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Abstract

Model Order Reduction (MOR) methods are more and more ap-
plied on many different fields of physics in order to reduce the number
of unknowns and thus the computational time of large-scale systems.
However, their application is quite recent in the field of computational
electromagnetics. In the case of electrical machine, the numerical
model has to take into account the nonlinear behaviour of ferromag-
netic materials, motion of the rotor, circuit equations and mechanical
coupling. In this context, we propose to apply the Proper Orthogonal
Decomposition combined with the (Discrete) Empirical Interpolation
Method in order to reduce the computation time required to study
the start-up of an electrical machine until it reaches the steady state.
An empirical Offline/Online approach based on electrical engineering
is proposed in order to build an efficient reduced model accurate on
the whole operating range. Finally, a 2D example of a synchronous
machine is studied with a reduced model deduced from the proposed
approach.

Introduction

Modeling electrical machines using the the Finite Element Method (FEM)
has proved to be an efficient approach since it allows to solve magnetostatic
and magnetodynamic problems with complex geometries. When the design
of the machine is almost invariant along its depth, the use of a 2D FEM
model is often recommended since it allows to consider only a decent number
of unknowns. For more complex geometries however, a 3D FEM model
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may be required which leads to a huge computational cost. One may also
mention the use of analytical or Hybrid 2D/3D FEM models for specific
designs which provide a significant speedup [1] [2]. The modeling of electrical
machines beside the solution of partial differential equations requires taking
into account the nonlinearities of the materials, the motion of the rotor and
the coupling with electrical circuit equations.

In order to model the motion of the rotor, several methods have been
developed in order to avoid any re-meshing process which can be computa-
tionally prohibitive. When the rotation speed is constant, the locked-step
method is very powerful since the motion is considered by only permuting
the unknowns at the surface of the rotor. When the rotation speed varies
however, techniques like the Moving Band, the Mortar FEM, or the Over-
lapping FEM should be used [3].

To take into account the electrical environment of the machine, circuit
equations should be coupled with a FEM model [4]. This approach leads
however to a transient problem governed by a system of differential alge-
braic equations. Therefore, the use of an implicit time-stepping scheme,
like the Backward Euler, is required in order to achieve stability. Moreover,
mechanical equations can be coupled to the FEM model, usually in a weak
sense by considering the different constant times with respect to the differ-
ent equations [5] [6]. Therefore, the time-step of the numerical model must
be chosen very small compared to the length of the transient state dura-
tion, especially when one uses circuit and mechanical couplings. In fact, the
time-step is determined with respect to the smallest time constant which
corresponds to the electric time constant whereas the time interval of the
simulation is linked to the time constant associated with the mechanic equa-
tion. The ration between the electrical and the mechanical time constants
can be of several hundred leading to the need of a huge number of time-steps
to simulate the transient state.

Finally, this approach enables to deal with nonlinear ferromagnetic mate-
rials. This point is relevant since most of the machines have their operating
point located into the nonlinear area [4]. Therefore, a numerical scheme such
as the Fixed Point Method or the Newton-Raphson have to be implemented
in order to convert a nonlinear problem into a sequence of linear problems.

Hence, the study of an electric machine requires to solve a nonlinear
large-scale system for a high number of time-steps. All those points con-
tribute to make this problem very expensive in terms of computational re-
sources. Moreover, the aim of industrial applications often consists in reach-
ing the steady state, which is the operating state of the electrical machine.

To overcome this issue, Projection-based Model Order Reduction (PMOR)
appears to be a very interesting tool since it allows to dramatically reduce
the number of unknowns. This approach consists in performing a projec-
tion of the original problem onto a reduced basis. This leads to a reduced
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system of equations with much less unknowns. Two subclasses of methods
may then be distinguished: the a priori and the a posteriori ones.

With a priori approaches, the reduced basis is not known before the
simulation: it is iteratively built from scratch. Then, the reduced solution is
computed at each iteration until the approximated solution converges to the
full model solution. The Proper Generalized Decomposition is maybe the
most famous a priori PMOR method and has successfully been applied to a
large class of engineering problems [7] [8] [9]. Moreover, this method looks
for a solution with a separable representation, allowing it to deal efficiently
with multiparameter problems.

