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A novel generalized dispersion equation to design circumferential 
wave fluid sensors

J. Y. Le Pommellec1 · A. El Baroudi1 

Abstract
A novel analytical investigation of circumferential (i.e. torsional) wave propagation in long anisotropic cylindrical rod 
(waveguide), surrounded by a viscoelastic fluid is proposed. The material is transversely isotropic, with its symmetry 
axis coincident with the axial axis of the cylindrical rod. In particular, a new form of the complex dispersion equation is 
presented. The aim of this paper is to study the correlation between the rheological properties of the fluid and the wave 
characteristics (phase and attenuation). The effect of the frequency and the waveguide radius on the wave character-
istics are highlighted. The obtained results show that the measurements should be performed at high frequency using 
small rod radius. Accordingly, the results can be serve as benchmark solutions in design of torsional wave fluid sensors.

Keywords  Circumferential wave · Transversely isotropic material · Viscoelastic fluid

1  Introduction

The concept of circumferential wave dipstick is attractive 
in industry for fluid characterizations. The idea is that the 
wave propagation in a solid elastic rod can sense the fluid 
rheological properties. The circumferential wave which 
propagates along the waveguide interacts with fluid 
boundary, it follows that the circumferential wave prop-
erties (velocity and attenuation) are highly affected [1].

The circumferential elastic waves in dry cylinders has 
been studied by many authors [2–4]. They have investi-
gated the material properties effects on the phase veloc-
ity of the circumferential modes. Huiling et al. have devel-
oped a theoretical model of guided circumferential waves 
propagating in double-walled carbon nanotubes [5]. They 
studied the dispersion curves of the guided circumferen-
tial wave propagation. Xu et al. have modeled the torsional 
wave propagation along a micro-tube with elastic mem-
brane attached to its inner surface. They have presented 
numerically the dispersion diagram of the lowest-order 
wave with the membrane surface effect [6]. The interaction 
between the circumferential waves and viscous fluid has 

been considered by [7–11]. Nevertheless, the interaction 
modeling between the circumferential wave and a viscoe-
lastic fluid is still lacking. Indeed, in the field of chemistry 
[12], medical diagnostics [13], or industrial monitoring 
[14], it is necessary to characterize the fluid viscoelasticity. 
One interesting application is the monitoring of polymeri-
zation [15]. During the process, the material changes from 
viscous fluid to elastic solids. This modification affects the 
propagation of the circumferential waves in a immersed 
circular rod.

Circumferential waves in elastic waveguide have been 
widely exploited to measure the fluid viscosity [1, 11, 16, 
17]. However, in these papers the character viscoelastic of 
fluid has not been taken into account. A novel approach 
based on the exact theory, to be able to accurately predict 
the circumferential wave behavior in elastic waveguide 
loaded on its surface with a viscoelastic fluid, remains a 
daunting task and is the purpose of the present paper. 
The effects of frequency and waveguide radius on the 
phase velocity and attenuation of circumferential waves 
are investigated. The obtained curves show that the 
attenuation is much more sensitive than phase velocity to 
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glycerol concentration. Otherwise, the sensitivity is more 
significant for small waveguide radius and high frequen-
cies. These results can provide interesting information to 
design sensors: we can use circumferential wave propaga-
tion at high frequency (100 kHz) in anisotropic waveguide 
with small radius (1 mm).

2 � Physical model description

To describe the waveguide structure that guides circum-
ferential waves, we consider a two-layer system consist-
ing of a viscoelastic fluid and an anisotropic cylindrical rod 
as shown in Fig. 1. The length of the waveguide is much 
greater than the radius a of the cross-section so that the 
interaction of the right-end face with the viscoelastic fluid 
is negligible [11]. Therefore, the current work focuses on 
the circumferential modes. The circumferential waves 
exhibit a multimode character, the fundamental mode 
plays an important role in many application such as NDT 
and sensors. Accordingly, in this work, the attention is 
focused on the properties of the fundamental mode of 
circumferential waves. For this set of modes, the non-zero 
components of displacement and velocity are u� and v� . 
Moreover, due to the axisymmetry of the studied modes, 
the velocity field, �(r, �, z) =

(
0, v� , 0

)
 , and displacement 

field, �(r, �, z) =
(
0, u� , 0

)
 , are independent of the � vari-

able and can be displayed in the (r, z) plane. Note that in 
previous works the circumferential vibration in an isotropic 
elastic cylinder was used to determine fluid viscosity. In 
the present work a novel theoretical approach is devel-
oped taking into account both the fluid viscoelasticity and 
anisotropy of the waveguide.

2.1 � Mathematical formulation of waveguide

Based on the elastodynamic theory, the equation describing 
the motion of torsional vibrations of the waveguide in the 
absence of body forces is governed by

where �s is density, u� is displacement components along 
circumferential directions, and ��z , �r� , are the stress com-
ponents and can be written using generalized Hooke’s law 
as

where C44 and C66 are the elastic coefficients. Substitut-
ing Eq. (2) in Eq. (1), yields the following partial differential 
equation

Note that in the case of an isotropic waveguide, 
C44 = C66 = � , the Lamé constant.

