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A B S T R A C T

This study aims at investigating numerically the Rayleigh-Bénard Convection (RBC) in viscoplastic fluids. A Casson fluid is considered in a 
bidimensional square cavity heated from below. The effects of the dimensionless yield stress, the Bingham number Bn, on the heat transfer 
and motion is investigated in the range 5.10 Ra< < 103 5 for the Rayleigh number and Pr = 10, 100, 1000 for the 
Prandtl number. One shows that the yield stress has a stabilizing effect, reducing the convection intensity. Above a certain value of Bnmax , 
the convection does not occur and the heat transfer is only due to conduction. For moderate Bn values, truly un-yielded regions are located 
in the center of the cavity; their areas grow with increasing Bingham number and invade the whole cavity at the threshold value Bnmax .

1. Introduction

Viscoplastic fluids, characterized by a yield stress τy, are known to
present a complex transition between a solid-like and a fluid-like beha-
vior. If the material is not stressed enough, i.e. less than the yield stress,
the material does not flow and behaves as a solid. Above the yield stress,
it flows with a shear-thinning behavior. The most used models describing
viscoplastic fluids are the inelastic Bingham [1], Herschel-Bulkley [2]
and Casson [3] models. The Bingham model is the simplest model which
deals with a yield stress. Due to its relative simplicity, the Bingham
model is the most frequently used model in theoretical and numerical
studies. However, the Bingham model is not realistic. Most of real ma-
terials behave as shear-thinning yield stress fluids such as the Herschel-
Bulkley or Casson fluids. The Casson model is currently used in the field
of food stuff [4], in particular, it has been chosen by the International
Office of Cocoa and Chocolate to model the chocolate rheological be-
havior. Furthermore, the Casson model is often adopted in medicine to fit
the blood rheology [5–10]. The flow of some particulate suspensions can
also be modeled by Casson fluids [11], [12].

The Rayleigh-Bénard Convection (RBC) is a buoyancy-driven in-
stability, i.e. it occurs in a fluid layer heated from below and submitted
to a vertical temperature gradient. This configuration is widely en-
countered in nature and also in industrial processes, justifying the im-
pressive volume of work devoted to its understanding since more than a
century especially in the case of Newtonian fluids, reviews are provided
by Refs. [13–15] and some recent studies are done by Refs. [16–20].
Compared to the Newtonian case, the RBC in viscoplastic fluids has

been little studied. However, the RBC in viscoplastic fluids is experi-
encing a rising interest these last decades leading to theoretical and
numerical studies [21–28], as well as experimental investigations [29],
[30]. By considering either Bingham or Herschel-Bulkley fluids, all
these studies show that the yield stress has a stabilizing effect, meaning
that the conductive solution (motionless solution) remains stable for
larger Rayleigh values when τy is increased. It is also shown (i) that the
motionless solution is linearly stable in the case of an inelastic visco-
plastic fluid [21] [22], (ii) that convection can occur if the amplitude
perturbation is large enough and (iii) that the transition from con-
ductive to convective regime is subcritical [27], [31]. Another result of
great interest is the structure of the convective flow, via the velocity
and temperature profiles, and the topology of the flow, i.e. the ex-
istence, size and location of the yielded and unyielded regions because
it can have consequences on heat transfer for instance. Indeed, in the
case of Bingham and Herschel-Bulkley fluids, the increase in τy involves
a decrease in the Nusselt number as well as the development and the
increase in unyielded regions [23] [26], [27]. Concerning the experi-
mental investigations, the first to study the RBC in yield stress fluids is
Darbouli et al. [29], who focus on the onset of convection in Carbopol
gels in a cylindrical cavity. Onset of the Rayleigh–Bénard convection in
Carbopol gels has also been studied experimentally in a rectangular
cavity by Kebiche et al. [30]. In these studies, it is shown that the
governing parameter is the yield number Y which represents the ratio
between the yield stress and the buoyant effects. However, the studies
do not obtain similar critical conditions in terms of Yc at the onset of
convection, this is certainly due to different boundary conditions. A
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more recent study given by Métivier et al. [32] highlight similar critical
conditions than that given by Ref. [29]. Furthermore, by considering
the development of thermal plumes due to a localized heat source in
Carbopol gels, Davaille et al. [33] obtain the same order of Yc than [29]
and [32].

The aim of our paper is to consider numerically the RBC in Casson
fluids since, to our best knowledge, it does not exist any result while the
Casson model is widely used to describe viscoplastic fluids. For this
respect, we extend the numerical study given by Turan et al. [23] and
Aghighi & Amar [26] to the Casson fluid case and we consider the
bench case of a two-dimensional square cavity heated from below.