As for the a posteriori methods, the reduced basis onto which the prob-
lem is projected, is determined before the simulation. Several procedures
allow to generate this basis. To name but a few, the Arnoldi-Lanczos which
proceeds by solving the problem in the harmonic domain while the Proper
Orthogonal Decomposition (POD) combined with the snapshot method re-
quires well-chosen solution of the full model [10] [11]. Those two methods
have often been used to study problems in engineering in very different
fields such as interconnected circuits [12] or for modeling aerodynamic prob-
lems [13]. Finally, the Reduced Basis (RB) method proposes a complete
reduction framework which allows to build efficiently a reduced basis and
an error estimator, through a greedy algorithm. The RB method is also
particularly adapted to multiparameter problems.

All those methods have proved to be extremely robust and efficient for
linear problems. However, applying them in the nonlinear case appears to
be much more challenging. For instance, the Arnoldi-Lanczos procedure
which relies on harmonic solutions cannot be transposed easily to the non-
linear case since it requires nonlinear multiharmonic solver. In mechanics,
the PGD has been successfully applied to nonlinear problems when coupled
with the LATIN method (LArge Time INcrement Method) [14]. Recently, it
has been applied in electromagnetic to solve nonlinear magnetostatic prob-
lems [15]. Until now however, taking into account the motion with the
PGD remains an open problem preventing the modeling of an electrical ma-
chine. Nevertheless, the POD allows to deal quite easily with nonlinearities
but requires additional calls to the full model, cancelling out partially its
advantages [16]. However, the POD approach can be combined with the
(Discrete) Empirical Interpolation Method (DEIM) which is an interesting
way to avoid the calls to the full model [17] [18]. The POD-DEIM has been
successfully applied in many fields of engineering problems such as Electrical
Networks [19], Fluid Mechanics [20] or Reservoir Simulations for petroleum
industry [21].

Although the PMOR approaches are quite recent in the field of electro-
magnetics, they have already been successfully applied on electromagnetic
devices such as electrical machines in the nonlinear case without consider-
ing both electrical and mechanical coupling simultaneously [6], conducting
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plates [22] or nonlinear three-phased transformers [23].

In this article, a POD-DEIM approach is developed in order to study a
synchronous machine. The numerical model takes into account the nonlin-
ear behaviour of ferromagnetic materials, circuit and mechanical equations.
This enables to study the start-up of a machine until it reaches the steady
state. To build an efficient reduced model valid on the whole operating
range of the electrical machine, an empirical ”Off-line/On-line” approach is
used. This is based on the typical tests of electrical devices (at no load and
in short-circuit) [23].

First, the numerical model of the nonlinear magnetostatic problem based
on the vector potential formulation coupled with electrical and mechanical
equations is presented. To take into account the motion of the rotor, the
overlapping Finite Element Method [24] is introduced.

Secondly, the Proper Orthogonal Decomposition approach, which allows
to project the full model in a reduced-basis of small size, is combined with
the (Discrete) Empirical Interpolation Method in order to compute nonlinear
terms efficiently. Furthermore, an empirical Offline/Online approach based
on a posteriori electrical engineering knowledge is presented.

Finally, a synchronous machine is studied with the reduced model which
will be compared to the full model in terms of accuracy and calculation time.

1 Numerical modeling of an electrical machine

1.1 Nonlinear magnetostatic field problem

Let us consider a nonlinear magnetostatic field problem in a domain D
of boundary Γ composed of a synchronous machine. We assume that the
domain D is divided into two parts: a static subdomain and a rotating sub-
domain Dθ of boundary Γθ. The nonlinear behaviour of the ferromagnetic
materials of the rotor and the stator is considered. The domain DNL of
boundary ΓNL such that Γθ ∩ ΓNL = ∅ gathers all the region with non lin-
ear materials. Four stranded inductors are considered. Only one inductor
belongs to the subdomain Dθ and the others to D \Dθ. We denote by ij the
current associated with the coil of the jth phase and i0 the current flowing
into the inductor of the rotor.

