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The numerical modelling of the behaviour of materials at the microstructural scale has been greatly developed over the last two 
decades. Unfortunately, conventional resolution methods cannot simulate polycrystalline aggregates beyond tens of loading cycles, and 
they do not remain quantitative due to the plasticity behaviour. This work presents the development of a numerical solver for the 
resolution of the Finite Element modelling of polycrystalline aggregates subjected to cyclic mechanical loading. The method is based on 
two concepts. The first one consists in maintaining a constant stiffness matrix. The second uses a time/space model reduction method. In 
order to analyse the applicability and the performance of the use of a space–time separated representation, the simulations are carried 
out on a three-dimensional polycrystalline aggregate under cyclic loading. Different numbers of elements per grain and two time 
increments per cycle are investigated. The results show a significant CPU time saving while maintaining good precision. Moreover, 
increasing the number of elements and the number of time increments per cycle, the model reduction method is faster than the 
standard solver.

© 2017 Académie des sciences. This is an open access article under the CC BY-NC-ND 
license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

High Cycle Fatigue (HCF) of metallic materials is an important issue for many components involved in many areas of
mechanics. It is characterized by a low level of loading and leads to a number of cycles required to cause failure generally 
between 105 and 107. In this regime, the modelling of crack initiation observed at the scale where the mechanisms take 
place (scale of the microstructure) is not straightforward. Indeed, one of the most challenging tasks in the mechanics of 
materials is to get access to the mechanical response at the grain scale of a polycrystalline aggregate, especially when it 
is subjected to cyclic loading [1]. Local plasticity, microstructural heterogeneities, and crystal orientations play an essential 
role in the initiation and growth of cracks. Regarding this matter, it is often necessary to reach a stabilized state to get the 
various mechanical states of stress and strain in the critical zones.

From a numerical point of view, performing computation under monotonic loading is not sufficient. A simulation of the 
entire cyclic load history is needed. The numerical modelling of materials at the microstructural scale has been greatly 
developed over the last two decades. Different numerical methods have been used to explicitly model a polycrystal: the 
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Notation

A scalar
{A} vector
[A] matrix
A first-order tensor (vector)

A second-order tensor

A fourth-order tensor

{0} zero vector

Finite Elements Method (FEM) [2–4] and the spectral method [5–7]. The spectral method, with the use of the Fast Fourier 
Transform (FFT) algorithm to solve numerically the integral equation associated with the heterogeneous problem, allows 
us to reach better performances than the FEM [8]. However, the FFT method is limited to the case of periodic problems. 
The FEM remains the most commonly used approach for numerical simulation of polycrystalline aggregates. The problem 
is solved step by step through an incremental scheme. For each increment loading, a Newton–Raphson-type resolution 
scheme is carried out. This method is taken as a reference and is commonly used in commercial and academic computation 
codes. Unfortunately, for problems with a large number of degrees of freedom (dof), the resolution of the linear system 
is expensive in terms of CPU time [9]. In fact, the tangent stiffness matrix is computed at each iteration and creates a 
significant computational cost for a high number of dofs. Moreover, the computation time is proportional to the number of 
increments and consequently to the number of simulated cycles.

To reduce significantly the computation time of the FEM, many authors seek to develop accelerated numerical methods 
that can be classified as follows:

(i) methods that deal with the local variable evolution at every point of the structure as the LATIN method [10,11], the 
direct cyclic method [12–14], the cycles skip method [15,16], and the Zarka’s method [17,18];

(ii) methods that approximate the local variables at the critical point, called the Neuber methods [19];
(iii) methods based on model reduction and called Reduced Order Models (ROMs). They can greatly reduce the resolution 

cost of various mechanical problems appearing in many industrial applications. Two families are usually distinguished: 
the “a posteriori” methods, which consist of a construction of the reduced basis with an a priori knowledge of the 
solution, such as the Proper Orthogonal Decomposition (POD) [20,21], the Singular Value Decomposition (SVD) [22], and 
the Centroidal Voronoi Tessellations (CVT) [23]. A family of “a priori” model reduction techniques where the construction 
of the reduced-basis is done without an a priori knowledge of the solution, such as the A Priori Hyper Reduction method 
(APHR) [24,25] and the Proper Generalized Decomposition (PGD) [26–28].

According to the literature, accelerated numerical methods are generally used for the elastoplastic behaviour with von 
Mises plasticity criteria and linear kinematic hardening or nonlinear combined hardening. Some of these methods do not 
give a good satisfaction for any of the constitutive equations used for the materials (macroscopic or microscopic scale). For 
example, Zarka’s method is limited to the case of linear kinematic hardening; Neuber’s method is restricted to the confined 
plasticity case.

This paper presents the development of a numerical method based on a model reduction approach (technique) for the 
resolution with the FEM of nonlinear elasto-viscoplastic problems. The main purpose is to reduce the CPU time while 
keeping a good precision of the mechanical fields. Two approaches are used. The first one consists in keeping a constant 
stiffness matrix [29] all along the simulation in order to perform a factorization. The second is based on the use of a 
model reduction method to solve the space/time problem by decoupling the spatial and time coordinates. This is the idea 
of the Proper Generalized Decomposition (PGD) method [30]. The general principle consists in computing the solution 
defined on the entire space/time domain, in the form of a sum of product functions of each variable. This method has 
shown its efficiency in solving problems with a large number of dofs [31]. The space–time separated representation was 
initially introduced by Ladevèze et al. [10,32] (“radial approximation method”) with the LATIN approach [33,34], a powerful 
nonlinear solver. A review of the state of the art and more recent ex-tensions of the LATIN-PGD method in the case of 
nonlinear solid mechanics problems could be found in [35,36]. Then, a new family of PGD methods has been proposed by 
Ammar et al. [26,37] that circumvent the difficulty related to multidimensional problems. This new family has been very 
successful for many applications: the quantum chemistry field [38], the chemical master equation [39], the resolution of 
the multidimensional, and parametric problems [40,41] and nonlinear problem in rheology [42]. Recently model reduction 
methods opened new perspectives for an accurate and fast simulation of mechanical systems [43–45]; however, nonlinear 
history-dependent behaviours remain still today challenging scenarios for the application of these techniques. For instance, 
Bergheau et al. [45] used the PGD method as a space–time integrator of the elastoplastic problem under cyclic loadings 
to determine the elastoplastic states with reducing the computation times. Similarly to Bergheau’s work, we show in this 
paper a new methodology to develop the PGD method coupled to the FEM for problems involving high nonlinearity as well 
as a large number of dofs (scale of the microstructure). This type of application where plasticity dominates the material 
behaviour allows us to highlight the efficiency of the PGD solver in terms of precision and computation time when the 
number of space–time functions increases.