First, this paper set the mathematical formulation of our config-
uration. The numerical method and its validation are then described. In
section 4, results are presented and discussed. Correlations for the
Nusselt number are also proposed in this section. Our paper finally ends
with a concluded section.

2. Mathematical formulation

2.1. Casson model

The stress-deformation behavior of viscoplastic materials based on
Casson model is given by:
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The various dimensional quantities above are defined as follows:  τy

is the yield stress, μ is the constant plastic viscosity, Cp is specific heat
capacity, k is the thermal conductivity, g is the acceleration due to
gravity, β is the coefficient of thermal expansion, α is the thermal

diffusivity, TΔ is the temperature difference between hot and cool walls
and ν is the kinematic viscosity.
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Papanastasiou modifications method [34] can be applied to Casson
model to avoid discontinuity between yielded and unyielded regions.
This method consists in an exponential regularization of the viscosity,
leading to the expression of the stress [35]:
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where m is the regularization parameter which is a large value. It is
worth noting that, the effective viscosity, =μe

τ
γ̇
ij

ij
, tends to mBn when γ̇

tends to zero (Fig. 1). This is a large but finite value which depends on
the Papanastasiou parameter and the Bingham number. On the other
hand, viscosity μe tends to 1 when γ̇ tends to infinity. Furthermore, one
notices that at fixed value of m, the decrease in Bn involves a decrease
in the effective viscosity (whatever the value of γ̇ ) but also a decrease
in the shear-thinning degree which could be defined by dμ dγ/ ˙e .

2.2. Rayleigh-Bénard convection

The configuration under analysis is depicted in Fig. 2. The model is
defined in the unit square domain fulfilled by a yield stress fluid
modeled by the Casson law. Because one knows that the transient
phenomena do not modify the steady state result (see for instance [23]
[24] [36]), in this study we consider the steady state set of equations
corresponding to the two-dimensional natural convection case. As-
suming the Boussinesq approximation and using the characteristic
scales H for length, =u gβHΔT( )0

1
2 for the velocity, and =p ρu0 0

2 for
the pressure, the steady dimensionless continuity, momentum and en-
ergy equations are:
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Fig. 1. Variations of viscosity μ with γ̇ at the constant Bingham number (left) and constant regularization parameter (right).



Where u v θ, , and p are dimensionless horizontal velocity, vertical
velocity, temperature and pressure respectively.

No-slip conditions are considered at walls.
= =u v 0 ,

Adiabatic conditions are written at vertical walls and imposed
temperatures at horizontal walls:

            
∂
∂

= = =θ
x
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In these equations, the dimensionless temperature θ is defined by:
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Where TC and TH ( >T TH C ) are the temperatures enforced at the top
and bottom cavity boundaries, respectively, and Tr is a reference tem-
perature: = +T T T( )/2r H C .

The heat flux averaged over the hot wall is defined via the Nusselt
number:
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3. Numerical method

In order to solve the system of equation (6) with their corresponding
boundary conditions (7), by using Matlab we have developed a nu-
merical code that is presented in this section. Similarly to Aghighi et al.
[37] in what follows we consider a penalty formulation of the in-
compressibility constraint. In this way, equation (6) can be written as
follows:
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Where λ is a sufficiently large constant which allows to ensure the in-
compressibility condition.

The matrix form of the system of equation (10) writes:

 + =L T f[ ]{ } { } 0 (11)

where

 Fig. 2. Schematic diagram of the physical model and 

co-ordinate system.

Fig. 3. Mean Nusselt number Nu for Bingham fluids at ∗5 104 and =Pr 10 (line: present
study, points: Turan study [23]).

Fig. 4. The variations of critical Rayleigh number Rac with Bingham number Bn for
=Pr 10, 100, 1000.
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The numerical solutions of system (11) with the corresponding
boundary conditions are obtained by developing a numerical code based
on the Galerkin weighted residual finite element method with quad-
rilateral, eight nodes elements. The Galerkin weak statement is obtained
by minimizing the residual error over the discretized domain [38].

3.1. Space discretization

Using the set of shape function =N{ }k k
n

1 the velocity components

Fig. 5. The variations of critical Yield number Yc with Rayleigh number Ra for =Pr 100.

