be given by:

Z N +1
2

−α
=∑

n=0

N −1

xn e− j× π ×n ×e
− j× π

N
×(1−2 α)×n

(50)

Z N−1
2

+α
=∑

n=0

N −1

xn e− j× π ×n ×e
j × π

N
×(1−2α)×n

(51)
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We can then deduce from (50) and (51) that Z N +1
2

−α and Z N−1
2

+α

are conjugate:

Z N−1
2

+α
=Z N+ 1

2
−α  ; α∈[1 ;2…;

N−1
2

] (52)

B. Spectral content of DFT components

Let’s consider the case of a signal x (t) representing a sinusoidal

function of frequency kf  corresponding to the  k th harmonic of a

reference signal  of  frequency  f .  When this given  k th harmonic

signal whose mathematical representation is x (t )=Ak sin  (k 2πft )

,  is  discretizing  through  a  sampling  frequency  F s=N∗f ,  the

sampling vector consisting of the N  samples will be given by the

following form:

[ X ]=[
0

A k sin ( k 2π
N )

⋮

Ak sin( k 2π
N

×m)
⋮

A k sin( k 2π
N

× ( N−1 ))
] (53)

Performing now in a following step, the DFT of the vector [ X ]

which leads to the vector [ Z ]= [U−1 ] [ X ] whose general term, using

equation (44), is given by the following expression:

Zm=∑
n=0

N −1 A k

2 j √ N
[e

j × 2 π×(k−m )

N
× n

−e
− j ×2π ×(k+m)

N
× n

] (54)

We can show that this series in (54) will be not equal to zero if

there exists an integer l such that:

k ± m=N ×l (55)
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In  the  excepted  cases  presented  by  the  relation  (55),

e
j × 2 π ×(k−m)

N
× n or  e

− j× 2 π × (k +m)

N
× n will be equal to 1 regardless the

value  of  n;  Zm will  be  not  equal  to  zero  and  it  will  include

therefore the spectral information on the harmonic k . 
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Tables

Zs 0 [ l× N s ]
+¿=[0, 9,18,27,…]¿

Z s 1=Z s 8 [ l× N s−1,l × N s+1 ]
+¿=[1,8,10,…] ¿

Zs 2=Z s 7 [ l× N s−2,l × N s+2 ]
+¿=[2,7,11, …]¿

Z s 3=Z s 6 [ l× N s−3,l × N s+3 ]
+¿=[3,6,12,…] ¿

Z s 4=Z s 5 [ l× N s−4, l× N s+4 ]
+¿=[4,5,13,…]¿

Table 1. Harmonic content of the stator DFT components

Z r 0 [ l× N r]
+¿=[0,8,…] ¿

Z r1=Zr 7 [ l× N r−1,l × N r+1 ]
+¿=[1,7,9,… ]¿

Z r 2=Zr 6 [ l× N r−2,l × N r+2 ]
+¿=[2,6,10,…] ¿

Z r3=Zr 5 [ l× N r−3,l × N r+3 ]
+¿=[3,5,11, …] ¿

Z r 4 [ l× N r−4, l× N r+4 ]
+¿=[4,12,18,…]¿

Table 2. Harmonic content of the rotor DFT components

Figure captions
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Fig. 1. Full model (left), modeling of one elementary section: the crossed points represent

the inner nodes, the round points represent the ones common with the previous section 

and the squared points represent the ones subjected to Dirichlet conditions (right).

Fig. 2. The 9/8 BPMM: highlighting the different sources (top left), considering the 

permeability of materials regardless of sources (bottom left), the two elementary 

cells of the stator and rotor domains (right).

Fig. 3. Full model of a rotating electromagnetic device: The marked fictive interface 

separates the fixed part (stator) from the rotating part (rotor) (left), modeling of one 

elementary section (right).

Fig. 4. Diagram showing the different solving steps and highlighting the parallel 

computational processes presented by the boxes with dashed borders.

Fig. 5. The BPMM 9/8 (left), Mesh of the elementary modeled sections: elementary 1/9 

stator section and elementary 1/8 rotor section (right).

Fig. 6. Magnetic flux through a tooth coil calculated with the reference full model and the

reduced model.

Fig. 7. Flux lines distribution calculated with the reference full model (left) and the 

reduced model (right).

Fig. 8. Flux density distribution calculated with the reference full model (left) and the 

reduced model (right).

Fig. 9. Magnetic potential in the air gap in function of the angular position calculated 

with the reference full model and the reduced model.

Fig. 10. Spectral representation of the magnetic potential distribution at the air gap level 

with respect to the associated stator and rotor DFT components.
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Fig. 11. Magnetic flux through a tooth coil calculated with the reference full model and 

the reduced model with only Z s4 and Z r4.

Fig. 12. Flux lines distribution calculated with the reference full model (left) and the 

reduced model with only Z s4 and Zr 4 (right).

Fig. 13. Flux density distribution calculated with the reference full model (left) and the 

reduced model with only Z s4 and Zr 4 (right).

Fig. 14. Magnetic potential in the air gap in function of the angular position calculated 

with the reference full model and the reduced model with only Z s4.

Fig. 15. Magnetic potential in the air gap in function of the angular position calculated 

with the reference full model and the reduced model with only Z r4.

Fig. 16. Demagnetization defect of a permanent magnet in the rotor.

Fig. 17. Magnetic flux through a tooth coil calculated with the reference full model and 

the reduced model.

Fig. 18. Flux lines distribution calculated with the reference full model (left) and the 

reduced model (right).

Fig. 19. Flux density distribution calculated with the reference full model (left) and the 

reduced model (right).

Fig. 20. Magnetic potential in the air gap in function of the angular position calculated 

with the reference full model and the reduced model.

Fig. 21. Spectral representation of the magnetic potential distribution at the air gap level 

with respect to the associated stator and rotor DFT components.
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Fig. 22. Flux lines distribution and air gap magnetic potential calculated in the stator by 

means of the different modes Z s0, Z s 1, Zs 2, Zs3 and Zs 4 .

Fig. 23. Flux lines distribution and air gap magnetic potential calculated in the rotor by 

means of the different modes Z r0, Z r 1, Z r2, Z r 3 and Z r4.
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Figures

Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5

Fig. 6
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Fig. 7
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Fig. 8
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Fig. 9
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Fig. 10



45
Moustafa Al Eit et al.

Fig. 11
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Fig. 12
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Fig. 13
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Fig. 14
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Fig. 15
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Fig. 16
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Fig. 17
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Fig. 18
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Fig. 19
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Fig. 20
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Fig. 21
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Fig. 22
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Fig. 23


