
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/16788

To cite this version :

Serge TICHKIEWITCH, Lionel ROUCOULES - CoDE: a Co-operative Design Environment. A new
generation of CAD systems - Concurrent Engineering: Research and Applications - Vol. 8, n°4,
p.263-280 - 2000

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/16788
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

1

CoDE: a Co-operative Design Environment.

A new generation of CAD systems

ROUCOULES Lionel, TICHKIEWITCH Serge

Laboratoire Sols, Solides, Structures de Grenoble -France-

Domaine Universitaire BP 53
38 041 Grenoble Cedex 9

France

Tel : (+33) (0)4 76 82 51 44
e-mail: Lionel.Roucoules@hmg.inpg.fr

2

ABSTRACT

According to conceptual changes on design methodology, this paper presents some research results on a new

generation of CAD systems. This new software has not to be used to achieve automatic design tasks at all. On the

contrary, it has to make part of an integrated design environment.

A co-operative design modeller is then presented as a support for co-operative and integrated design methodology in

this design environment. It mainly allows every design actors to share a unique database owing to a formal exchange

network. The modeller provides a graphic interface to add, edit or modify data. Moreover the modeller manages the

shared database in order to realise heavy design tasks as data propagation or data coherence management.

The presented modeller takes place in the global design environment connected to specific applications based on

specific design tasks (process planning, structure analysis). An informal communication network worthwhile in any

design group including human actors also assists the co-operative design modeller.

KEYWORDS

Integrated design, co-operative design, CAD system, Product Model, Multi-view, product emergence.

3

INTRODUCTION

The evolution of CAD systems in mechanical engineering during the eighties and nineties has made industries been

more and more competitive in design.

During the eighties, design modellers were called CAD system but only assisted usual drawing operations. They

made easier the creation of form features, their modifications and their safeguards. In this way, engineers were faster

and faster in drawing systems and parts but those systems were not really CAD systems. Later researches during the

nineties tried to integrate trade knowledge in those drawing modellers. The main objective was then to calculate form

dimensions taking into account trade constraints as drawing rules. We had automatic design tasks and self-learning,

we thought about artificial intelligence. Step by step, more data than form data were taken into account and were

calculated following the state of the product design. Those new systems called « expert systems » were quickly

limited in their utilisation during the design process and further, during a co-operative design. Indeed, they were very

specific and could only be used in specific design as tooling [1], stamping [2], asynchronous electrical motor design

[3]…

Nowadays, integrated design objective is to take into account a maximum of knowledge during the design process

[4]. This knowledge comes from all trade actors of product life cycle. Moreover, this design methodology allows the

simultaneous realisation of design tasks [5] gathering all actors to discuss on the design project.

From this new industrial organisation, several researches try to develop new CAD systems. This new software does

not throw away expert systems but has to assist the connections of each ones.

First of all connections have to provide a large pool of data that can be shared by several design actors. These data

can be relative to a specific trade as structure analysis for example and be connected to form data [6]. Second of all,

integrated design requires the software to be used as soon as possible during design. Such conditions are supplied

using functional specifications to choose specific technologies. The technologies are both structural technology [7]

[8] and trade technologies as structure analysis for example [9]. Thus, we break the barrier between product

functions and product structure [10].

Despite of those results, CAD systems are not a real support for co-operative design. Such support must manage

different kinds of data and assist the co-operation among designers. It then assists the progressive definition and

constraint, the design arrangement and the emergence of the product. One part of our research concerned by these

problems is presented in this paper.

The global presentation of an integrated design environment is done in part I of the paper and is based on previous

references. This environment is mainly composed of an integrated design modeller, of an informal exchange network

and of several specific trade applications. These applications are those introduced just above as the evolution of the

expert systems. The environment allows the integration of each trade actors on the design project adding their data

and their constraints and using their own specific trade software.

Part II deals with the computer developments of the integrated design modeller as part of the global integrated design

environment.

Developments are first constrained by the used computer environment. We use C++ object classes and several object

libraries provided by Ilog society (Views, Server, Broker and Solver). Ilog libraries are coupled to Motif and

Inventor libraries from Silicon Graphic. Developments are also constrained by the limits of the modeller in use. New

functionalities are therefore progressively added.

The modeller realises two groups of tasks: the introduction support and the management of data. The data

introduction support is made owning to a graphic interface that allows each actor to add, edit or modify data on the

design project. These manipulations are based on the association between a knowledge model (the features) and a

data model and on the multi-representations of each data. A data management task consists in structuring data with

specific data model (components, links, and relations…). This management keeps the coherence in the data model

and between the data in order to assist heavy tasks and to show design conflicts.

Finally part III details a design example. This example, using the integrated design modeller, shows the progressive

emergence of product data. Functional surfaces and every data come from the choice of different technologies. First

Technologist actors impose the structural technology for the main functions of the product. Afterwards, other actors

choose specific technologies (tooling, stamping…) and thereby add new data and new constraints.

4

I. PRELIMINARY CONCEPTS

Integrated Design is one of the thematic of the Soils, Solids and Structures laboratory. The results are both

conceptual and practical. On the one hand, they are working on design methodology. They study how each actor is

able to reach the design project as soon as possible in the conceptual or detailed design stage. On the other hand

some socio-technical studies of industrial design process bring up information in order to develop new CAD systems.

This paper gives some results of their developments on an integrated and co-operative design environment. This

environment allows the collaborative participation of several actors on the design project. These actors are therefore

all connected to a shared database through four-access level as it is shown on Figure 1. Main concepts on the design

environment presented in [11] are summarised in this part and introduce the computer developments detailed in part

II.

Formal communication network

Specific application 1

Geometric

kernel

Feature based

engine

Inference

engine

Database

Database access

Translation

task

Propagation

task

Management

task

Internal Actor

External Actor 1 External Actor 2

graph filter 1Database access

Access level 4

Access level 3

Access level 2

Access level 1

Multimedia interface Multimedia interface

Specific application 2

Geometric

kernel

Feature based

engine

Inference

engine

graph filter2Database access

Figure 1: Conceptual organisation of a co-operative design environment.