Fig. 6. Variations of non-dimensional velocity u of Casson fluids for different Bn values along the vertical mid-plane for different values of Ra at =Pr 100.



u v( , ), pressure p and temperature θ can be expanded in the domain
A x y( , ) for ≤ ≤x y(0 , 1) as bellow:
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where n is the total number of nodes.
Using the quadrilateral, eight nodes elements to discrete the domain

and isoparametric method for mapping from x y( , ) to a square reference
domain ξ η( , ) one can write:

   ∑ ∑= =
= =

x x N ξ η y y N ξ η( , ), ( , )
i

i i
i

i i
1

8

1

8

(17)

3.2. Weak formulation

The integral form of equation (11) can be written as:
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where ψ is a weighting(test) function.
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Appendix A. The integrations are evaluate numerically by using a direct
integration formula on a square [35] in ξ η( , ) domain using the fol-
lowing relationships:
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where J is the Jacobian matrix defined by:
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Fig. 7. Variations of non-dimensional velocity v of Casson fluids for different Bn values along the horizontal mid-plane for different values of Ra at =Pr 100.



After applying the numerical integration, a system of algebraic
equations can be written based on elementary matrices as follows:
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Where K[ ] is the global left hand side matrix, F{ } is the global load
vector and T{ } is the global unknown vector:
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Here up and vp are the previous values of velocity and w is a con-
stant. At the end of each iteration, the previous values of velocity are
replaced by the new computed values: = =u u and v vp p . This proce-
dure is used in order to linearize the non-linear terms which come from
the advective and convective terms in the momentum and energy
equations. The linear system of equation (25) is solved by using the
Matlab function ‘mldivide’. Using the new computed values, the stress
terms are evaluated and the process is repeated until the convergence is
reached. The convergence is obtained when the norm 2 of the relative
difference between the new and the previous values of the vector T{ } is
less than −10 5.

The velocity distribution of Newtonian fluids is considered as the
initial values of up and vp.

Fig. 8. Variations of non-dimensional Temperature θ of Casson fluids for different Bn values along the vertical mid-plane for different values of Ra at =Pr 100.



It is worth mentioning that the numerical analysis of Eq. (10) leads
to an unstable system of equations. In order to circumvent this diffi-
culty, the Laplacian velocity components were added in Eqs. (26) and
(29). Because these terms are added on both sides of the momentum
equations, they vanish by considering the whole system. It means that
these terms do not affect the results but allow to make the equations
stable to introduce diffusive terms which make the equation stable.

3.3. Numerical method validation

The grid independent solution has been tested by considering two
cases = = =Ra Pr Bn( 10 , 10, 0)5 and =Ra( = =Pr Bn10 , 1000, 0)5 .
The convergence is tested on the values of the average Nusselt number.
We found that the mesh consisting in 1825 nodes guarantees a grid

independent solution within the relative tolerance level of −10 5.
In order to ensure convergence of results in the case of viscoplastic

fluid, the convergence of the solutions was checked by varying the
penalty and regularization parameters. Results show that Nu converges
within 0.1% by varying λ from 103 to 104 and also by varying m from 103

to 104. In the following, all results are obtained for =λ 104 and =m 104.
The numerical method has been validated by considering the

Newtonian case =Bn( 0). Our results have been compared with that
ones given in Refs. [37], [39]. A very good agreement has been ob-
tained within a mean relative difference of 1%.

The numerical code was also validated by testing the Bingham case.
Results of mean Nusselt number Nu for = ∗Ra 5 104 and =Pr 10 are
shown in Fig. 3, one observes a good agreement between our results
(continuous line) and the results obtained by Turan et al. [23] (circles).

Fig. 9. Contours of non-dimensional temperature θ and velocity vectors with plug regions of Casson fluids for six different values of Bingham number at =Ra 105and =Pr 100.



4. Results and discussion

In this part, we only consider the Rayleigh-Bénard Convection of
Casson fluids. One knows that the RBC occurs when buoyancy effects
are larger than the viscous and thermal diffusivity effects (dissipative

effects). It means that above a critical Ra value, convection occurs. In
the case of Casson fluids, the onset of convection is depicted in Fig. 4.
This figure displays the domain in the (Ra Bn,c ) parametric plane
where convection cells are possible for different values of Pr , i.e. when

≥Ra Rac. One notices that the critical Rayleigh number increases with

Fig. 10. Evolution of the mean Nusselt number of Casson fluids with the Bingham number for three different values of Pr at =Ra 5.103 (left) and =Ra 104 (right). [Numerical results
(−) and prediction of the correlation (o)given by Eq. (30)].