When the rotor is steady, the Maxwell equations describing the magne-
tostatic field problem reads:

curlH(x) =
3∑
j=0

ijNj(x) (1)

divB(x) = 0 (2)
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Figure 1: Electrical machine

where H denotes the magnetic field, B the magnetic flux density and Nj

the unit current density vector flowing through the jth stranded inductor.
One has to add a constitutive law in order to link the B field with

the H field: H = νB, with ν the magnetic reluctivity. For the isotropic
ferromagnetic materials (in DNL), the reluctivity depends on the value of
the norm of B: ν = ν(‖B‖). In order to apply a fixed point technique
to solve this nonlinear equation, one can introduce a virtual magnetization
vector Hfp(B) such that:

H = νfpB + Hfp(B) (3)

Hfp(B) = (ν(‖B‖) − νfp)B (4)

To ensure the uniqueness of the solution, boundary conditions have to
be added. In this article, we assume that:

B · n = 0 on Γ (5)

To solve the previous problem, the vector potential formulation can be
used. From (2), the vector potential A is defined such that:

B(x) = curlA(x) (6)

Then, a strong boundary condition is added:

A× n = 0 on Γ (7)

which satisfies (5).
Combining (1), (3), (6) and (7), the vector potential formulation of the

nonlinear magnetostatic problem reads:

curl (νfpcurlA(x)) =

3∑
j=0

ijNj(x)− curlHfp(A(x)) (8)
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Finally, the domain D is discretized using a 2D mesh composed of N
nodes. In the 2D case, the vector potential A is assumed to be orthogonal
to the plane of the study of normal n⊥: A(x) = A(x)n⊥. Thus, A is
expressed as linear combination of nodal shape functions. Let XA,k denote
the value of A(x) on the kth node. We introduce XA the vector of size N
of entries (XA,k)k=1...N . Then, applying the Galerkin method to solve (8)
leads to the following non linear system of equations.

MXA =
3∑
j=0

F jij − GNL(XA) (9)

with M the stiffness matrix of size N ×N which is symmetric definite, and
F and GNL two vectors of size N .

1.2 Motion through the overlapping method

In order to model the rotation of Dθ, the overlapping method is used. This
methods allows to take into account the motion of a sub-domain efficiently
along a thin non-meshed domain. Therefore, in order to apply this method
to our problem, a non-meshed domain Dr is introduced between Dθ and
D \Dθ of boundaries Γ−θ and Γ+

θ respectively, as shown on figure 2.

Figure 2: Settings of the overlapping domain

Basically, the overlapping method consists in computing interactions be-
tween Dθ and D \ Dθ inside Dr [24] [25]. This can be done by extending
the finite element functions of each domain onto Dr by ensuring continuity
properties. Since Dr is a non-meshed domain, no extra unknowns are added
to the problem.

To achieve that, the nodal basis functions of the nodes belonging to Γ+
θ

are firstly extended to Γ−θ . For simple boundary surfaces such as circles,
this extension is done by projecting the support of the nodal function along
the normal vector of the boundary Γ+

θ , as seen on figure 3.a . Then, figure
3.b shows how the nodal functions of Γ−θ are extended in the same way to
Γ+
θ . Finally, the support of the nodal functions from Γ+

θ intersects with the
support of the nodal functions of Γ−θ , and therefore, an interaction of the
two sub-domains can be computed. This interaction area is represented in
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dashed lines on figure 3.c. More details of this method can be found in [25].

Figure 3: Overlapping Finite Element interaction. (a): nodal function of
Γ+
θ projected onto Γ−θ . (b): nodal function of Γ+

θ projected onto Γ−θ . (c):
interaction between the two nodal functions.

Since the shape functions associated to the nodes along Γ+
θ and Γ−θ now

depend on the parameter θ, equation (9) reads:

M(θ)XA =
3∑
j=0

F jij − GNL(XA) (10)

under the assumptions that Γ+−
θ ∩ ΓNL = ∅.

1.3 Circuit and mechanical coupling

The coupling of the rotating nonlinear magnetostatic problem with circuit
and mechanical equations are studied in this section.