1. Internal, external actors and knowledge concepts

In co-operative design, several actors participate to the design at the same time. In this situation an actor has to

realise some tasks during the design process. One can map the functions to the structures whereas other ones

participate to the structure analysis or to the manufacturing definition…

External actors are physical persons in the design environment that have a special point of view on the product. They

bring their own knowledge to have the design evolved. A knowledge is thus related to a design trade as tooling,

stamping… Nevertheless one actor can have several trade knowledge. In a lot of industrial situations, stamping and

tooling constraints are so closed that the same person can own them.

Internal actor realises tasks but it is not a physical actor. The internal process of the environment manages these

tasks. As shown in part II, such tasks are automatic and transparent for external actors. In other words, they make the

dirty work of the design (data translation, data propagation, data coherence management…).

2. Co-operative Design Environment (CoDE)

The computer development of CoDE is shared in three parts that include the four access levels and the shared data

base previously presented. Each part presented on the Figure 2 will be here briefly presented before the presentation

of the Co-operative Design Modeller (CoDeMo).

5

Specific application 1

Geometric

kernel

Feature based

engine

Inference

engine

Database

Database access

Translation

task

Propagation

task

Management

task

Internal Actor

External Actor 1 External Actor 2

graph filter 1Database access

Multimedia interface Multimedia interface

Specific application 2

Geometric

kernel

Feature based

engine

Inference

engine

graph filter2Database access

Informal communication network

Specific Trade Applications

Co-operative Design Modeller

Figure 2: Different parts of CoDE related to the initial concepts.

2.1. The Co-operative Design Modeller (CoDeMo)

As we said in the introduction the real tools for actors to co-operate and to share data during the design process are

the main lack in CAD systems. CoDeMo objective is not to integer knowledge in order to take automatic design

decisions as it was with the development of expert systems. CoDeMo assists the integration and the co-operation of

each participant who would be external or internal actor. It achieves thereby a formal network of co-operation based

on the shared database, which is manipulated by every design external actors and managed by the internal actor.

External actors use a graphic interface in order to have specific views (points of view) on the product. From these

views and through the formal network, they modify or create new product data, which is added to the shared

database. In such case, new data are notified by CoDeMo and therefore seen by every actor.

Internal actor manages the database structured with a data model proposed by MatraDataVision in 1994 and based on

Components, Links and Relations objects [12]. Chapa added to this model the multi-view concept [11]. This last

amelioration takes into account the large kinds of knowledge used during the design. It then allows the

decomposition of the product in many groups of data related to specific trade knowledge. Figure 3 shows different

views of the decomposition of a thermal motor using the component, links and relation data model and its basic

representations.

6

Steel : Shaft_MaterialSteel : Shaft_Material Cylinder : cylinder1 Cylinder : cylinder1

Cylinder : cylinder2 Cylinder : cylinder2

Casing /Piston

Part : CasingPart : Casing

Piston/ Casing

Part : PistonPart : Piston

Shaft/ Rod

Shaft/ Casing

Part : ShaftPart : Shaft

System : Thermal MotorSystem : Thermal Motor

Part : RodPart : Rod

T
e
c
h

n
o
lo

g
ic

 V
ie

w

G
eo

m
e
tr

ic
 V

ie
w

M
a
te

r
ia

l
 V

ie
w

Casing /Shaft

Piston/ Rod

Rod/Piston

Rod /Shaft

Cyl/Al

Cyl/Al

Representations of data model objects

Component

Link

Relation

Figure 3: Partial graph of a thermal motor multi-view decomposition using Component, Links and Relations.

2.2. The specific Trade Applications

The specific trade applications used in CoDE are actually the new generation of expert system. These applications

are developed in a specific trade context to realise precise tasks. They allow specific evaluations of the product with

different points of view. Such new applications are developed to be used in an integrated design methodology and

not any more as knowledge manager and auto-learning software as they were during the artificial intelligence period.

For example, [13] presents a CAPP system that defines the tooling process planning of the product according to the

functional surfaces and tolerances.

First, specific trade applications have to collect minimal data needed to run their own process. For instance in most

of CAPP software, the system needs the geometry, the functional tolerances and the material of the product. It

calculates afterwards tooled surfaces as well as tooling data like feed or cutting speed…

These data are then introduced in CoDeMo to progressively define and constraint one solution. This operation is still

manual and thereby obliges each actor to define his real description, his real point of view on the product. Obviously

a formal connection using exchange file could be useful and would make easier the job for external actors. It will so

be necessary to study the most appropriate standard exchange format.

2.3. The informal communication network

The formal network (the shared database and the internal actor) actually manages the data coherence. It thereby

detects automatically design conflicts. These conflicts are the sign of incoherence between several constraints

brought by the actors and have to be resolved by actor arrangements. In this situation an informal network seems

interesting. It has to be seen as a normal mean of communication assisting the traditional dialogues of a design group

or between different departments of the industry.

Normal dialogue means that the informal network has to permit writing, talking, sketching and watching each other

in order to discuss about a problematic data, a part or an assembly of the product. Nowadays, such kind of products

like Microsoft NetMeeting is already on the computer market. It will be interesting to study their insertion in CoDE.

7

3. Content improvements and discussion

So far, the paper has just presented what were the capacities and the functionalities of CoDE. Nevertheless it is

interesting to describe the real improvements of such a design environment discussing them with what is already

existing or what is currently investigated.

3.1. The shared database and the multi-views decomposition

Concurrent Engineering as presented in [Sohlenius 92] aims at shorting product design time. The reduction can be

made during product definition but also during order to the production.

One solution is to realize simultaneous tasks as far as possible. Recently, Aldenondo has presented a system

architecture called Caméléon that can be adapted to specific tasks to achieve them concurrently instead of one after

the other [Aldanondo et al. 00].

Another way to accelerate the product definition is to avoid design iterations among each department that normally

collaborates on the design. Instead of pushing the information from department to department, the idea is to pull it

from a shared database where data are well structured [Lutters et al. 97]. Thus, every department can reach the

information whenever it wants (as soon as possible), and works on upgraded data.