2.2 � Mathematical formulation of viscoelastic fluid

In this study, we consider that the fluid velocity is small com-
pared to the dimensions of the model, it then follows that 
all nonlinear convective inertia effects in the Navier–Stokes 
equation (NSE) can be neglected, therefore the linearized 
NSE takes the form

where v is the velocity vector, t is the time, �f  is the den-
sity and � is the shear stress tensor. In this paper Max-
well model is adopted to describe the fluid viscoelastic-
ity. Therefore, the differential equation for the relation 
between force and deformation can be written as [18]

where � is the relaxation time, � is the dynamic viscosity 
and � is the strain rate tensor. Applying the divergence 
operator to both sides of Eq. (5) and taking into account 
Eq. (4), we get the following viscoelastic fluid equation 
expressed in terms of the circumferential component of 
the velocity field
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Fig. 1   The model geometry of anisotropic cylindrical rod wave-
guide. �s , C44 and C66 correspond to the density and elastic con-
stants of the cylindrical rod. The surface of the anisotropic cylinder 
is loaded by a viscoelastic fluid. The boundary between the ani-
sotropic cylinder and viscoelastic fluid is at r = a . For viscoelastic 
fluid, � , � and �f  are, respectively, relaxation time, dynamic viscosity 
and density
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The Eq. (6) is known as the telegraph equation.

2.3 � General solution of wave equations

For a circumferential harmonic wave propagation in the 
z-direction, the solution of Eqs. (3) and (6) (waveguide dis-
placement u� and viscoelastic fluid velocity v� ) are sought 
in the form

where k = k0 + j� is the complex wave number. Note that 
the real part of the wave number k0 determines the cir-
cumferential wave phase velocity, and the imaginary part 
� represents the circumferential wave attenuation in the 
propagation direction. After substitution of Eq. (7) into Eqs. 
(3) and (6), the radial dependence can be expressed as

where A, B and C are arbitrary amplitudes, I1 and K1 are 
modified Bessel functions of the first and second kind, and 
�s and �f  are the radial wavenumbers

where d =
√
2�∕(�f�) defines the fluid penetration depth 

[19], and cs =
√
C44∕�s  is the shear wave velocity in the 

waveguide. Thus, using Eqs. (2) and (5) the shear stress 
components that will be used in boundary conditions are 
given by

where the radial dependence is defind as

2.4 � Complex dispersion equation

In this paragraph boundary conditions must be used to 
determine the constants A, B and C. Assuming wall outer 
fluid surface, one can write : (i) continuity of velocity and 
shear stress at the interface between viscoelastic fluid and 
waveguide

(7)
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(ii) wall outer surface of viscoelastic fluid is assumed

By substituting Eqs. (7) and (8) into these boundary condi-
tions provides three homogeneous and linear equations 
for the constants A, B and C. This system of equations has 
a nontrivial solution if the determinant of the coefficients 
equals zero. This leads to the following complex dispersion 
equation

Equation (12) represents the complex dispersion equa-
tion of circumferential waves propagating in waveguide 
loaded with a viscoelastic fluid. For given dimensions, 
elastic waveguide constants and fluid properties, Eq. (12) 
constitutes an implicit transcendental function of k. The 
complex roots k may be computed using Mathematica 
software for a first mode vibration. After finding the real 
part k0 and the imaginary part � of the wavenumber, the 
circumferential wave phase velocity cp = �∕k0 can be cal-
culated. As a remark, for a semi-infinite viscoelastic fluid, 
the complex dispersion equation (12) becomes

In the case of a viscous Newtonian fluid, the complex dis-
persion equation (13) takes the following form

which was previously obtained by Kim and Bau [11] for an 
isotropic waveguide.

3 � Results and discussion

The same material properties used in [20, 21] and given 
in Table 1 for viscoelastic fluid were taken to construct 
this numerical example. The waveguide parameters were 
derived from [22] are given in Table 2. In this work, numeri-
cal calculations are performed in the frequency range from 
1 to 50 (kHz) and for five values of glycerol concentrations 
0, 71, 85, 95 and 100% . Table 3 highlighted the influence of 
glycerol concentration in water on the phase velocity and 
attenuation of the wave calculated using the dispersion 
equation (12). It can be seen from Table 3 that for each 
frequency, the phase velocity decreases with the glyc-
erol concentration while the attenuation increases. As a 
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remark, for a zero glycerol concentration (pure water), the 
phase velocity is very close to the shear wave velocity in 
the waveguide cs (see Table 2). When the glycerol concen-
tration increases the phase velocity slowly decreases, and 
the attenuation significantly increases.