1.3.1 Circuit coupling

We suppose that the first inductor is supplied by a direct current i0 and
the others are connected to electric loads composed of resistors R and in-
ductances L. In these conditions, the currents {ik , k = 1, . . . , 3} are three
new unknowns of the problem. Then, circuit equations must be added to
the initial problem:

dφk
dt

(t) + L
dik
dt

(t) +Rik(t) = 0, ∀k = 1, . . . , 3 (11)

with φk the linkage magnetic flux associated with the kth inductor. The
magnetic fluxes are express as a function of the vector potential such that:

φk(t) =

∫
D
Nk(x) ·A (x, θ, t) dx = F t

kXA, ∀k = 1, . . . , 3 (12)

The potential A is now time-dependent. Therefore, its discrete counter-
part XA also depends of the time variable t. Then, by introducing X the
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new unknown vector such as X = [XA(t); i1(t); i2(t); i3(t)], the numerical
model can be written from (10), (11) and (12) as the following system of
differential algebraic equations:

K
dX

dt
(t) + M(θ)X(t) = i0F0 −GNL(XA(t)) (13)

with K and M squared matrices of size N + 3, F and GNL two vectors
of size N + 3. To solve this system without stability issues, the use of
a backward scheme is preferable. Therefore, applying an Euler Backward
scheme on (13) with a time-step τ leads to:(

K

τ
+ M(θ)

)
Xk =

K

τ
Xk−1 + i0F0 −GNL(Xk

A) (14)

where Xk = X(t = kτ).

1.3.2 Mechanical coupling

The mechanical coupling links the angular velocity of the rotor Ω = dθ
dt with

the electromagnetic torque TEM (A). The mechanical equation reads:

J
dΩ

dt
+ fΩ = TEM (A)− TMech (15)

with J the inertial momentum of the rotor, f a friction constant and TMech

the load. The computation of the electromagnetic torque TEM (A) derives
from the virtual work principle. It can be written as a quadratic function of
A [26]. In a discrete setting, one can write:

TEM (XA) = Xt
AMTXA (16)

with MT a sparse matrix of size N . Applying an explicit Euler scheme on
(15) and using (16) leads to the discrete mechanical equation:

Ωk+1 = Ωk(1 +
fτ

J
) +

1

J
(Xt

AMTXA − TMech) (17)

and then θk+1 = θk + τΩk+1. In the study of electrical machine, the time
constant τMech of the mechanical equation (17) is much larger than the one
arising from the circuit coupling τElec. Thus, an explicit time-scheme for
(17) is used. Like any explicit method, the approach is consistent if the
time-step τ is chosen sufficiently small in order to capture the dynamics of
the system [5] [6] [27] which is the case in practice since the time-step τ is
chosen according to τElec which is much smaller than τMech
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1.4 Numerical solution

The nonlinear system of equations (14) can be solved by using a fixed-point
approach, or more efficiently, the Newton-Raphson (NR) algorithm. Those
methods allow to transform a nonlinear problem into a sequence of linear
problems. Therefore, in order to find the nonlinear solution Xk of (14) at
the kth step, one has to solve several linear problems of solution Xk

j , such

that lim
j→∞

Xk
j = Xk. When applying the NR algorithm, only few iterations

are required to reach convergence in practice. At the kth time-step, the
residual vector Rk of size N + 3 is defined such that:

Rk(U) =

(
K

τ
+ M(θk)

)
U + GNL(U)− K

τ
Xk−1 − i0F0 (18)

Moreover, the Jacobian matrix of the problem at the kth time-step is:

Jk(U) =
K

τ
+ M(θk) + JNL(U) (19)

where JNL(U) denotes the Jacobian operator related to the nonlinear term
GNL(.).

Then, the jth linear problem from the NR method reads:

Jk(Xk
j−1)(X

k
j −Xk

j−1) = −Rk(Xk
j−1) (20)

which allows to compute Xk
j from Xk

j−1. A stop criterion comparing ηkj =

||Xk
j − Xk

j−1|| with a user-defined parameter ε < 1 is used to determine
whether the algorithm has converged or not.

Finally, the different steps describing the numerical scheme of the non-
linear coupled problem are summarized in figure 4.