Such a shared database is used in CoDE and is structured using a specific data model as previously presented (cf.

2.1). The multi-views concept allows the integration of every kind of product data relative to the product life cycle. It

emphasizes the integration of every actor of design as soon as possible. This kind of information is not taken into

account in current modellers on the market (SolidWorks, ProEngineer) that focalise the product definition on a

geometric model.

3.2. A client/server application based on RPC connections

As far as we talk about Concurrent Engineering or Integrated Design, a lot of designers have to work together.

Nowadays industries gather those designers in order to participate to the product definition. The advantage provided

by CoDE is to be able to connect the shared database via a formal network. Designers have not to be gathered any

more to work all together on the same project.

The formal network is based on a RPC (Remote Procedure Call) architecture between a client and a server processes.

Those two processes are detailed in part II of the paper.

Other architectures are now developed in order to realize distributed application: CORBA (Common Object Request

Broker Architecture), JRMI (Java Remote Method Invocation). For users, all those architectures are similar. Indeed

the difference remains actually in programming the IDL (Interface Definition Language) that is used to generate

stubs for the client and the server.

In our case IlogBroker libraries are used. These libraries define a higher layer for distributed applications. The

programming is easier owing to an IlogBroker pre-processor that create the stubs according to your personal C++

classes definition. IlogBroker pre-processor can currently provide both RPC and CORBA architecture.

3.3. Compare CoDE and HTML technology

In the literature some research look for web-based system for concurrent engineering [Huang et al. 99]. The HTML

programming is interesting to use new technology for creating a graphic interface as we do with IlogViews libraries

in CoDE. It is also an interesting technology to be used as a client / server architecture.

In fact, the use of Ilog libraries has been chosen to keep CoDE homogeneous from a C++ programming point of

view. Indeed, It is based on several kind of libraries to create a GUI, to manage the data, to propagate the constraint

and to achieve the client / server connections.

Nowadays, with the evolution of the HTML technology, it would be interesting to make tries in comparing different

solution in term of information transfer speed and data propagation. The data propagation in CoDE is realised with

notifications functions as explained in part II/2.1.

3.4. A functional surfaces based design modeller

The last conceptual improvement of CoDE remains in the design approach. Part III of the paper explains how the

design modeller is based on functional surfaces provided by progressive knowledge integration. The product is not

designed from a geometric model any longer, as it is the case in the actual CAD systems.

8

II. CoDeMo: A COOPERATIVE DESIGN MODELLER

In this part of the paper the Co-operative Design Modeller (CoDeMo) previously introduced in the whole context of

the environment CoDE is presented. We present the current state of the system and the computer developments

related to the concepts presented in part I.

All developments have been realised in C++ language using object libraries and headers files. Ilog products libraries

Views, Server, Broker, Solver [18] are used and we detail the facilities provided by each product. Moreover, in order

to realise the 3D graphic representation of data, Motif and Inventor libraries from Silicon Graphics are used. Both

kinds of libraries are running together using a Motif event loop.

CoDeMo is mainly a client/server process; each one works on different tasks:

- the client process is used by external actor to manipulate product data through a Graphic User Interface (GUI),

- the server process, in other words the internal actor, manages the shared database as presented later in part II.2.

1. Data manipulation

Data manipulation means in fact how each actor can edit the already existing data in the database, modify the

existing data and add new data on the product. They are thereby using the first level of database access shown on

figure 1. In this way, we provide a graphic interface that supplies:

- the database access,

- the multi-view and multi-representations of data,

- the connections to specific trade applications.

1.1. Database access: Creation, Edition and Modification

The design of a product is a progressive definition and constraint of its data. Such data are in part geometrical data,

which represent the form characteristics of the product, however data have also to define other characteristics as the

materials, the mechanical properties…

During the design process, every designer treats information on the product with his knowledge in order to create

new data. These data are formalised as features described by their characteristics and behaviours [19]. Features

actually define a knowledge model and each ones are specific to a design point of view. We can separate two kinds

of features used in the integrated design methodology:

- descriptive features that describe the product according to a specific vocabulary and therefore according to a

specific point of view. For example, a Cylinder feature describes a cylindrical form of the product with its

characteristics as the radius, the length, the area… A behaviour of this feature could precise that the area value

is linked to the radius and length values,

- constraint features that are used to define constraint on descriptive feature characteristics. Equality is for

instance a constraint feature. This one is defined with two characteristics: variable1 and variable2. Its behaviour

imposes the two characteristics to be equal.

This knowledge model is then associated to the previously introduced data model (components, links, and relations).

It is really the association of both models that contextualises design data (cf. Figure 4). The association is realised

through the Creation operation and can afterwards be watched with the Edition operation and modified using the

Modification operation. The result of the association is called Product Model, which contextualises the features

associated to a specific product decomposition.

9

Component
Cylinder

- radius;

- length;

- position;

- orientation;

- ...

Equality

- variable1

_variable2

variable1=variable2

Link

Relation

Data Model Knowledge Model

Cylinder

- radius=10=rad1

- length = 20

- position = (0, 0, 0)

- orientation = (1, 0, 0)

- ...

Cylinder: Cyl1Cylinder: Cyl1

link1

Product Model

_radius =rad1

Equality

- variable1= rad1

_variable2= rad2

variable1=variable2

relation1

Figure 4: Association between the Data Model and the Knowledge Model to create the Product Model.

The Creation operation is done from the GUI of CoDeMo client process. Such operation can be explained in three

parts (cf. Figure 5).

First, designer creates components as a granular description of the product. He starts the multi-view decomposition

from the first component, which is associated to a System feature. This first component represents in fact the main

project in the Technologist view. The actor has to choice a descriptive feature that precises the description of the

product. Each feature belongs to a specific view and describes different granular level of the system, a subassembly

or a part. Finally he creates a new component from the first or whichever one associating the chosen feature for

example a Cylinder feature.