In this paper we focus on the application of the PGD in the field of polycrystal plasticity. Many computations have 
been carried out on polycrystalline aggregates with different mesh densities and time discretizations. Comparisons with the 
incremental method results, conventionally used in commercial computation codes, at the macroscopic (aggregate averages) 
and mesoscopic (grains averages) scales are presented and commented. In addition, the performance of the method in terms 
of CPU time is discussed.

2. Numerical methods

A structure defined in a spatial domain � is considered and submitted to a mechanical loading that evolves in the time
interval [0, T ]. The applied loading can be:

• a body force fd in �;
• a surface force on the boundary part ∂�2;
• a fixed displacement field on another part ∂�1.

The objective is to determine the mechanical responses at each point of the structure and at any time instant. This is 
performed by solving the equilibrium, compatibility and behaviour equations. These equations are discretized in time and 
space. The spatial discretization is performed by the FEM and the time problem is traditionally solved by the incremental 
method. In the following, the dependence of space and time will be noted x and t , respectively.

2.1. Finite Element Method

The FEM is the most used method for solving mechanical problems [46]. The static equilibrium condition writes (by 
neglecting the body force fd):

∇x·σ(x, t) = 0 ∀ (x ∈ �), (t ∈ [0, T ]) (1)

where σ is the stress field. Using the Principle of Virtual Power, the weak formulation obtained is:∫
�

(∇x·σ)·u∗ dV = 0 (2)

where u∗ defines a test field. Applying the divergence theorem, the weak formulation becomes:∫
�

σ : ε∗ dV =
∫
∂�

(σ ·n)·u∗ dS (3)

where ε∗ is the strain field deriving from the virtual displacement u∗ and n is the normal vector to ∂�. Taking into account 
the boundary conditions, Eq. (3) can be written as follows:∫

�

σ : ε∗ dV =
∫

∂�1

(σ ·n)·u∗ dS +
∫

∂�2

F d·u∗ dS (4)

where Fd represents surface force on ∂�2. As the test field u∗ vanishes on ∂�1, the above equation can be written as:∫
�

σ : ε∗ dV =
∫

∂�2

F d·u∗ dS (5)

The FEM is based on the construction of an approximation of the field variables u via a subdomain. This approximation 
is constructed by the approximate values of the field at the nodes of the element. In other words, instead of calculating 
the solution to the problem over an infinite set of possibilities, we limit the search space to the function U and use basic 
functions giving the displacement field u and u∗ at any point in �. Thus, a discrete form of the displacement field is given 
by:

{u} = [N]{U } and {u∗} = [N]{U∗} (6)

where {U } and {U∗} are the nodal values and [N] are the commonly used shape functions. The strain fields ε and ε∗ in 
each point of the structure can be written as functions of the displacement field using the above equation, with:

ε = 1

2
(∇u + ∇ᵀu) and ε∗ = 1

2
(∇u∗ + ∇ᵀu∗) (7)

{ε} =
⎧⎨
⎩

ε11
ε22

2ε12

⎫⎬
⎭ = [B]{U } and {ε∗} = [B]{U∗} (8)



where ∇ represents the gradient operator and [B] is the matrix of spatial derivatives of the shape functions. According to 
the above expressions of the strain tensors, using Eqs. (3) and (5), we obtain:∫

�

〈σ 〉{ε∗}dV = 〈u∗〉
∫
�

[B]{σ }dV = 〈u∗〉{F int} (9)

∫
∂�2

〈Fd〉{u∗}dS = 〈u∗〉{F ext} (10)

where {F int} and {F ext} are internal and external forces, respectively. The resolution of a mechanical problem using the FEM 
consists in searching the displacement field at each time (through an incremental scheme) by verifying the following weak 
formulation:

{F ext} − {F int} =
∫

∂�2

〈Fd〉{u∗}dS − 〈u∗〉
∫
�

[B]{σ }dV = {0} (11)

where {σ } depends on the strain evolution.The equilibrium of Eq. (5) can be written as:

〈u∗〉
∫
�

[B]{σ }dV = 〈u∗〉
⎛
⎜⎝ ∫

∂�2

[N]{Fd}dS

⎞
⎟⎠ (12)

After simplification, the overall equilibrium can be written as:

[K ]{U } = {F ext} (13)

where [K ] is the stiffness matrix. The resolution of the time problem in Eq. (13) is usually performed by the incremental 
method. However, the overall evolution is not resolved globally in one step, but the study interval is discretized in time 
increments and, consequently, Eq. (13) is solved in terms of displacement increment.

2.2. Nonlinear resolution strategy

2.2.1. Implicit approach (nonlinearity at the left-hand side)
The main goal is to solve the nonlinear Finite Element equations that satisfy equilibrium (13). In other words, the 

resulting force of the internal stresses must balance the externally applied loads. This leads to a vector representation given 
by the values of the displacement field {U } in order to minimize the residual {R}:

{R(U )} = {[K (U )]·{U }} − {F ext} = {0} (14)

The resolution of a nonlinear system of equations such as (14) relies, often, on iterative algorithms such as in the Newton–
Raphson method. When dealing with linear elastic materials, the relation (14) is linear. In this case, no Newton–Raphson 
linearization or temporal discretization is required. In general, the most frequently used methods for the resolution of 
nonlinear Finite Element equations (e.g., equation (14)) are the Newton–Raphson ones. Alternatively, a class of methods 
known as quasi-Newton methods have been developed for solving nonlinear systems of equations (see [47,48]) such as 
BFGS (Broyden–Fletcher–Goldfarb–Shanno). This last method is the most efficient one in the family of quasi-Newton solvers 
(see [49,50]).

The Newton method, just like the resolution of scalar equations, is based, for each iteration, on the Taylor expansion of 
the residual of the previous iteration:

{R(U )} j+1 ≈ {R(U )} j + ∂ R

∂U
({U } j){δU } j (15)

where j is the iteration of the Newton–Raphson method, {R(U )} j is the residual given at the iteration j. The term {δU } j is 
the displacement increment made on the solution at the current iteration and defined by:

{U } j+1 = {U } j + {δU } j (16)

The correction {δU } j is therefore repeated in order to find the quantity of {U } j+1 close to {U } j in order to minimize the 
residual of Eq. (15). It is therefore needed to solve the following linear equation system:

{R(U )} j + [KT]{δU } j = 0 (17)

The correction at iteration j is given by:



Fig. 1. Strategy for equilibrium resolution with elastoplastic loading.