The effect of the frequency on the phase velocity and 
attenuation is depicted on Fig. 2. It is seen from Fig. 2 that 
the phase velocity increases with frequency and tends 
towards waveguide shear velocity cs . It is also shown that 
the attenuation increases with the frequency. Otherwise, 
for a given frequency, the phase velocity decreases with 
the glycerol concentration while the attenuation aug-
ments. Finally, we can see that the attenuation is much 
more sensitive than phase velocity to glycerol concentra-
tion. The results highlighted in Fig. 2 can be justified by 
the influence of frequency on the penetration depth of 
the circumferential wave in the viscoelastic fluid. When the 
frequency augments the penetration decreases and the 
influence of the glycerol concentration on the phase veloc-
ity decreases. For high frequency this influence is negli-
gible and the phase velocity is approximatively equal to 
the waveguide shear velocity cs . Otherwise, the decreasing 
of the penetration depth linked to the frequency gener-
ates an increasing of the attenuation. Consequently, this 
attenuation is much more sensitive to glycerol concentra-
tion for high frequencies.

Waveguide radius is an another essential parameter in 
design of circumferential wave sensors. The influence of 
the rod radius on the phase velocity and attenuation is 
shown on Figs. 3 and 4. It can be seen from these figures 

Table 1   Material parameters used for water–glycerol mixtures

� is the concentration of glycerol in water

� (%) � (Pa s) �f
(
kg/m

3
)

� (ps)

0 0.000894 1000 0.647
36 0.0027 1090 1.87
56 0.00527 1140 3.51
71 0.02 1190 12.7
80 0.0447 1210 27.1
85 0.0923 1220 54.2
95 0.452 1250 243
100 0.988 1260 500

Table 2   Material parameters used for anisotropic cylindrical rod 
(waveguide)

�s
(
kg/m

3
)

C44 (Pa) C66 (Pa) cs (m/s)

Anisotropic rod 2800 2.850 × 1010 2.345 × 1010 3190.39

Table 3   Phase velocity cp and 
attenuation � with a = 3 (mm)

�  (%) f = 1 (kHz) f = 10 (kHz) f = 50 (kHz)

cp (m/s) � (Np/m) cp (m/s) � (Np/m) cp (m/s) � (Np/m)

0 3183.99 0.004 3188.36 0.013 3189.48 0.028
71 3157.66 0.021 3179.97 0.065 3185.72 0.145
85 3120.01 0.047 3167.81 0.143 3180.25 0.316
95 3036.50 0.111 3140.23 0.326 3167.77 0.715
100 2966.22 0.172 3116.47 0.492 3156.93 1.069

Fig. 2   Phase velocity and attenuation versus frequency for a = 3 (mm)
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that the phase velocity increases with the rod radius and 
reach shear wave velocity in the waveguide cs (Fig. 3). Oth-
erwise, the attenuation decreases in a monotonous way 
(Fig. 4). For each radius value, phase velocity decreases 
with glycerol concentration while attenuation increases. 
This effect is more significant for low radius values.

The effect of the glycerol mass fraction on the phase 
velocity and attenuation is shown on Figs. 5 and 6. The 
calculations are performed for frequency range from 1 to 
100 kHz and two rod radius 1 and 6 mm. Each curve shows 
two regions :

• For glycerol concentration less than about 40% , the
phase velocity (Fig. 5) is approximatively equal to the
shear wave velocity cs in the waveguide (Table 2). Oth-
erwise, the attenuation (Fig. 6) is negligible. The influ-
ence of the frequency value is very low.

• For the glycerol mass fraction exceeding 40% , the phase 
velocity decreases with mass fraction while the attenu-
ation augments. These behaviors are more significant
for small rod radius ( a = 1mm ) and high frequency. We
can see that the attenuation is much more sensitive
than phase velocity to glycerol concentration.

(a) (b)

Fig. 3   Phase velocity versus cylindrical rod radius

(a) (b)

Fig. 4   Attenuation versus cylindrical rod radius
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4 � Conclusions

In this paper a novel analytical approach was used for 
the study of an anisotropic cylindrical rod (waveguide) 
surrounded by a viscoelastic fluid (water–glycerol mix-
ture). A new complex dispersion equation was devel-
oped. Therefore, the graphs highlighted the influence 
of the frequency and waveguide radius on the phase 
velocity and attenuation for different values of glyc-
erol concentrations. The glycerol concentration effect 
was also depicted for two waveguide radius (1 mm and 
6 mm) and frequency ranging from 1 to 100 kHz. The 

obtained curves show that the attenuation is much more 
sensitive than phase velocity to glycerol concentration. 
Otherwise, The sensitivity is more significant for small 
waveguide radius and high frequency. Consequently, the 
characterization of a viscoelastic fluid can be performed 
using torsional wave propagation at high frequency in 
anisotropic waveguide with small radius.

Compliance with ethical standards 

 Conflict of interest  The authors declare that they have no conflict 
of interest.

(a) (b)

Fig. 5   Phase velocity versus glycerol mass fraction

(a) (b)

Fig. 6   Attenuation versus glycerol mass fraction
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