Newton-Raphson

No

Yes

Figure 4: Numerical resolution scheme
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2 Model Order Reduction Methods

The nonlinear coupled problem (14)–(17) has a high computational cost.
Indeed, solving the nonlinear equation (14) requires a high number of un-
knowns and several Newton-Raphson iterations for each time-step. More-
over, adding the mechanical equation (17) to the problem makes the sim-
ulation time interval much larger versus the time-step τ defined from the
smallest time constant τElec related to the electrical behaviour of the rotat-
ing machine. Moreover, the electromagnetic torque TEM has a very high
oscillating frequency. Therefore, we propose to apply a MOR approach to
the problem (14)–(17) through the Proper Orthogonal Decomposition com-
bined with the (Discrete) Empirical Interpolation Method.

2.1 Proper Orthogonal Decomposition

The POD approach allows to significantly reduce the number of unknowns
of the equation system. Indeed, the POD belongs to the projection model
order reduction methods which consist in seeking an approximation of the
large-scale solution Xr into a small reduced basis Ψ.

2.1.1 Projection-based model Order Reduction

Into the Projection-based model order reduction framework, the solution
Xk of the nonlinear equation (14) is approximated as:

Xk ≈ ΨXk
r (21)

where Xk
r denotes the reduced solution and is a ”small” vector of size m,

with m << N . Ψ, the reduced basis, is a rectangular matrix in R(N+3)×m.
Injecting (21) into (14) gives the system of equations:(

K

τ
+ M(θ)

)
ΨXk

r =
K

τ
ΨXk−1

r + i0F0 −GNL(ΨXk
r ) (22)

However, the latter system is rectangular. Therefore, one can perform a
Ritz-Galerkin Projection by multiplying (22) with Ψt. Finally, the reduced
system of size m reads:(

Kr

τ
+ Mr(θ)

)
Xk
r =

Kr

τ
Xk−1
r + i0Fr −GNL,r(ΨXk

r ) (23)

with Kr = ΨtKΨ ∈ Rm×m, Mr(θ) = ΨtM(θ)Ψ ∈ Rm×m , Fr = ΨtF0 ∈
Rm and GNL,r(ΨXk

r ) = ΨtGNL(ΨXk
r ) ∈ Rm. Thus, those equations lead

to a reduced Newton-Raphson iteration:

Jkr (ΨXk
r,j)(X

k
r,j+1 −Xk

r,j) = −Rk
r (ΨXk

r,j) (24)
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with

Jkr (ΨXk
r,j) =

Kr

τ
+ Mr(θ

k) + JNL,r(ΨXk
r,j)

JkNL,r(ΨXk
r,j) = ΨtJkNL(ΨXk

r,j)Ψ

Rk
r (ΨXk

r,j) = ΨtRk(ΨXk
r,j)

The key of those projection methods is to find a reduced basis Ψ from
which the reduced system (23) provides an approximation of the full system
(14) as good as possible.

2.1.2 Determination of the reduced basis through the Proper
Orthogonal Decomposition

The Proper Orthogonal Decomposition, introduced in 1967 for fluid me-
chanic applications [28], is one of the most used model order reduction
method [10] [11]. This approach requires snapshots, i.e. solutions of the
problem for different parameter values, in order to build a reduced basis.
Those snapshots can be computed numerically or extracted from experi-
mental data.

Then, given a set of l snapshots S = {X1
A,X

2
A, . . . ,X

l
A} ∈ RN×l, one

has to perform upon it a Singular Value Decomposition (SVD). Let r be the
rank of the matrix S with r < l and r < N , then the SVD of the snapshot
matrix is written:

S =
(
U1 U2

)(Σ 0
0 0

)(
V t
1

V t
2

)
(25)

where U1 and V1 are matrices in RN×r and Rl×r respectively, whose columns
are orthonormal (U t

1U1 = V t
1V1 = Ir). Σ is a diagonal matrix of size r which

contains the so-called singular values {σi, i = 1 . . . r} such that σ1 > σ2 >
. . . > σr > 0. Thus, the reduced basis which allows to approximate XA is
ΨA = U1.

2.1.3 Truncation of the reduced basis

Truncation plays an essential part on methods like the POD which are based
on the SVD. Indeed, we have seen that the SVD allows to find the rank r
of the snapshot matrix S in (25). However for numerical problems, the
snapshot matrix S is likely to be full rank since its singular values are never
equal to the spurious zero because of the numerical noise.