{δU } j = −[K −1
T ] j{R} j (18)

with [KT] is the tangent stiffness matrix [51,52] expressed at each iteration j by:

[KT] j = ∇U ·[R(U j)] = ∂ R

∂U
({U } j) =

∫
�

∂ε

∂U
:
[

Cnl
] j : ε∗ dV =

∫
�

∂ε

∂U
:
(

∂σ

∂ε

) j

: ε∗ dV =

∫
�

[B]ᵀ
[

∂σ

∂ε

] j

[B]·{ε∗}dV

(19)

where [Cnl] is the nonlinear operator, the term [�σ
�ε ] reflecting nonlinearity. Let {�U } be an increment of the displacement 

field. Taking into account the previous relations, the incremental relationship of the overall equilibrium is given by:

[KT] j{δU } j
i = {�F ext(�U j−1)} j (20)

where the subindex ‘i’ represents the current increment. The problem is solved step by step through an incremental scheme. 
The computations consist in applying an increment {�F ext} and computing the corresponding displacement increment from 
Eq. (20) at iteration j. If convergence is obtained at this iteration, we proceed further with the next increment i + 1. 
Otherwise, a new increment of displacement is calculated at the following iteration j + 1 (Eq. (16)) from a new residual 
{R(U )} j+1 (Eq. (15)). This iterative scheme is repeated until the convergence of the solution is obtained for each increment. 
This strategy is illustrated in Fig. 1. That is, the norm of R in Eq. (14), which is required to be lower than a threshold value 
εtol, can be written as:

‖Res‖ = ‖R‖
‖�F ext‖ < εtol (21)

If the norm of the residual ‖Res‖ verifies ‖Res‖ < εtol, we can continue with the next increment i. On the contrary, we 
recompute additional iteration until convergence. This method, called the incremental method, is taken as a reference and 
is very used in commercial and academic computation codes. The major inconvenience is that the tangent stiffness matrix 
is recalculated at every iteration. Indeed, when the Newton–Raphson method is applied to solve the problem at iteration 
j subjected to finite inelastic deformations, the linearization of the weak formulation is needed. With this linearization, it 
is necessary to compute the tangent matrix [53], which leads to a significant computational cost, especially with a high 
number of dofs. In the following, the second version will be described to represent the nonlinear term.

2.2.2. Semi-explicit approach (nonlinearity on the right-hand side)
In this case, it is assumed that nonlinearity is only due to material behaviour. The elastic stiffness tensor [Cel] defines 

the relationship between the stress increments and the strain increments following the nonlinear equation:

{�σ } = [Cel]({�ε − �εp}) (22)

were {�εp} is the increment of the plastic strain. By using relation (22), Eq. (9) can be written as:



∫
�

σ : ε∗ dV = 〈u∗〉
∫
�

[B]ᵀ{�σ }dV = 〈u∗〉
∫
�

[B]ᵀ[Cel]({�ε − �εp})dV

= 〈u∗〉
⎛
⎝∫

�

[B]ᵀ[Cel]{�ε}dV −
∫
�

[B]ᵀ[C]{�εp}dV

⎞
⎠ (23)

Using the relations of the previous section, Eq. (23) can be expressed as:

∫
�

[B]ᵀ{�σ }dV = [K ]{�U } −
∫
�

[B]ᵀ[Cel]{�εp}dV (24)

That is, the equation for the overall equilibrium of Eq. (13) for the previous method, will be replaced by:

[K ]{�U } j
i = {�F ext} j

i + {�Q p} j
i (25)

with:

[K ] =
∫
�

[B]ᵀ[Cel][B]dV (26)

{�F ext} =
∫
�

[B]ᵀ{�σ el}dV =
∫
�

[B]ᵀ{�σ SA}dV =
∫

∂�2

[N]{Fd}dS (27)

{�Qp} =
∫
�

[B]ᵀ[Cel]{�εp}dV (28)

where {�Qp} is the vector of nodal forces resulting from the increment of the plastic strain field {�εp}. {σ SA} is the 
field of statically admissible stresses calculated from Eq. (22). {�Qp} represents the nonlinear term of the equilibrium of 
Eq. (25). The idea to put the nonlinearity in the right-hand side of Eq. (25) has also been used by Spiliopoulos et al. 
[54,55] in the Direct Method to predict cyclic creep response [54,55]. Spiliopoulos et al. [29] also estimate the behaviour 
of an elastic-perfectly plastic structure subjected to cyclic loading. Maouche and Pommier [12,13] determine directly the 
asymptotic solution to a problem by using this approach. Maouche [12] uses the incremental method for the resolution of 
the global step (i.e. the equilibrium equation) and Pommier [13] uses the decomposition into Fourier series to reduce the 
computing time of the global step.

Within the framework of the small perturbation theory, the matrix of spatial derivatives of the shape functions [B] is 
constant. Assuming that the elastic material properties are time independent, the matrix [K ] is constant. Thus, maintaining 
a constant stiffness matrix allows us to do just one single factorization in the first iteration of the simulation. This allows 
high CPU time saving compared to the incremental method of the previous section.

The solution to the above spatial problem is performed by the FEM. The resolution of the temporal problem is performed 
by the incremental method. Knowing the increment of the plastic strain field {�εp}, the first step consists in solving 
the equation of equilibrium with a global system over the whole structure (Eq. (25)). From a practical point of view, the 
initialization of the increment of the nodal forces resulting from the increment of the plastic strain field is done with:

{�Q p}I =
∫
�

[B]ᵀ[Cel]{�εp}I dV = {0} (29)

where {�εp}I is the increment of the initial plastic strain field which is equal to zero for the first iteration. Finally, the 
convergence criterion is based on the evaluation of the nodal force, with:

‖F (�σ SA) − F (�σ PA)‖
‖F (�σ SA)‖ = ‖∫

�
([B]ᵀ{σ SA} j

i )dV − ∫
�
([B]ᵀ{σ PA} j

i )dV ‖
‖∫

�
([B]ᵀ{σ SA} j

i )dV ‖
< εtol (30)

where {�σ PA} is the field of plastically admissible stress calculated from constitutive equations, F (�σ SA) and F (�σ PA) are 
the nodal forces resulting from the increment of the field of statically and plastically admissible stresses respectively. The 
stress field {σ PA} is called plastically admissible if it satisfies the constitutive equations. In the following, this method will 
be called incremental right method.