Secondly, the designer creates relations between product data. In this way, he associates parts of the knowledge

model to links and relations of the data model. Links are created from a component and represent the possibility to

hang this component. The actor therefore associates to a link a list of characteristics of the descriptive feature

associated to the component. For instance, if a Cylinder feature is associated to a component, a link can own the

radius characteristics. It means that the component can be hanged by the radius of the Cylinder feature. Once the

creation of the links, the designer creates the relations. Indeed, a link is created because of the needed relation

between several feature characteristics.

Thirdly, to end the construction of the product model, the designer associates a constraint feature to every relation.

Such association describes a specific constraint between every characteristic associated to the links of the relation.

For example, if two components associated to a Cylinder feature have each one a link associated to the radius

characteristic, it could be useful to keep the equality between both radii. Design actor therefore associates an

Equality constraint feature to the relation between both radii. Equality characteristics (variable1 and variable2) are in

this case the two radii and the behaviour (variable1=variable2) imposes them to be equal.

10

Graphic Interface

(choice of feature)

Creation operations

(from the basic representation)

Progressive construction of the Product Model

Component creation

Link creation

Relation creation

Constraint association

First component

Multi-views decomposition

Figure 5: Creation operations for the Product Model construction.

The Edition operation is used to watch the knowledge associated to the data model. The GUI allows each actor

connected on the database to edit the descriptive feature associated to a component, the characteristics associated to a

link or the constraint feature associated to a relation (cf. Figure 6).

After the Edition operation, designers have the possibility to modify data in the Product Model. The Modification

operation is just done using the facilities of the GUI that make the internal actor run modification procedures (cf.

Figure 6).

Edition operations Graphic Interface

Modification

operations

Internal actor

Figure 6: Edition and Modification operations in CoDeMo.

1.2. Multi-view and Multi-representations

We have just described how product data are progressively defined and stored in the database. Therefore the product

has several decompositions according to different points of view; the product has a multi-view decomposition. The

11

multi-view decomposition was introduced by Chapa to gather every data that describe the product with a specific

vision of it. We have mainly two kinds of views:

- the trade views (technologist, tooling, stamping, structure analysis…),

- the Ossature and Geometric views.

Trade views store the data that describe the product with a specific trade vision. For example, process-planning data

make part of Tooling view of the product. From initial information, specific trades can create new data and can

introduce them in specific trade view. We will explain in part III that those new data can define new functional

surfaces introduced in the Ossature view, new description of the product in a specific view, or new constraints on

already existing data.

Geometric and Ossature views of the product describe respectively the nominal dimensions (radius, length…) and

the functional characteristics (roughness, tolerancing…) of every surfaces of the product. These views are not related

to trade constraints (such trade does not exist) and have to be the results of translations from trade data.

Figure 7 details an example of the multi-view concepts using different descriptive features. A shaft, as a technologic

part, can be viewed as Cylindrical skin and its roughness Ra3.2 in the Ossature view, as a Cylinder and its diameter

D= 10 in the Geometric view and as a Sliding feature in the Tooling view.

Part : ShaftPart : Shaft

Cylinder

- diameter= 10

- length = 20

- position = (0, 0, 0)

- orientation = (1, 0, 0)

- ...

Cylindrical Skin

- roughness = 3.2

- position_tolerance = [0, 0.5]

- orientation tolerance = 0.05

- form tolerance = 0.2

- ...

Sliding

- feed width = 2

- number_pass = 1

- feed speed = 0.05

- ...

Geometric feature

Ossature feature

Tooling feature

Different representation of data in CoDeMo

(Multi-representations)

Basic representation 3D graphic representation

Different descriptive feature

(Multi-views)

Figure 7: Different descriptions of the same object using specific feature and different representations in CoDeMo

views.

A first kind of representation of data, further called basic representation, has been developed in CoDeMo. It is

worthwhile for the manipulation of the database by external actors and looks like the graphic representation of the

data model presented by MatraDatavision (cf. Figure 3). However such representation is not understandable. It just

represents a tree of elements. By consequence, rather than a unique kind of representation, we decided to develop

several representations. These new representations have to look like the usual representations used by trade actors. In

this way they improve the comprehension of data in CoDeMo.

12

We first added a 3D graphic representation that is currently used by most of designers. Figure 7 shows the two

representations (basic and 3D graphic) of the shaft decompositions in the Geometric view. Nevertheless, the 3D

graphic does not represent only form feature but every kind of features that has a usual 3D graphic representation.

Tooling features for instance have such kind of representation (cf. Figure 7).

Despite of both basic and 3D graphic representations, it will be a good work to research the other kinds of

representation needed in design. We can imagine for example a matrix representation for the Material view.

The computer development of the GUI has been realised using IlogViews and Inventor libraries. The first ones

provide first predefined environment as windows, container, etc., to create the global structure of CoDeMo views.

Then we can add a lot of gadgets (scrolled views, buttons…) useful for the dynamic of the views. IlogViews libraries

also provide 2D graphics used to make the basic representation (rectangle, ellipse, round rectangle, line…). Next,

Inventor libraries are used to make the 3D graphic representation. These libraries predefine graphic viewer and 3D

objects as sphere, cylinder…

Using both kinds of libraries, the main problem is to be able to manage both event loops: Ilog and Inventor ones. The

solution remains in the integration of Motif loop that can manage every kind of events. Indeed Motif is the basis

level of definition for the two kinds of libraries. We present on figure 8 the different levels of a window in CoDeMo

and their associated graphic Object Class.

Motif TopView Widget

Inventor SoXtExaminerViewer
IlogViews DrawingView

IlogViews Gadgets

- button,

- frame.

IlogViews Graphics

Figure 8: Mix of Motif, Inventor and IlogViews object class for the graphic interface.

1.3. Connection to specific trade applications

So far, every actor is able to watch the design state of the product and to have it evolved integrating new data.

Nevertheless, this operation can only be made if an actor has new data or new constraints to provide on the product.

These new data are calculated or partially defined with their own specific applications (specific trade applications), it

means with their own methodology, their own tools and sometimes their own software. Every information is treated

with trade knowledge and brought back to the Product Model as a new data.

13

To extract the existing data and get out the needed information, an actor can just edit all features associated to

components with the GUI previously presented. However an automatic extraction makes easier this task. Thus, the

actor has not to edit each needed datum any more, CoDeMo provides him a text file that can be read by his own

software.