Therefore, it is often advised to truncate the basis, i.e. to reduce the size
of the reduced basis, according to a truncation criterion. In the literature,
several methods have been proposed.
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A very popular approach consists in keeping the p first modes amongst l
which correspond to singular values larger than a user-defined small constant
ε:

ΨA = U1(:, 1 . . . p) / σi > ε, i = 1 . . . p

An other truncation method proceeds by considering the cumulative sum
so that it verifies for a fixed ε:

ΨA = U1(:, 1 . . . p) /

(
1−

∑p
i=1 σi∑l
i=1 σi

)
< ε

In this paper, a truncation based on the orthogonality condition is used.
Indeed, the matrix M⊥ = U t

1U1 with U1 given by (25) should be equal to
the identity matrix of size r. However, due to numerical computations and
noise, this equality does not hold and M⊥ is not diagonal:

M⊥ = Mε ⇒M⊥ 6= Ir

However, the matrix M⊥ is almost diagonal with magnitude 1 for the first
p modes but produce extra-diagonal terms for the last modes:

Mε ≈
(
Ip Θ1

Θt
1 Θ2

)
with

Θ1 6= 0

Θ2 6= Ir−p

This means that the smaller the singular value is, the less orthogonal
its corresponding mode is, which implies that the less relevant the mode is.
Therefore, we propose to use the following truncation approach, based on
the value of:

ΨA = U1(:, 1 . . . p) / |1−M⊥(i, i)| < ε, i = 1 . . . p

2.1.4 Structure preserving approach

Since X is made from two different sets of unknowns, XA and the cur-
rents (i1(t), i2(t), i3(t)), a structure-preserving approach is used. Basically,
it consists in constructing reduced basis for each kind of unknowns. How-
ever, since the number of circuit coupling equations remains small versus the
number of nodes N , only the unknowns XA are approximated in a reduced
basis. Therefore, the full reduced basis Ψ from (21) is written:

Ψ =

(
ΨA 0
0 Ini

)
(26)

with Ini defining the identity matrix of size ni.
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2.2 (Discrete) Empirical Interpolation Method

Although the number of unknowns has been dramatically reduced though
the POD approach, the computational cost of the nonlinear term GNL,r(ΨXk

r )
remains prohibitive. Indeed, one has to express first this quantity in the full
basis, and secondly, project it onto the reduced basis. Therefore, we pro-
pose to apply the (Discrete) Empirical Interpolation Method which allows
to compute some nonlinear terms only on DEIM-chosen points, and then to
interpolate the remaining entries of GNL.

Given a snapshot collection SNL of the nonlinear term GNL, a POD basis
ΨNL ∈ RN×s is calculated using the same approach as the one presented in
the previous section. Then, the (D)EIM algorithm [18] allows to generate a
selection matrix P = [ec1 , . . . , ecr ] ∈ RN×s where {ecj , j = 1 . . . r} denotes
the unit vector associated to the cthj component. Then, the nonlinear term
is approximated as:

G̃NL(U) = ΨNL

(
P tΨNL

)−1
P tGNL(U) (27)

while the algorithm ensures that P tΨNL is invertible. Thus, only P tGNL(U)
has to be computed. For finite element problems, the value of any vector
at a certain point only depend on itself and its neighbours. Then, the com-
putational cost of P tGNL(U) is highly reduced compared with the one of
GNL(U).

Furthermore, one may apply the POD projection onto the (D)EIM ap-
proximation. Therefore, the POD-(D)EIM approximation of the nonlinear
terms reads:

G̃NL,r(U) =
(
ΨtΨNL

) (
P tΨNL

)−1
P tGNL(U) (28)

and the nonlinear Jacobian associated to the (D)EIM approximation is:

J̃NL,r(U) =
(
ΨtΨNL

) (
P tΨNL

)−1
P tJNL(U)Ψ (29)

Note that the matrix
(
ΨtΨNL

)
in (28–29) is of size r× s with r << N and

s << N .