2.3. The PGD method

In the present work, we use a model reduction method in the framework of a space–time formulation. Thanks to the 
PGD method the vector of displacement increment is given by:

[�U ](x,t) ≈ [�U ]m =
m∑

i=1

αi{�Ux}i ⊗ {�Ut}i (31)

where {�Ux}i is a vector of space function which size is equal to the number of dof, {�Ut}i is the temporal function 
which size is equal to the discretization size of the temporal dimension and m is the reduced-basis order. In the following 
paragraph, the implementation of the PGD method in the case of the plasticity problem is presented.

2.3.1. Plasticity problem
There are different ways to implement the PGD method. Here, we focus on the version of the time–space decomposition 

with the tensor form. Supposing that the nonlinearity in the right-hand side is written as follows:

{�F nl(x, t)} = {�F ext(x, t)} + {�Q p(x, t)} (32)

If the time steps Nt (again time in the sense of loading) is to be considered, the equilibrium equation with the non-
incremental form can be written as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[K ]·{�U }1 = {�F nl}1

[K ]·{�U }2 = {�F nl}2
...

[K ]·{�U }Nt = {�F nl}Nt

(33)

The plastic history is given by the matrix [F nl]:
[F nl] = [{�F nl}1, {�F nl}2, . . . , {�F nl}Nt ] (34)

The PGD is an iterative method consisting in searching an approximation of the displacement field �U (x, t) under a form 
giving by Eq. (31). To compute the unknowns {�U i

x}, {�U i
t} and αi , the PGD consists in three steps: enrichment step, 

projection step, and convergence-checking step. Before detailing the three steps of resolution of PGD, a tensor decomposition 
of the operators is requested. In our case, we have:

K (x, t) = [Kx] ⊗ [Kt] (35)

�F nl(x, t) =
f�F∑
i=1

{�Fx}i ⊗ {�Ft}i (36)

�U (x, t) =
f�u∑
i=1

αi
(
{�Ux}i ⊗ {�Ut}i

)
(37)

where {�Ux}i is a vector that corresponds to the space dimension (i.e. the number of dofs) and {�Ut }i corresponds to 
the temporal dimension (i.e. the number of time steps). The stiffness matrix [K ] is constant and is decomposed with one 
single product where Kx represents the (Nx × Nx) stiffness matrix and Kt the (Nt × Nt) identity matrix. The plastic history 
evolution �F nl(x, t) has to be updated after each enrichment step and has to be written in the separated tensor form. 
This is done with an “a posteriori” method requesting the expansion of a large matrix before obtaining the space–time 
separated form. It is important to recall that the number of snapshots in (34) could be extremely large. To alleviate such 
a calculation, a Truncated SVD is used to decompose the second member. Also, a POD-based reduced basis for the plastic 
history representation can be used and proposed in [56].

The matrix [F nl] given by Eq. (34) contains the set of snapshots of the second member (the plastic history) with Nx rows 
and Nt columns. Applying a truncated SVD, the matrix [F nl] can be factorized into three matrices:

[F nl] = [�Fx][S][�Ft] (38)

The matrices [�Fx] and [�Ft ] contain respectively the right and the left singular vectors of the matrix [F nl]. Here, [S] is a 
diagonal matrix that contains the f�F highest singular values, which is the most representative information extracted from 
[F nl]. This choice is made from a truncation that depends on an parameter εSVD, which is normally fixed to 10−6. Thus, it is 
possible to obtain a space/time decomposition of the second member whose the matrices [�Fx] and [�Ft ] are equivalent 
to a space and temporal basis of dimensions (Nx × f�F ) and (Nt × f�F ) respectively.



By using the separated representation form of the problem, the equilibrium equation can be written as:

([Kx] ⊗ [Kt])
f�u∑
i=1

αi
(
{�Ux}i ⊗ {�Ut}i

)
=

f�F∑
j=1

{�Fx} j ⊗ {�Ft} j +R (39)

where R is a residual drawn from the approximation of the solution. The different steps to solve Eq. (39) by the PGD 
method are as follows.

Enrichment step Let us assume that we are at the order m of Eq. (31). The first m − 1 functions {�Ux}i and {�Ut}i and 
the coefficients αi are assumed to be known. Thus, at this stage, it can be written:

[�Um] =
m−1∑
i=1

αi

(
{�Ux}i ⊗ {�Ut}i

)
+ {�Ux}m ⊗ {�Ut}m (40)

where {�Ux}m and {�Ut}m are the new enriched vectors. We look here for the new functions {�Ux}m and {�Ux}m . Intro-
ducing Eq. (40) in Eq. (39), we obtain:

[Kx]{�Ux}m ⊗ [Kt]{�Ut}m =
f�F∑
j=1

{�Fx} j ⊗ {�Ft} j − ([Kx] ⊗ [Kt])
m−1∑
i=1

αi({�Ux}i ⊗ {�Ut}i) +Rm−1 (41)

To calculate the new enrichment vectors, Eq. (41) is projected onto each of the unknowns {�Ux}m and {�Ut}m , with:〈([Kx]{�Ux}m ⊗ [Kt]{�Ut}m)
, {Ut}m〉

L2([0,T ])

=
〈 f�F∑

j=1

{�Fx} j ⊗ {�Ft} j − ([Kx] ⊗ [Kt])
m−1∑
i=1

αi({�Ux}i ⊗ {�Ut}i), {Ut}m

〉
L2([0,T ])

+ 〈
Rm−1, {Ut}m〉

L2([0,T ]) (42)

〈([Kx]{�Ux}m ⊗ [Kt]{�Ut}m)
, {Ux}m〉

L2(�)

=
〈 f�F∑

j=1

{�Fx} j ⊗ {�Ft} j − ([Kx] ⊗ [Kt])
m−1∑
i=1

αi({�Ux}i ⊗ {�Ut}i), {Ux}m

〉
L2(�)

+ 〈
Rm−1, {Ux}m〉

L2(�)
(43)

where 〈., .〉L2(�) and 〈., .〉L2(]0,T ]) are the scalar products of L2 defined on � and [0, T ]. In addition, in order to improve 
optimality of the basis of the solution in the Galerkin sense, the residual must be orthogonal to the {�Ux}m , {�Ut}m

functions. Thus, we obtain:

(〈�Ut〉m[Kt]{�Ut}m[Kx]
) ·{�Ux}m =

f�F∑
j=1

〈�Ut〉m{�Ft} j{�Fx} j −
m−1∑
i=1

〈�Ut〉m[Kt]{�Ut}iαi[Kx]{�Ux}i (44)

(〈�Ux〉m[Kx]{�Ux}m[Kt]
) ·{�Ut}m =

f�F∑
j=1

〈�Ux〉m{�Fx} j{�Ft} j −
m−1∑
i=1

〈�Ux〉m[Kx]{�Ux}iαi[Kt]{�Ut}i (45)

Equations (44) and (45) are two equations with two unknowns {�Ux}m and {�Ut}m . In this case, to compute {�Ux}m and 
{�Ut}m , we use the fixed point algorithm. The general description is as follows: {�Ut}m (respectively {�Ux}m) is fixed, and 
we solve Eq. (44) (respectively Eq. (45)) to obtain the new value of {�Ux}m ({�Ut}m , respectively). This iterative scheme is 
repeated until convergence:

‖({�Ux}m{�Ut}m)q − ({�Ux}m{�Ut}m)q−1‖ < ε f p (46)

where ε f p is a tolerance set by the user. It is important to notice that the stiffness matrix [Kx] is constant, except for the first 
iteration of the calculation (we need to factorize [Kx] in the first iteration). In addition, the term 

(〈�Ux〉m[Kx]{�Ux}m[Kt]
)

is a scalar, and [Kt ] is an identity matrix. Thus, the resolution of linear systems Eqs. (44) and (45) at each iteration is not 
expensive in terms of CPU time.

Once the calculation of {�Ux}m and {�Ut}m has been carried out successfully, and after normalization, the new solutions 
of {�Ux}m and {�Ut}m at the order m are given by:

{�Ux}m = {�Ux}m

‖{�Ux}m‖ and {�Ut}m = {�Ut}m

‖{�Ut}m‖ (47)



Projection step The first m functions of {�Ux}i and {�Ut}i (1 ≤ i ≤ m), solutions from the previous step, are known. At 
this stage, it is necessary to calculate the coefficients αi (1 ≤ i ≤ m). For this purpose, Eq. (39) is projected onto {�Ux} j and
{�Ut} j (1 ≤ j ≤ m), with:〈

([Kx] ⊗ [Kt])
f�u∑
i=1

αi
(
{�Ux}i ⊗ {�Ut}i

)
, {�Ux} j ⊗ {�Ut} j

〉
L2(�×[0,T ])

=
〈 f�F∑

j=1

{�Fx} j ⊗ {�Ft} j, {�Ux} j ⊗ {�Ut} j

〉
L2(�×[0,T ])

+
〈
R, {�Ux} j ⊗ {�Ut} j

〉
L2(�×[0,T ]) (48)

In addition, the residual is supposed to be orthogonal to {�Ux} j and {�Ut} j , so it can be written as:

m∑
i=1

〈�Ux〉 j[Kx]{�Ux}i〈�Ut〉 j[Kt]{�Ut}iαi =
f�F∑
k=1

〈�Ux〉 j{�Fx}k〈�Ut〉 j{�Ft}k (49)

Corresponding to the above equation, to calculate the coefficients αi , we are led to solve the following linear system:

[M]{α} = {D} (50)

With:

• Mij = 〈�Ux〉 j[Kx]{�Ux}i〈�Ut〉 j[Kt]{�Ut}i

• D j = ∑ f�F
k=1〈�Ux〉 j{�Fx}k〈�Ut〉 j{�Ft}k

• 〈α〉 = {α1, α1, ..., αm}

[M] is a matrix of dimension (m × m). Thus Eq. (50) is a linear system to solve with a low computational cost.
Checking convergence At this stage, an estimation of the convergence of the PGD algorithm at the order m is needed. For 

this, the residual of Eq. (39) is defined by:

R =
m∑

i=1

αi
(
[Kx]{�Ux}i ⊗ [Kt]{�Ut}i

)
−

f�F∑
j=1

{�Fx} j ⊗ {�Ft} j (51)

If the norm of the residual verifies ‖R‖ < εPGD, where εPGD is a tolerance set by the user, the algorithm converges at this 
order m, and the solution to the problem is expressed with Eq. (31). Otherwise, a return to the enrichment step and an 
additional enrichment of the basis with different {Ux}m+1 and {Ut}m+1 have to be done.

2.3.2. Variants of the PGD method
The resolution with the PGD method is carried out successively until the convergence of the plastic strain field. However, 

the nonlinear term {�Qp} of the equilibrium Eq. (25) is unknown and its computation is made iteratively. Two possibilities 
have been proposed to implement the PGD method. In the first version, we update the nonlinear term for a displace-
ment field calculated for all the PGD functions. Here, the idea consists firstly in decoupling the equations of the problem 
(global and local step). Then, the resolution is carried out separately over the entire space/time domain using the PGD 
method as a solver of the global step (equilibrium equation). In this case, the nonlinear term {�Qp} is updated from a 
converged displacement field [�U (x, t)] for a given second member. In the second version, we update the nonlinear term 
for a displacement field calculated for a single enrichment of the PGD. Thus, in this version, the nonlinear term is computed 
incrementally, and the numerical resolution of the problem is carried out iteratively. Each iteration leads to the following 
four steps: (i) enrichment, (ii) projection, (iii) local step, (iv) checking convergence. The algorithms associated with the two 
versions are illustrated in Fig. 2.

In the first version, the convergence criterion is based on the evaluation of the Eq. (30), whereas for the second version, 
the convergence is reached when:

‖[K ]
m∑

i=1

αi
(
{�Ux}i ⊗ {�Ut}i

)
−

f�F∑
j=1

{�Fx} j ⊗ {�Ft} j‖

‖
f�F∑
j=1

{�Fx} j ⊗ {�Ft} j‖
< εtol (52)



Fig. 2. The two version of PGD resolution algorithm.