Figure 9 presents one connection between CoDeMo and Copest [2]. In this example, stamping actor describes the

shaft, decomposing the Product Model in the Stamping view. He uses first a TooledCut feature to describe the

problem. This new data has a 3D graphic representation; therefore CoDeMo delivers a text file with all information

about it. In this case, the information is the nominal values of the representation. Secondly, the actor can execute

Copest with the “Copest” button in order to read the previously extracted file. Copest, which is a specific stamping

application, realises now the “habillage” of the tooled cut. As result, it adds the draft angles, the die split, the tooling

thickness. After the calculation it returns a result file with forged cut dimensions of the shaft. In the last step,

stamping actor describes the shaft with a ForgedCut feature associated to a new component in the Stamping view.

Forged cut information is thereby read in the Copest result file, ForgedCut 3D representation is then displayed.

Stamping View : creation of a TooledCut feature

Stamping View : creation of a ForgedCut feature

Text File

New data calculated by Copest

CoDeMo Copest

CoDeMo data represented in Copest

Text File

Figure 9: Connection between CoDeMo and Copest, a stamping specific application.

Several connections with specific applications have been already developed and obviously, the extraction procedure

has to be customised for each ones. Moreover, such a connection is easy when file format is known. Thus, the

programmation of the extraction procedure consists in looking for the needed data in the shared database and writing

them in a text file. When the format file is not known the programation consists in writing an interface between

CoDeMo and the specific trade applications. In such a case it would be very interesting to study the creation of

neutral format as STEP [20].

14

2. Data management

During the design process, external actors associate feature to components, links and relations in order to create the

Product Model. Step by step they define and constrain the problem, however, a lot of heavy tasks cannot be realised

by a human actor. They are achieved by the internal actor and are presented in three groups:

- the notifications of data through a formal exchange network,

- the translation of data during the design process,

- the propagation of data and the coherency management.

2.1. The formal exchange network: Notification functions.

The formal exchange network manages the formal co-operation between all the actors who work on the design

project. As we explained in the preliminary concepts, CoDeMo has to supply the lack in co-operative design by

sharing the same database among several actors. Sharing means that an actor has to be able to reach any data or any

constraints of the product even if he has not created the data himself. In other words, if two client processes are

running at the same time on the same server process, every kind of actions, which would be creation, modification,

or deletion, in both clients has to be propagated to the server. Even further, every kind of actions has to be seen by

both clients.

This formal network is partly developed using IlogBroker libraries. These libraries provide very useful object classes

and a specific pre-processor. From personal object class definition, the compilation creates itself IlogBroker object

classes that supply the Remote Procedure Call (RPC) between the server and all clients. For each personal header file

IlogBroker pre-processor provides a _ipl class owning to the server and a _itf class owning by the client process.

Nevertheless, personal header classes have to inherit of a special IlogBroker class (Ilb_Exported class) in order to be

treated correctly during the pre-compilation (cf. Figure 10).

Using RPC/ONC communication layer, IlogBroker allows CoDeMo to be running on different platforms in the same

time. For example the server can be running on Silicon Graphics whereas two client processes are running on HP and

NT platforms.

Coupled to RPC connection IlogServer libraries are used to propagate all actions from server to client or from client

to server. These actions are relative to the data manipulation operations that can be executed by an actor (cf. II.1.1).

According to IlogServer inheritance (Viewed Class), some object classes can be associated to special representations.

This facility is used in CoDeMo to create the different representations related to a component, a link or a relation.

The notifications are in this way managed by the ServerView class of IlogServer. Indeed, this kind of class has pre-

defined methods called for the creation (onCreation), the modification (onModification) or the deletion (onDeletion)

of every Viewed Object.

As it is summarised on figure 10, CoDeMo uses Server View for each kind of representation (basic and 3D graphic),

and three Viewed Class for the components, the links and the relations of the data model.

15

IlogServer Objects

(Viewed objects)

IlogServer Server Views 1

IlogBroker EXPORTED Class

mapp_geo, (3D grahic rep.)

IlogServer Components 1

(3D graphic representation)

MComponent

Mlink

Mrelation

IlogServer Server Views 2

IlogBroker EXPORTED class

mapp_tech (basic rep.)
IlogServer Components 2

(basic representation)

IlogServer View Server : publicIlsViewServer

 IlbRpcViewServer

C++ constructor

IlogServer notifications

- onCreation()

- onModificatio()

- onDelation()

IlogViews

Graphic Interface

CoDeMo server Process (IlogBroker Server) CoDeMo client process (IlogBroker Client)

External Data

(IlBroker ILB_XFORM)

mapp_*_itf

gr_*_*_itf

mapp_*_ipl

gr_*_*_ipl

mapp_*_ipl

gr_*_*_ipl

mapp_*_itf

gr_*_*_itf

RPC/ONC comunication protocol

Figure 10: Uses of IlogBroker and IlogServer libraries in CoDeMo.

2.2. Feature translation

The feature translation is one of the automatic tasks managed by the internal actor. The objective is not to realise

automatic design actions but only to assist external actors in achieving those heavy tasks.

As we have already presented, the Product Model is progressively built associating the knowledge model (the

feature) to the data model (Components, Links and Relations). During this association, external actors are going to

use features to describe the product from their own point of view, it means using their own vocabulary. In a usual

communication between two foreign people who do not speak the same language words and sentences are translated

in order to be understood by both participants. Like this phenomenon of comprehension, each feature used in the

Product Model has to be translated in order to be understood by every design actors. For example, let PeauArbre be a

feature that represents a functional cylindrical surface with its functional characteristics as roughness, tolerances…

This feature must be translated in a Cylinder feature that represents the nominal dimensions of the same functional

surface with its geometric characteristics as the diameter, the length… In this way the association of a PeauArbre

feature to a component in the Ossature view involves the creation of another component with the Cylinder feature.

The translated component is created in the right view according to the translated feature. In our example, the

translated component is created in the geometric view (cf. figure 11).