3 Applications

A 2D model of a nonlinear synchronous generator is studied. The geometry
and the mesh of the domain are presented in the figure 1. The rotor is
driven by a constant torque TMech and is supplied with a direct current
i0. Moreover, the motion of the rotor is taken into account through the
mechanical coupling (17) and the overlapping Finite Element Method. Since
the time constant of the mechanical equation (17) is much larger than the
one arising from the circuit equation (11), a high number of time-steps is
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required to reach the steady state. In our example, we have nt = 104 time-
steps. The 2D mesh of this machine is made of 23492 triangles and 12097
nodes.

3.1 Model Order Reduction Strategy

In order to build an accurate reduced system, a collection of snapshots has to
be chosen in such a way that they contain most of the different behaviours
of the system. For our problem, we impose that at least, the snapshots
collect a full mechanical period so that the reduced basis contains an entire
rotation. Thus, applying a ”direct” reduction approach where one collects
the snapshots during the first m time-steps and then begin the reduced
scheme at the (m + 1)th time-step may lead to a high computational cost.
Indeed, in our settings, a full mechanical period requires approximately 2000
time-steps.

Moreover, applying a greedy procedure to construct m basis vectors over
the full time interval would require solving m times the reduced system on
every time-step, which is also very resource-demanding.

However, in the field of electrical engineering, a synchronous machine is
easily characterized through two simple tests procedures: a no-load and a
short-circuit test. During those tests, there are no more mechanical coupling:
the rotation speed is set to a constant value Ω0. Thus, the electromagnetic
torque TEM of high oscillating frequency is no more related to the problem,
and allows to take a quite important time-step in order to compute a full
mechanical rotation with a reduced number of snapshots (in our case 122).
Furthermore, the short-circuit test considers the case where both the value
of R and L is zero in the circuit equation (11) whereas the no-load case
consists in not taking into account the circuit coupling. Therefore, the only
parameter left in those two test cases is the rotation angle θ

Finally, those two sets of snapshots are used to construct a dynamic
reduced system which accurately approximate the electrical machine, for any
value of R, L and TMech in (11) and (17). The MOR strategy is summarized
on figure 5.

3.2 Offline procedure

Each of the two tests procedures has been computed with m = 122 snap-
shots uniformly distributed in [0, 2π] with respect to the rotation angle:

θk =
2kπ

121
, k = 0 . . . 121. One has to note that the half of the electrical

machine presents symmetry conditions. Therefore, in order to maximize the
information collected in the snapshots, one has to make sure that the divi-
sor in θk (i.e. 121 in our case) is odd. Indeed, taking even divisor implies
gathering snapshots which have symmetry conditions and therefore redun-
dant information. In practice, this redundancy is highlighted by observing
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Figure 5: Offline/Online strategy

the slope of the singular values obtained from the snapshots S and SNL,
according to (25): the steepest it is, the less relevant the snapshots are.
This is shown on figure 6 where the singular values are plotted for snapshots
computed with odd divisor (θk = 121) and even divisor (θk = 120). Indeed,
above 40 modes approximately, the singular values of the even divisor case
are at least one order of magnitude smaller than the odd divisor case.

0 20 40 60 80 100 120 140
10

−15

10
−10

10
−5

10
0

10
5

Even divisor

Odd divisor

0 20 40 60 80 100 120 140
10

−10

10
−5

10
0

10
5

10
10

Even divisor

Odd divisor

number of modes number of modes

Singular values of Singular values of 

Figure 6: Singular Values decay of S and SNL with odd and even divisors.

The 2 × 122 = 244 snapshots obtained from the two tests procedures
are concatenated in order to build the two reduced basis Ψ and ΨNL. The
truncation has been applied according to the orthogonality criterion (sub-
section 2.1.3) with ε = 10−7. Finally, the two reduced basis Ψ and ΨNL are
respectively of size 71 and 160.

Figure 7 shows the interpolation points selected by the (D)EIM algo-
rithm. One can see that the (D)EIM points are located around the air gap
for the stator and the rotor. This is relevant since the magnetic field mag-
nitude varies much more on the surface of the rotor and also on the stator
tooth tips than inside the rotor and in the stator yoke and teeth.
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Figure 7: (D)EIM points

3.3 Online procedure

Once the reduced system has been built, the online computation involving
the mechanical and the circuit coupling is performed by applying a constant
torque TMech = 47N.m in (15) on 104 time-steps.