3. Constitutive equation of the viscoplastic crystalline behaviour

The viscoplastic crystalline behaviour law used in this paper was introduced by Meric and Cailletaud [57]. It is commonly 
used for the numerical simulation of polycrystalline aggregates [9,58,59]. The modelling is made in small strain assump-
tion as usually done in high cycle fatigue modelling of materials. The local strain is decomposed into an elastic and an 
viscoplastic part:

{ε} = {εe} + {εp} (53)

The Hooke law is used to describe the elastic behaviour. Cubic elasticity is considered and characterised by three coefficients 
defined in the crystal coordinate system: C11, C22, and C12. The orientation tensor m (Eq. (54)) is calculated on each slip 
system s by the tensor product of the normal to the slip plane ns with the slip direction ls . This tensor allows one to 
compute the shear stress τ s (Eq. (55)) and the plastic strain rate tensor ε̇p (Eq. (56)) on each slip system s.

ms =
(
ns ⊗ ls + ls ⊗ ns

)
2

(54)

τ s = ms : σ (55)

ε̇p =
∑

s

γ̇ sms (56)

where γ̇ s is the plastic slip rate (Eq. (57)) for the slip system s. τ s is the resolved shear stress τ s acting on s, xs is the 
kinematic hardening (Eq. (58)) and rs the isotropic hardening (Eq. (59)).

γ̇ s =
〈 |τ s − xs| − r0 − rs

K

〉n

sign
(
τ s − xs

) = ν̇s sign
(
τ s − xs) (57)

xs = cαs with α̇s = γ̇ s − dν̇sαs (58)

rs = r0 + Q
∑

r

hrs (
1 − exp

(−bνr)) (59)

where K and n are the viscosity parameters, νs is the cumulated viscoplastic slip on the slip system s and r0 corresponds 
to the initial yield shear stress. Hardening material parameters are defined by c and d for kinematic hardening, and Q and 
b represent the isotropic hardening parameters. The interaction matrix hrs is the one defined by Franciosi et al. [60]. It takes 
into account the influence of the accumulated plastic slip νr on the slip system s.

The material is a stainless steel 316L, and the parameters of the elastoviscoplastic behaviour law were identified by 
Guilhem et al. [61]. The Face Centered Cubic (FCC) structure (Fig. 3) shows the slip planes {111} and the slip directions 
〈110〉. The interaction matrix is defined by six constants (h0 to h5). The material parameters values are summarised in 
Table 1.



Fig. 3. The slip systems of the FCC crystal [6].

Table 1
Material parameters of the elasto-viscoplastic behaviour of the stainless steel 316L.

K
[MPa.s

1
n ]

n
[–]

rO

[MPa]
Q
[MPa]

b
[–]

c
[MPa]

d
[–]

12 11 40 10 3 40 × 103 1500

h0

[–]
h1

[–]
h2

[–]
h3

[–]
h4

[–]
h5

[–]
C11

[GPa]
C22

[GPa]
C12

[GPa]

1 1 0.6 12.3 1.6 1.8 197 125 122

Fig. 4. Geometric model of polycrystalline aggregate consisting of 512 grains with several mesh densities.

4. Numerical model

The simulations have been carried out on a 3D cubic polycrystalline aggregate. It is composed of 512 grains. In this 
configuration, the grains have fixed size and shape. The crystallographic orientation of the grain is chosen so as to get a 
global isotropic structure. The spatial discretization of the aggregate is done by a regular and periodic mesh with hexahedral 
Finite Elements with linear interpolation. In order to study the effect of the number of dofs, a study with different numbers 
of meshes was carried out. Four mesh densities are considered, from 1 element per grain to 512 elements per grain. The 
geometry and the Finite Element mesh for the microstructure of all cases treated is shown in (Fig. 4).

The polycrystalline aggregates considered in this work are subjected to a total strain controlled uniaxial loading. This 
loading is accomplished by imposing the volumetric average of strain on the polycrystalline aggregates. For all simulations 
investigated, the ratio used is Rε = εmin

εmax
= −1 and the value of the macroscopic strain imposed is 0.1%. 10 loading cycles 

are applied. Two load discretizations have been used for all simulations with 100 and 1000 increments per cycle.

5. Results

All methods, incremental, incremental right and the two versions of the PGD have been implemented in a computation 
code developed in LAMPA by Robert and Mareau [8]. The resolution of linear systems was performed using the MUMPS 
solver [62]. The calculations were performed on a Dell PowerEdge R710 server.



Fig. 5. Convergence of the PGD-V1 method.

5.1. Convergence of the PGD method

First, in order to clearly understand the results given by the PGD method, a study of the convergence of the first and the 
second versions of the PGD (labelled as PGD-V1 and PGD-V2, respectively) for a monotonic loading is conducted.

Fig. 5a shows the convergence of the PGD-V1, at the macroscopic level, for a monotonic loading. Fig. 5b illustrates the 
number of functions enriched and necessary for the convergence of space/time basis of the displacement field for the three 
steps of the PGD method according to the number of iterations necessary for the convergence of the mechanical response. 
In this case, the nonlinear term is updated with a separate representation of the displacement increment field calculated 
for the necessary PGD functions. The first iteration gives an almost linear response (red curve), which is logical as the 
vector {�Qp} is not known a priori (and therefore zero for the first iteration), and which corresponds to elastic behaviour. 
This first result is given by a single enrichment (Fig. 5b) sufficient for the convergence of the spatio-temporal base of the 
displacement field, since the response is quasi-linear. Then, the following iterations tends to be closer to the converged 
curve (blue curve) after 23 iterations with an enrichment average of 98 functions. The last time increments also are always 
the most distant for the solution due to the incremental computation of the constitutive equations.

Fig. 6 shows the convergence of the PGD-V2 for the first three enrichments with a tension–compression cyclic load. 
Figures from 6a to 6f stand for the PGD tensorial representation of the solution with the first three functions {�Ux}i (Fig. 6a 
to Fig. 6c) and {�Ut}i (Fig. 6d to Fig. 6f) (i = 1, 2, 3). In this case, the nonlinear term is updated with a displacement field 
calculated for a single enrichment of the PGD. Figs. 6g to 6i illustrate the results of the macroscopic stress–strain loop 
given by a separated representation of the displacement increment field calculated with the firsts three enrichments of the 
PGD. The first enrichment (Fig. 6g) is given by a nonlinear term equal to zero (which is not known a priori). The rest of 
enrichments are calculated by a nonlinear term updated from the previous enrichments (Fig. 6h and Fig. 6i). This resolution 
is made successively until convergence of the plastic strain field after 244 enrichments.

5.2. Mechanical response

Before analyzing the results in terms of CPU time, we compare the reliability of the different methods in terms of the 
results’ accuracy. Two cases are analyzed: the mesoscopic and macroscopic ones.