Such translation process is general and thus can be used for every feature. However it obviously does not exist a

translation for all features in all views of CoDeMo. That is why in a lot of cases the feature translation has to be done

manually by each actor.

Figure 11 shows how a PeauPlane feature, which represents a plane functional surface in the Ossature view, can

have several translations in the Geometric view. Indeed a plane surface can have different boundaries as a circle, a

rectangle…

16

PeauArbre feature

PeauPlane feature

PeauPlane feature

Automatic

 translation

Manual

translation

Rectangle feature

Disc feature

Cylinder feature

Ossature view Geometric view

Figure 11: Feature translations as propagation of data.

2.3. Data propagation and coherency management

As the translation task, propagation and coherence management have to assist external actors. Most of current CAD

systems are based on a geometric modeller and only allows the creation of relations between geometrical data

(parametric geometry). In other words, they do not take into account other kinds of data and relations. One goal of

CoDeMo is to manage several types of data as manufacturing, structure analysis and of course geometrical data. In

such case and in a design study, there are quickly a lot of data that cannot be managed by an external actor. Indeed a

human actor is not able to keep the coherency of every relation and to propagate every modification to all design

data. CoDeMo is thereby developed using IlogSolver libraries. These libraries provide very useful object classes to

achieve such management and propagation tasks. The use of IlogSolver libraries is done in three steps as shown on

figure 12.

First data have to be defined as IlogSolver data, which are later treated such a way. Every characteristic of every

descriptive feature is defined as an IlcVarFloat or an IlcVarInt variable provided by IlogSolver. These variables

represent in fact an interval of respectively float or integer values. The interval can be bound: [a..b], or unbound

using the IlcInfinity variable: [a..IlcInfinity). Later during the design process intervals are reduced according to

constraint propagation.

Constraint features have also to be defined using IlogSolver facilities. Constraint features are defined as object class,

which inherit of the IlcConstraintI class of IlogSolver. Thus, we have just to define the overloaded functions:

propagate(), post() and isViolated(). These functions describe respectively the actions of the propagation, when

IlogSolver has to launch the propagation and how the constraint violation is defined.

Secondly, those both descriptive and constraint features are used to construct the product model as explained in part

II.1.1. In the example figure 12, we create two components associated to a Cylinder feature and one relation between

each cylinder radius. An Equality feature is associated to this relation to constrain the radii. In this way, IlogSolver

variables defining the two radii have to be equal; the two intervals of values have to be the same.

The third step is the automatic step managed by the internal actor and the IlogSolver manager. A predefined

IlcManager stores all data and all constraints defined during the construction of the Product Model. Then its own

function nextSolution() automatically propagates the constraints. The result shows that both variable intervals have

been reduced according to the Equality constraint.

17

_radius : Rad1

_radius : Rad2

equality1

PeauArbre : portee1PeauArbre : portee1

PeauArbre : portee2PeauArbre : portee2

Cylinder : cylinder1 Cylinder : cylinder1

Cylinder : cylinder2 Cylinder : cylinder2

shaft/rou1

shaft /rou2

Part : ShaftPart : Shaft

Ilog Solver Variable

IlcFloatVar Rad1 = [10..20]

IlcFloatVar Rad2 = [0..15]

Ilog Solver Constraint

Equality * equality1

Result

Rad1 = Rad2 = [10..15]

Ilog Solver Manager

IlcManager m

Variable definition

Product Model construction

Constraint propagation

Descriptive feature

Cylinder

IlcVarFloat _radius;

...

Constraint feature

Equality

IlcVarFloat _var1 _var2;

propagate() {_var1==_var2;}

post();

isViolated();

Feature definition

Figure 12: Equality feature as an example of data propagation using IlogSolver libraries.

III. PRODUCT EMERGENCE USING CoDeMo: A NEW APPROACH FOR CAD SYSTEMS

Till now, part I and II have presented the concepts and the computer developments of CoDeMo as co-operative CAD

system. We have nowadays at the 3S laboratory a mock-up that can be used to do design experiments. This modeller

is the support of an integrated design methodology so it is not used as current CAD systems. It is not based on

geometric definition but is led by functional trade specifications. The design begins with technological choices

according to technological specifications and is followed by other trade integrations in order to add new data and

new constraints on the product. The geometry is only the result of such integrations and appears as the translation of

functional specifications.

1. Integrated design methodology

Tichkiewitch defines the integrated design methodology as two parts in the design process [4]: initial design phase

and detailed design phase (cf. Figure 13). These two phases are not really two separated phases like it is in the

systematic design methodology [21] but rather mark the progressive integration of actors during the design process.

Indeed, all actors are not able to bring their description and their constraints without any definition of product

technology. Technological actors achieve this minimal definition in the initial phase. Other trade integrations are

therefore possible and that is what is called detailed design phase.

18

Initial design Phase

Choice of technological structure

by technologist integration

Detailed design

Phase

Choice of constraigning technologies

by trade integration

(manufacturing, recycling…)

Functional surfaces definition

Figure 13: Two phases of integrated design methodology.

We emphasise on the non-sequentially two design phases. Indeed it would be possible that a part of the product is

still in the initial phase because nobody has yet chosen a technological solution, whereas other parts were already in

detailed phase and were so described by manufacturing or structure analysis actors.

2. Technological choices: the initial phase of the design

The initial phase has to bring up technological solutions according to the main functions of the product. So,

technologist actors choose one solution among a list of physical admissible structures. In this way, they use specific

applications based on mapping functions to structures and obtain a minimal definition of functional surfaces. These

functional surfaces are necessary for the use of the chosen technological structure and are called later in the text:

Usage functional surfaces.

Some software already exists on the computer market to map functions to structures. The more efficient currently is

TechOptimizer developed by Invention Machine society [22]. Nevertheless, this product does not really deliver the

minimal functional surfaces of the technology and are not neither able to be directly connected to CoDeMo.

Moreover, physical principles are not used to choose solutions as in other systems [8] but just to explain the

technology running.