3.3.1 Verification

The reduced system is tested on a short-circuit case and a no-load case,
but with a mechanical coupling. The results are compared with a full FEM
model. Figure 8 shows the evolutions of the electromotive force (EMF) at
the terminals of each inductors of the stator. The EMF are computed by the
derivative of the magnetic linkage fluxes. For both tests, the EMF evolutions
obtained from the reduced model are close to those from the full model.

3.3.2 Adaptivity of the reduced basis

The reduced model is tested with different values of R and L in the circuit
equation (11). The evolutions of the currents obtained from the reduced
model and the full model associated with the stranded inductors of the
stator are presented on figures 9, 10, 11, 12 and 13. We can see that the
currents from the reduced model are close to the references. This implies
that the reduced system is dynamic in the sense that it adapts to values of
R and L for which no snapshots were computed. By taking into account the
snapshots computation, the speedup obtained with model order reduction
is approximately 35.
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Figure 9: Currents computed with the FEM and the MOR approaches for
an online computation with R = 5kΩ and L = 2H during the transient state
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Figure 10: Currents computed with the FEM and the MOR approaches for
an online computation with R = 600Ω and L = 0H during the transient
state (a) and the steady state (b)
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Figure 11: Currents computed with the FEM and the MOR approaches for
an online computation with R = 10kΩ and L = 0H during the transient
state (a) and the steady state (b)
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Figure 12: Currents computed with the FEM and the MOR approaches for
an online computation with R = 0Ω and L = 0.5H during the transient
state (a) and the steady state (b)
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Figure 13: Currents computed with the FEM and the MOR approaches for
an online computation with R = 0Ω and L = 5H during the transient state
(a) and the steady state (b)

Conclusion

The POD approach has been combined with the (D)EIM in order to study
an electrical machine. The numerical model is based on a nonlinear mag-
netostatic problem through the vector potential formulation coupled with
circuit and mechanical equations. The nonlinear problem has been solved by
using the Newton-Raphson approach and the motion of the rotor with the
overlapping Finite Element method. In order to obtain an efficient reduced
model on the whole operating range of electrical machines, an empirical
”Off-line/On-line” approach has been developed. With the proposed ap-
proach, the start-up of a synchronous machine until it reaches the steady
state has been studied. On this example, the reduced model appears to
be more efficient with respect to the computation cost than the reference
model especially when the time-step is very small. In terms of accuracy,
the global quantities can be approximated with a low number of unknowns
and thus, the computation time is significantly reduced. Our future works
will focus on POD-(D)EIM error estimators in order to build robust and
adaptive reduced systems of electrical machines.
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[14] Ladevèze, Pierre and Passieux, J-C and Néron, David. The latin
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Order Reduction of Magnetoquasi-Static Problems Based on POD and
Arnoldi-Based Krylov Methods. Magnetics, IEEE Transactions on,
51(3):1–4, March 2015.

[23] Henneron, Thomas and Clenet, Stephane. Model Order Reduction of
Non-Linear Magnetostatic Problems Based on POD and DEI Methods.
Magnetics, IEEE Transactions on, 50(2):33–36, 2014.

[24] Tsukerman, Igor and others. Overlapping finite elements for problems
with movement. Magnetics, IEEE Transactions on, 28(5):2247–2249,
1992.

[25] Krebs, Guillaume and Henneron, Thomas and Clenet, Stéphane and
Le Bihan, Yann. Overlapping finite elements used to connect non-
conforming meshes in 3-D with a vector potential formulation. IEEE
transactions on magnetics, 47(5):1218–1221, 2011.

[26] Ren, Z and Razek, A. Local force computation in deformable bodies
using edge elements. Magnetics, IEEE Transactions on, 28(2):1212–
1215, 1992.

[27] E Vassent, G Meunier, A Foggia, and G Reyne. Simulation of induction
machine operation using a step by step finite element method coupled
with circuits and mechanical equations. Magnetics, IEEE Transactions
on, 27(6):5232–5234, 1991.

[28] Lumley, J. The Structure of Inhomogeneous Turbulent Flows pp. 166-
178. Atm. Turb. and Radio Wave Prop, 1967.

22