Bn at fixed Pr . It highlights a stabilizing effect of the yield stress via Bn.
Similarly, the increase in Pr stabilizes the motionless solution. In order
to compare our results to experimental studies given by Refs. [29] [30],
and [32], Fig. 5 represents the onset of convection in terms of the cri-
tical Yield number Yc (where the Yield number is defined as =Y τ

ρβg THΔ
y

) as a function of the Rayleigh number for =Pr 100. In the range of the
Rayleigh values involved in the experimental studies
( = −Ra O O(10 ) (10 )4 5 ), we obtain realistic values of Yc since in Refs.
[29] and [32], the studies highlight ≈Y1/ 80c (i.e. ≈ −Y 10c

2) for no-slip
conditions and (perfect) conductive horizontal walls. Furthermore, it is

Fig. 11. Evolution of the mean Nusselt number of Casson fluids with the Bingham number for three different values of Pr at =Ra 5.104 (left) and =Ra 105 (right). [numerical results
(−) and prediction of the correlation (o)given by Eq. (30)].



worth noting that criticality is sensitive to boundary conditions and the
value of aspect ratio. In Refs. [29] and [32], several values of aspect
ratio are investigated between 6 and 18, while in the present study, the
aspect ratio has been chosen equal to 1 corresponding to the benchmark
case of the Rayleigh-Bénard configuration. When considering slip
boundary conditions, the value of Y1/ c decreases as highlighted by Ref.
[29]. In Ref. [30], results provide that ≈Y1/ 5c for slip conditions and
insulated horizontal walls conditions which are quite far from the
present study.

4.1. Velocity and temperature

When the convection occurs, the velocity vectors are no longer
equal to zero as well as the linear profile of the temperature is modified
by the motion. Figs. 6 and 7 depict the variations of non-dimensional
horizontal component of velocity u and non-dimensional vertical
component of velocity v along the vertical and horizontal mid-planes of
the cavity when =Pr 100 and for different values of Ra and Bn. Results
show that the magnitude of velocity increase with increasing Ra due to
stronger buoyancy force. In other words, the increase in Ra strengthens
the intensity of convection. On the other hand, one can see that the
magnitudes of velocity and temperature, displayed in Figs. 6–8, de-
crease with increasing Bingham number indicating the stabilizing effect
of the yield stress, which corresponds to an additional flow resistance.
This result agrees with those obtained in the Bingham and Herschel-
Bulkley cases [23] [26], [27]. In these articles, it is shown that the
increase in the Bingham number (or Yield number) leads to stop the
convective motion. It means that for fixed Ra and Pr values, there exists
a value of Bn above which the convection does not occur, say Bnmax .
Figs. 6–8 show that the value of Bnmax increases with increasing Ra due
to the stronger convection force which can overcome the flow re-
sistance up to greater values of the Bingham number.

Similarly, variations of non-dimensional temperature θ with Ra and
Bn along the vertical mid-plane of the cavity have been shown in Fig. 8.
As expected, the non-linearity of temperature distribution increases
with increasing Ra due to stronger convection force. On the other hand,
the variation of the temperature θ tend to a linear profile when the
value of Bingham number increases and reaches Bnmax , meaning that
the heat transfer is only due to thermal conduction and there is no flow
within the enclosure.

4.2. Contours of temperature and velocity vectors

Fig. 9 shows contours of non-dimensional temperature θ and velo-
city vectors for different values of Bingham number at =Ra 105 and
=Pr 100. The Shaded areas in these figures show the unyielded regions

where <τ τy. One can observe different types of regions: the Appar-
ently Unyielded Regions (AUR) and the Truly Unyielded Regions (TUR)
[35]. At the corners of the cavity, the unyielded regions correspond to
AUR since they are dead zones where the velocities are very small and
the fluid is stagnant. In the center of the cavity which coincides with the
center of the convective cell, TUR appear when Bn is increased at
nominal Ra and Pr values as one can see in Fig. 9. The unyielded re-
gions occur where the shear rate is minimal (equal to zero). By contrast,
maximal values of shear rate are located at walls where no slip condi-
tions are considered. The increase in Bn is accompanied by an increase
in the TUR area as well as a decrease in the convective intensity. Fi-
nally, unyielded regions invade the whole cavity at =Bn Bnmax . Ob-
viously, the increase in TUR area highlights the decrease in the con-
vection intensity as already discussed in the paragraph 4.1. These
results are in agreement with results proposed by Turan et al. [23] for
Bingham fluids and by Refs. [26] [27],for Herschel-Bulkley fluids.