5.2.1. Macroscopic results
We present here a comparison of the macroscopic response (aggregate average) of incremental, incremental right, and 

PGD simulations. Uniaxial strain cyclic tests with macroscopic strain amplitudes of 0.1% have been applied with two dif-
ferent time discretizations of 100 and 1000 increments for the four mesh densities. Fig. 7 illustrates the results for the 
10th loading cycle with 32,768 elements and two different time discretizations. As can be seen, the results are very similar 
without any error. These results remain the same for the other mesh densities.

5.2.2. Mesoscopic results
The stress–strain responses at the scale grain for the different numerical methods have been studied now. The mean 

stress and strain values in each grain of the aggregate are given by:

〈σ 〉G = 1

V G

∫
V G

σ dV (60)

〈ε〉G = 1

V G

∫
V G

ε dV (61)



Fig. 6. Convergence of the PGD-V2 method with the first three modes for: (a, b, c) space basis, (d, e, f) temporal basis, and (g, h, i) evolution of macroscopic
stress–strain.

Fig. 7. Comparison between different methods at the macroscopic stress–strain 
11 − E11 responses of a polycrystalline aggregate consisting of 32,768 
elements loaded with a uniaxial strain cyclic tests for two time discretizations: (a) with 100 increments (b) with 1000 increments.



Fig. 8. Comparison between different methods for the mesoscopic responses (〈σ11〉G and 〈ε11〉G ) of a polycrystalline aggregate consisting of 262,144 ele-
ments loaded in a uniaxial strain cyclic tests with 100 increments: (a) average stress in grains, (b) average strain in grains.

Fig. 9. Distribution of the average stress and strain in each grain obtained with the incremental method and the PGD methods for the polycrystalline
aggregate consisting of 32,768 elements loaded with a uniaxial strain cyclic tests with 100 increments.

where V G is the grain volume. Fig. 8 illustrates the results of the average axial stress 〈σ11〉G and the average axial strain 
〈ε11〉G obtained for each grain G according to the loading path at the 10th loading cycle for the mesh with 262,144 elements. 
Each point in the figure corresponds to a grain. Fig. 8a shows that the developed PGD methods allow one to obtain results 
very close to those obtained with the incremental method for the average axial stress. For the average axial strain results, we 
observe very small differences between the developed methods and the incremental calculation (Fig. 8b), with a maximum 
relative difference less than 0.1%. Simulations were performed with 1000 cycles using a polycrystalline aggregate consisting 
of 512 and 4096 elements in order to see the evolution of the error with a larger number of cycles. Fig. 10 displays the 
results obtained for the 10th and 1000th loading cycles with incremental and PGD-V2 methods. These results show a small 
increase in the error after 1000 cycles compared to the results for two grains. For example, an evolution from 0.012% to 
0.038% is observed. The results of the mesoscopic strain for the different methods developed seem to be quite acceptable. 
However, these differences can be reduced by decreasing the convergence tolerance but, in this case, the computation time 
increases significantly.

Fig. 9 shows the average stress and strain in each grain 〈σ11〉G − 〈ε11〉G obtained at the 10th loading cycle for aggregate 
consisting of 32,768 elements and for a total macroscopic strain E11 = 0.1%. These results confirm that the PGD method 
provides a good description of the mesoscopic results with respect to the two incremental methods.

5.3. Computation CPU time

Fig. 11 represents an example of the CPU time per cycle of the PGD-V1 and the PGD-V2 method, the number of functions 
required for the convergence and the iterations number of the PGD-V1. These results are obtained from a modelling of a 
polycrystalline aggregate consisting of 32,768 elements loaded with a uniaxial strain cyclic tests for 10 cycles. Note that the 
number of functions per cycle of the PGD-V1 method (continuum curve in Fig. 11d) corresponds to the number of total 
functions enriched for all the iterations required per cycle. These results show that the first cycles are the most expensive 
in terms of number of iterations (Fig. 11b) of the considerable behaviour evolution between cycles. After a certain number 
of cycles (in this case the fourth cycle), only four iterations are necessary to obtain convergence. These observations are also 
noticed with the number of functions enriched per cycle for both PGD methods (Fig. 11d). Indeed, the adaptation of the 
PGD basis is carried out mainly during the first cycles. Then, the longer the number of cycles, the faster the stabilization. 



Fig. 10. Evolution of the error for the mesoscopic strain for two grains for incremental and PGD-V2 method for the (a) 10th loading cycle (b) 1000th loading
cycle.



Fig. 11. CPU time, number of function and number of iterations per cycle for the PGD methods obtained with a polycrystalline aggregate consisting of
32,768 elements loaded with a uniaxial strain cyclic tests with 100 increments: (a) CPU time per cycle PGD-V1, (b) number of iterations PGD-V1, (c) CPU
time per cycle PGD-V2, (d) number of functions.

This leads to a reduction in the number of functions required for convergence. Moreover, the computation time per cycle 
(Fig. 11a) is proportional to the number of functions and iterations. The first three cycles are the most costly in terms of 
computing time. The CPU time of the second cycle has increased compared to the first cycle, even though the number 
of iterations was the same. Indeed, in this case the first cycle requires 610 functions, whereas for the second cycle 760 
functions are needed to achieve convergence.

Fig. 12 shows the evolution of the computation time obtained for ten cycles by the two incremental methods and the 
two versions of PGD according to the differences mesh densities.

The first observation is that the CPU time of the incremental method increases in a quadratic manner according to the 
number of dofs. It also occurs clearly that the incremental right method is faster than the incremental method and the 
PGD methods for all the cases studied. With 262,144 elements and 100 time increments per cycle (Fig. 12a), the calculation 
with the incremental right method was 91 times faster than the incremental method and 16 times faster than the PGD-V1 
method. Similarly, with 1000 time increments and 32768 elements (Fig. 12b), the incremental right method was 56 times 
faster than the incremental method. Note that the CPU time of the incremental right method increases in a linear manner 
according to the number of dofs.