The design example of a pin joint can be used to introduce the mapping between functions to structures. The main

function of the product is then to guide a shaft allowing only one degree of freedom (only one rotation). Figure 14

shows two admissible solutions based, on the one hand on ball bearings and on the other hand on bearing. Those two

solutions are the results of two different functional decompositions:

- In the first case (a), the pin joint is decomposed in the association of a ball joint and a bearing joint. The

respective technologies are so, a ball bearing with two axial thrusts and an alone ball bearing.

- In the second case (b), the bearing is directly an admissible technological solution for the pin joint.

In both solutions, the shaft functional surfaces imposed by the technologies are obviously different. On one side,

there are two cylindrical surfaces and two plane surfaces, on the other side, there is only one cylindrical surface and

one plane surface (cf. Figure 14).

19

Cinematic representation

of a pin joint

Cinematic decomposition

of a pin joint

Shaft functional surfaces

for the technological solutions

Technological solutions

for a pin joint

(a)

Ball bearing

(a)

(b)

bearing

(b)

Cinematic representation

of a pin joint

Cinematic decomposition

of a pin joint

Shaft functional surfaces

for the technological solutions

Technological solutions

for a pin joint

Technological solutions

for a pin joint

(a)

Ball bearing

(a)

(b)

bearing

(b)

Figure 14: Two technological solutions for the pin joint, two different decompositions in CoDeMo.

Knowing the technology, technologist actors are able to construct the Product Model of the pin joint using CoDeMo.

They decompose the product in their view: the Technologist view. Figure 15 presents the Technologist view of the

Product Model for the ball bearing solution.

Afterwards, using the translation procedure, actors decompose the product in the Ossature view and therefore define

the usage functional surfaces imposed by the technology. In this view, skin features are associated to components of

the data model. The concept of skin features is defined in [23] and is used to define usage functional surfaces in the

initial design phase. It is next used to define functional surfaces for trade integration in the detailed design phase.

Finally skin features in the Ossature view can be translated to define their associated nominal surfaces. It is done in

order to decompose the product in the Geometric view. This is the first step of product emergence from technological

specifications (cf. Figure 15).

Technologic view

Ossature view Geometric view

Shaft decomposition in Ossature and Geometric views

Use of translation from Skin features to Geometric features

First step of

emergence of the geometry

Figure 15: Product Model decomposition of a pin joint using CoDeMo.

20

3. Trade constraints: the detailed phase of the design

Once the choices of the technological structure and the emergence of usage functional surfaces, other trade actors are

progressively going to add their constraints on the product. This is the detailed design phase.

Following the previous example we can now detail the integration of tooling actor for instance. Obviously the same

integration should be done by all actors of product life cycle. We present this integration in several steps shown on

Figure 16:

- (a) Tooling actor describes the product with his own point of view. Indeed, using his own vocabulary,

he provides new data on the product. He has to instantiate tooling features adapted to the right

description. For example, the shaft is described as Facing, Sliding and SlidingFacing features and their

characteristics. In this step, in order to evaluate each characteristic of features, he can use specific

applications like CAPP software.

- (b) Tooling actor creates the Tooling view in CoDeMo to bring his own data in the shared database. He

then decomposes the shaft component of the Technologist view in several new components associated

to the features chosen in the first step. According to the behaviour of each feature he also creates links

and relation in the product model. For instance roughness characteristic of tooling feature, which

represents the tooled roughness, has a relation with roughness characteristic of skin feature, which

represents the needed roughness.

- (c) Tooling actor watches the representations of his new data displayed in CoDeMo. Tooling features

are represented in the Tooling view by the basic and the 3D graphic representations. New functional

surfaces appear. They are called functional trade surfaces and are represented by skin features as we did

for the usage functional surfaces. In our example, tool edge imposes a radius between the cylindrical

part and the plane part of the SlidingFacing feature.

- (d) Tooling actor decomposes the product model in the Ossature view. He adds skin features associated

to components representing the previously new trade functional surfaces. In this case, a Peau skin

feature represents the transition radius due to the cutting edge. This decomposition is based on feature

translation concept and can be made automatically as far as possible.

Further, this actor should be able to define all data on the shaft process planning and even further process planning

data of each part of the pin joint: casing… Once each actor has done his own description and brought his constraints

in CoDeMo, the product is well defined. If it is under constrained, several solutions will be still available, it would be

interesting to study which kind of new constraints is it possible to add. Otherwise, if it is over constrained, actors will

have to resolve design arrangement. That could be the main goal of an actor called Project Manager.

21

Facing

- thickness;

-...

Sliding

- thickness;

-...

SlidingFacing

_tool_radius;

- thickness;

-...

(a) Feature choice

(b) Creation of the Tooling view

using Tooling feature in CoDeMo.

(d) Creation of trade functional surfaces using

skin features and translation concept.

SlidingFacing

_tool_radius=1

- thickness=3

--...

(c) Watching of the features

representations.

Figure 16: Integration of tooling actor in the detailed design phase: decomposition of the product model.

4. The geometry as a result : a radical change in CAD systems

Using CoDeMo as a Computer Aided Integrated Design, we emphasise on the approach by functional surfaces.

Indeed each actor defines his own functional surfaces in respect to the functional specifications that would be main

functions, the essence of the product, or constraint functions imposed by rules or by the design environment.

The geometry is built as a result of this functional surface approach. It is the radical change compared with current

CAD software even if these ones currently integrate trade modules as manufacturing or structure analysis modules.

Figure 17 shows how current CAD systems use the geometry definition as a departure point whereas the same

geometry is a result in CoDeMo.

Specifications List
Form Solution definition

(Geometry definition)

 Separate Trade

 constraints definition

Specifications List Form Solution emergence

(Geometry emergence)

 co-operative trade

constraints definition

Current CAD systems

CoDeMo use concept

Figure 17: Radical change in the development of CAD systems.

22

In the pin joint example, we have already presented the first step of product emergence. This first step comes from

the definition of usage functional surfaces brought by technological structure. The second step of the emergence

comes from the definition of trade functional surfaces. In fact, new components created by tooling actor in the

Ossature view are finally translated to the Geometric view. The transition radius therefore appears in the Geometric

view as a RaccordCylindrePlan feature with geometrical characteristics (position, diameter…).