4.3. Heat transfer (Nusselt number)

The variations of mean Nusselt number Nu with Bingham number

Bn are shown in Figs. 10 and 11 for different values of Prandtl number
( =Pr 10, 100, 1000) at respectively =Ra 5.10 , 103 4 and

=Ra 5.10 , 104 5. It can be seen that the maximal value of the mean
Nusselt number occurs for Newtonian fluids where =Bn 0. For visco-
plastic fluids ( >Bn 0), the mean Nusselt number decreases with in-
creasing Bingham number, underlying once again that the yield stress
decreases the convective motion intensity. As already discussed, for a
given Ra and Pr set of values, results show that the mean Nusselt
number decreases with increasing Bingham number and for large value
of Bingham number ≥Bn Bnmax the value of mean Nusselt number fall
abruptly to =Nu 1, meaning that convection stops leading to a mo-
tionless state. The transition between the convective to conductive re-
gimes is abrupt in terms of Nusselt values, highlighting a subcritical
bifurcation which is in agreement with [31] and [27]. As expected, at
fixed value of Bn, the increase in the Rayleigh number involves larger
heat transfer (Nu values) via larger buoyancy effects. It also means that
Bnmax increases with increasing Ra.

Concerning the influence of the Pr number, one notices that results
are insensitive to Pr variations in the Newtonian case. However, for
viscoplastic fluids ( ≠Bn 0), the increase in Pr values decreases the heat
transfer as well as the value of Bnmax as displayed in Figs. 10 and 11.

Our results obtained for Casson fluids can be compared with the
results obtained for Bingham [23] and the shear-thinning Herschel-
Bulkley fluids [17]. At fixed Ra and Bn values, =Pr 10, one can observe
that Casson fluids lead to smaller Nu values than the two other models
which involves a larger stabilizing effect of the yield stress in the case of
Casson fluids. In other words, the heat transfer is the smallest one for
the Casson fluids while the largest heat transfer is obtained for Her-
schel-Bulkley model. This result is correlated with the non-linear
(shear-thinning) variations of the viscosity [37], [40].

4.4. Correlation for the mean Nusselt number

A correlation for the mean Nusselt number Nu can be proposed in a
general form as below:

⎜ ⎟= = + − ⎡

⎣
⎢ − ⎛

⎝
⎞
⎠
⎤

⎦
⎥Nu f Ra Pr Bn Nu Bn

Bn
( , , ) 1 ( 1) 1

max

a

0

0.3

(30)

where Nu0 is the mean Nusselt number obtained in the Newtonian case
( =Bn 0) and Bnmax is the Bingham number above which the convection
does not occur and =Nu 1. The values of Nu0 and  Bnmax can be esti-
mated by fitting our numerical results:

= ∗ − ∗⎡
⎣ +

⎤
⎦

Nu Ra Pr
Pr

0.3495 (ln( ) 5.125)
10

1.296
0.02

(31)

= ∗ − ∗ ∗⎡
⎣

⎤
⎦

−
Bn Ra Ra Pr(0.03984 ln ( ) 0.3207)

10max
1.8 0.3097

0.5

(32)

and

= − ∗ − − ∗ −a Ra Ra0.01537 (ln( ) 15.73) 0.2263 (ln( ) 13.42)3 2 (33)

The correlation we propose for Nu0 in Eq. (31) implies a maximal
relative difference with our numerical results which is less than 2% and
a mean relative difference smaller than 1% for < <Ra5.10 103 5 and
=Pr 10, 100, 1000 as one can observe in Figs. 10 and 11. These cor-

relations are also very useful in the case of viscoplastic fluids, since they
provide the heat transfer via Eq. (30) and also Bnmax (Eq. (32)), the
value above which the flow cannot occur. This last value is determined
as a function of Ra and Pr , with a maximal relative difference with our
numerical results of 3.2% and a mean relative difference close to 1%.

5. Conclusions

In this study, a finite element numerical code has been developed in
order to investigate the Rayleigh-Bénard convection in viscoplastic



fluids modeled by a Casson law. A two-dimensional square enclosure is
considered. Results obtained for a Casson fluid are qualitatively similar
to that obtained for Bingham and Herschel-Bulkley fluids. It means that
the stabilizing effect of the yield stress via the Bingham number is
highlighting since the increase in Bn reduces the convection intensity.
From a threshold value, Bnmax , the convective motion stops leading to a
conductive state characterized by a linear temperature profile and

=Nu 1. One recovers that the transition between the conductive to the
convective state ( <Bn Bnmax) is abrupt corresponding to a subcritical

bifurcation. Furthermore, we also obtain that the truly unyielded re-
gions appear in the center of the convective cell where the shear rate is
minimal. By contrast, maximal values of shear rate are reached at walls.
The areas of unyielded regions increase with the increase in Bn, un-
yielded regions invade the whole cavity from Bnmax. Finally, the heat
transfer is evaluated and correlations for the mean Nusselt number as
well as Bnmax are provided as a function of Ra Pr, and Bn. By com-
paring with the Bingham and Herschell-Bulkley models, the Casson
model leads to the smallest heat transfer.

Appendix A. Finite element analysis – Weak formulation
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