It is observed that the CPU time for the PGD-V1 is less important than in the incremental method. As observed, be-
yond 4096 elements with 100 time increments per cycle (Fig. 12a), the PGD-V1 CPU time appears to be shorter than the 
incremental solver CPU time, whereas for 1000 time increments per cycle, the PGD-V1 has proven to be always faster than 
the incremental method (Fig. 12b). In addition, an increase in the number of dofs allows greater time saving. For example, 
with 32768 elements, the PGD-V1 was twice as fast as the incremental method, whereas it was 6 times faster with 262144
elements. The time savings was more significant by increasing the number of time increments per cycle. Indeed, with a 100
time increment per cycle and 32,768 elements, the PGD-V1 was twice faster than the incremental method, while for 1000
time increments per cycle, the PGD-V1 becomes 10 times faster than the standard method. Unfortunately, compared to the 
incremental right method, the PGD method requires more computing time for ten cycles.

The results obtained with the PGD-V2 method clearly correspond to those obtained by the standard method in terms 
of mesoscopic and macroscopic responses. Regarding the CPU time, this method has not resulted in saving time compared 
to the incremental method. For 1000 time increments per cycle, the PGD-V2 was always slower than both the incremental 
and the PGD-V1 methods. Beyond 262,144 elements with 100 time increments per cycle, the PGD-V2 CPU time seems to 



Fig. 12. CPU time obtained for the various methods depending on the number of elements: (a) 100 time increments per cycle, (b) 1000 time increments
per cycle.

Fig. 13. CPU time per cycle and time solver obtained with a polycrystalline aggregate consisting of 262,144 elements loaded in a uniaxial strain cyclic test
with 100 increments: (a) incremental method, (b) incremental-right method.

be shorter than in the incremental method, and it was twice faster but slower than in the other methods (Fig. 12b). The 
incremental method and PGD-V2 method are limited by the computation time, which is important for fine mesh resolutions 
and large time step increments cycle (case of 262,144 elements with 1000 time increments per cycle (Fig. 12b)). In addition, 
it is important to notice that both the PGD-V1 and PGD-V2 require more memory compared to the incremental method.

5.4. Discussion

The results presented previously show that the incremental-right method allows us to obtain a good mechanical re-
sponse, with a computational time as fast as in the incremental method as well as with both PGD versions. This shows the 
interest of keeping a constant stiffness matrix for the resolution of the linear system (Eq. (25)) and to carry out one single 
factorization in the first iteration of the computation. This leads to very important time saving compared to the incremen-
tal method. Fig. 13 illustrates the comparison between the time per cycle and solver the time, which represent the time 
required to solve the global step. It appears that the solver time per cycle for the incremental-right method represents an 
average gain of 22% with regard to the computation time per cycle (Fig. 13b). For the first cycle, one factorization is required 
for the first iteration, which is not the case for the incremental method (Fig. 13b).

The PGD-V1 method provides results with an important reduced CPU time compared to the incremental method. Unfor-
tunately, it is always slower than the incremental-right method, whereas the stiffness matrix is also constant in this case. 
Fig. 14a shows the time per cycle and the solver time for the PGD method. As noted, the solver time per cycle represents an 
average of 94% of computation time per cycle contrary to the incremental-right method. This explains that the PGD method 
requires a hundred functions to obtain convergence. Thus, to compute the nonlinear term of the second member, the reso-
lution of the linear system must be done one hundred times for each iteration. Fig. 14b illustrates the number of functions 
required per cycle for the PGD-V1 method and the number of iterations per cycle for the incremental-right method. For 



Fig. 14. Results obtained with a polycrystalline aggregate consisting of 262,144 elements loaded with a uniaxial strain cyclic tests with 100 increments:
(a) CPU time per cycle and time solver for the PGD-V1 method, (b) number of modes and iterations required per cycle for PGD-V1, PGD-V2, and incremental-
right method.

the third cycle, the PGD-V1 requires 453 functions for all iterations to reach convergence (with a tolerance of εPGD = 10−4). 
Taking into account the number of iterations of the fixed point algorithm (fixed at three iterations), the resolution of the 
linear system is executed (453 × 3) times, while the incremental-right method is performed 220 times. Furthermore, the 
nonlinear term of the second member is computed iteratively and, with the PGD method, the material behaviour equations 
are solved for each iteration and for all times steps. This takes more computation time, especially with material constitutive 
relations with high nonlinearity. This explains why the first version of the PGD is faster than the second one. With the 
PGD-V2 method, the nonlinear term is updated with a displacement field calculated for each enrichment of the PGD, unlike 
the first version, where the nonlinear term is updated with a separated representation of the displacement increment field 
calculated for all the necessary PGD functions. Accordingly, the resolution of the material behaviour equations are performed 
for each enrichment for the PGD-V2 method. As indicated by Fig. 14b and for the case of the third cycle, the number of 
enrichments is 121. Hence, the material constitutive relations are computed 121 times for all time steps, whereas for the 
PGD-V1 method, 6 computations are required (number of iterations in Fig. 11b).

6. Conclusion

This paper presents the development of an original numerical method to deal with nonlinear elasto-viscoplastic prob-
lems. FE simulations together with reduction methods are used. The aim was to simulate, within a reasonable CPU time, 
problems with a large number of dofs and on a large time scale for the prediction in the HCF regime. Three methods have 
been investigated: the incremental-right method and the PGD method with two versions. The firstone consists in keeping 
a constant stiffness to perform one single factorization, and the second uses a model reduction method (PGD) to decou-
ple the dimensions of space and time in the global step. The simulations have been carried out on a 3D polycrystalline 
aggregate with an elastic–viscoplastic behaviour of stainless steel 316L. The responses have been computed with a cyclic 
tension–compression test and for various numbers of elements per grain and time increments per cycle. The results have 
been compared with the incremental method (conventionally used in commercial codes) in terms of mechanical response 
and CPU time.

For the macroscopic response, there is no difference between the different methods. Furthermore, the observation of the 
mesoscopic response shows that the results are very similar to those of the incremental method for the average stress. For 
the average axial strain results, it is possible to find discrepancies in some cases between the methods developed and the 
incremental method, but with a maximum relative difference less than 0.1% even for a large number of cycles.

For the computation time, we have showed that the PGD-V1 provides good results in terms of macroscopic and meso-
scopic responses, with a computation time as fast as the one of the incremental method (reducing the CPU time by a factor 
of 10). In addition, we have demonstrated that increasing the number of elements and the number of time increments 
per cycle allows a greater time gain compared to the incremental method. Unfortunately, unlike in the previous case, the 
PGD-V2 has not resulted in saving time compared to the incremental method. Nevertheless, the idea of the nonlinearities 
in the second member to keep a constant stiffness matrix with the incremental method has enabled more CPU time saving 
compared to the PGD-V1 and PGD-V2 methods.
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