Those translations are realised automatically or not, but the origin of every geometrical data is known as a functional

trade specification. Figure 18 presents the final Geometric view of the shaft in CoDeMo. We can watch the basic and

the 3D graphic representation of the transition radius.

Transition radius as result of Tooling actor integration

Figure 18: Final representations of CoDeMo views after the integration of technologist and tooling actor.

CONCLUSION

This paper mainly deals with the development of a new generation of CAD system used in an integrated design

environment. Such system, rather than being led by the predefined geometry of the product, is based on a functional

approach. Functional surfaces for the technology appear in the initial phase of the design and are completed with

trade functional surfaces in the detailed design. These functional surfaces are the departure point to define the

geometry of the product.

The Co-operative Design Modeller (CoDeMo) offers graphical interface to different actors who work on the design

project. These interfaces are used to fill a shared database with actor’s own data and own constraints. These own data

and specifications can be provided by specific application directly connected to CoDeMo with neutral files. The

product is therefore progressively constrained by decomposing the Product Model as the association of a multi-view

data model (components, links, relations) and a knowledge model (features). This operation is available from remote

computer site owing to an exchange formal network. This network connects a server process, which manages the

shared database, and the client processes, which displays the Graphic User Interface.

Each graphic interface is composed of several kinds of representations (2D or 3D graphic…) and thereby each actor

can understand the real meaning of each data in the Product Model. In addition, heavy design tasks as data

propagation or constraint coherence are managed by CoDeMo and become therefore transparent for the software

users.

CoDeMo has been developed using Ilog libraries that supply with a lot of problems as the graphic interface

definition, the multi-processes communication, the data management, and the constraint propagation. These libraries

are coupled with Motif and Inventor libraries from Silicon Graphics in order to implement the 3D graphic

representations of data.

23

REFERENCES

1. Tsang J.P., Brissaud D., “A feature-based approach to process planning”, Computer in Engineering

Conference and Exhibition, ASME-CIE, Anaheim, August 1989.

2. Boujut J.F., Tichkiewitch S., "COPEST: A Co-ordination Tool In The Design Process Of Stamped Parts",

AMPT '95, Advances in Materials And Processing Technologies pp 857, Dublin, August 1995

3. Escande E., “Modélisation objet du processus de conception dans le domaine du génie électrique : application

au cas de la machine asynchrone”, thèse de l’Institut National Polytechnique de Grenoble, 1996.

4. Tichkiewitch S., “De la CFAO à la conception intégrée”, International Journal of CADCAM and Computers

Graphics, vol. 9, n 5, pp 609-621, 1994.

5. Ishii k., “Modelling of concurrent engineering design”, Concurrent Engineering Automation, Tools and

techniques, edited by Adrew Kusiak, ISBN 0-471-55492-8, Wiley inter-science publication. 1993.

6. Gabbert U., Wehner P., “The Product Data Model as a pool for CAD-FEA data”, Engineering with computer,

vol. 14, pp 115-122, 1998.

7. Schulte M., Weber C., Stark R., “Functional features for design in mechanical engineering”, Computer in

Industry, n. 23, pp 15-24, 1993.

8. Tichkiewitch S., Roucoules L., “Innovative design methodology”, Integration of process Knowledge into

Design Support, ISBN 0-7923-5655-1, Kluwer Academic Publishers, 1999.

9. Troussier N., Pourroy F., Tollenaere M., Trebucq B., “Mechanical models management in engineering

design”, Integrated design and Manufacturing in mechanical engineering '98 Processings of the 2nd IDMME

Conference held in compiègne, france, 27-29 May 1998 Kluwer Academic publisher.

10. Lange M., Kjelberg T., “On motivation of Feature Selection in Feature based Modeling Systems”, Integration

of process Knowledge into Design Support, ISBN 0-7923-5655-1, Kluwer Academic Publishers, 1999.

11. Tichkiewitch S., “Specification on integrated design methodology using a multi-view product model”, ESDA

Proceeding of the 1996 System Design and Analysis Conference, PD-Vol 80, 1996.

12. Débarbouillé G., “Design data structure - version 1.0”, Rapport interne, Matra Datavision, 1994.

13. Brissaud D., Paris H., “A model for evaluating the quality of the fixturing of the part from a machining

process planning perspective”, Int. Jour. of Advanced Manufacturing Technology, Vol. 14, Num. 3, pp 172-

179, 1998.

14 Sohlenius G., "Concurrent Engineering", Annals of the CIRP, vol. 41, n°2, pp 645-655, 1992.

15 Aldanondo M., Rougié S., Veron M., "Expert configurator for concurrent engineering Caméléon software and

model", Journal of Intelligent Manufacturing, vol. 11, pp 127-134, 2000.

16 Lutters, D.; Streppel, A.H.; Kals, H.J.J.; "Product information structure as the basis for the control of design

and engineering processes"; In: Proceedings of the 29th CIRP International Conference on Manufacturing

Systems, pp. 167-166; (1997), Osaka.

17 Huang G.Q., Mak K.L., "Web-based morphological charts for concept design in collaborative product

development", Journal of Intelligent Manufacturing, vol. 10, pp 267-278, 1999.

18. ILOG, Bâtiment ORSUD, 3-5 avenue Galiéni 94 257 Gentilly Cedex, France. http://www.ilog.com.

19. Shah J.J., “Assesment of Feature Technology”, Computer Aided Design, vol 23, n°5, june 1991.

20. International Standart Organization, STandart for the Exchange of Product data (STEP), ISO Standart 10303.

21. Beitz W., Küttner K.H., “Handbook of Mechanical Engineering”, springler verlag, 1994.

22. Invention Machine France, 72, quai des Carrières 94220 Chateron-le-pont.

http:://www.inventionmachine.com.

23. Tollenaere M., Belloy Ph., Tichkiewitch S., “A part description model for the preliminary design”, Advanced

CAD/CAM Systems - State-of-the-art and future trends in feature technology, pp 129-143, Chapman & Hall ,

Ed. Soenen, 1995

