y _
r :
\ 7 /"/ y -
\ - oW c o Artc MMatioare
% 4y Science Arts et Metiers
]
r
y /

Avrchive Ouverte - Open Repository
y

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of
Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/17020

To cite this version :

Alexia DE BRAUER, Angelo IOLLO, Thomas MILCENT - A Cartesian Scheme for Compressible
Multimaterial Hyperelastic Models with Plasticity - Communications in Computational Physics -
Vol. 22, n°5, p.1362-1384 - 2017

Any correspondence concerning this service should be sent to the repository \ Arts

Administrator : scienceouverte@ensam.eu et Métiers



https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/17020
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

doi: 10.4208/ cicp.OA-2017-0018

A Cartesian Scheme for Compressible Multimaterial
Hyperelastic Models with Plasticity

Alexia de Brauer!, Angelo Iollo'* and Thomas Milcent?

1 Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France.
CNRS, IMB, UMR 5251, F-33400 Talence, France.

INRIA, F-33400 Talence, France.

2 Univ. Bordeaux, I2M, UMR 5295, F-33400 Talence, France.
Arts et Métiers Paristech, F-33607 Pessac, France.

Abstract. We describe a numerical model to simulate the non-linear elasto-plastic dy-
namics of compressible materials. The model is fully Eulerian and it is discretized on
a fixed Cartesian mesh. The hyperelastic constitutive law considered is neohookean
and the plasticity model is based on a multiplicative decomposition of the inverse de-
formation tensor. The model is thermodynamically consistent and it is shown to be
stable in the sense that the norm of the deviatoric stress tensor beyond yield is non
increasing. The multimaterial integration scheme is based on a simple numerical flux
function that keeps the interfaces sharp. Numerical illustrations in one to three space
dimensions of high-speed multimaterial impacts in air are presented.

AMS subject classifications: 35165, 65M08, 74C15
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1 Introduction

The numerical modelling of multimaterial rapid dynamics in extreme conditions is an im-
portant technological problem for industrial and scientific applications. Experiments are
dangerous, need heavy infrastructures and hence are difficult and expensive to realize.
The simulation of such phenomena is challenging because they couple large deforma-
tions and displacements in solids to strongly non-linear behaviour in fluids. In what fol-
lows, we privilege a fully Eulerian approach based on conservation laws, where the dif-
ferent materials are characterized by their specific constitutive laws. This approach was
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introduced in [10] and subsequently pursued and extended for example in [2,9,13,19].
For specific applications, a Lagrangian approach like in [17] or [15] can be more suitable.

In this work we extend to elasto-plastic flows the schemes presented in [5,11] for hy-
perelastic multimaterials. This scheme is based on a simple modification of the numerical
flux function at the multimaterial interface that allows an efficient code parallelization.
Thanks to this scheme, there is no need of defining a ghost fluid through the material
boundaries to avoid accuracy and stability issues. In addition, this interface remains
sharp.

Plasticity modelling is an open issue. The models are phenomenological and sev-
eral problematic points still need further investigation, see for example [20]. Here we
follow an established literature [1,6,12,16, 18,21, 22] where the deformation is viewed
as the composition of a purely elastic and a purely plastic mapping. This approach has
the advantage that plastic effects are modeled as a source term in the equation for the
elastic deformation tensor. Also, using appropriate constitutive equations for the plastic
phenomenon, it is possible to respect thermodynamic consistency (entropy is increasing)
and phenomenological constraints as volume invariance of the plastic flow. In particular,
we show here that with the plasticity model adopted in [18], the deviatoric stress tensor
norm is actually non increasing during the plastic process for the neohooken hyperelastic
model.

The applications we present are illustrations of the stiff phenomena occurring when
high speed projectiles impact on shields. These examples include a one-dimensional case
where we can compare the numerical results to an exact solution, a two-dimensional
impact on a plastic layer, two and three-dimensional impacts on framed plastic shields.

2 Eulerian hyperelastic model

This model was already discussed in [3, 8, 10, 19, 23,24]. We follow here the formulation
presented in [5] and extend it to plasticity modelling. The equations of mass, momentum,
deformation and energy conservation are given by
orp+divy(pu) =0,
ot (pu) +divy(pu®@u—0o) =0,
at (VXY) + VX(u . VxY) - 0,
0;(pe) +divy (peu—olu)=0.

2.1)

The physical variables are the density p(x,t), the velocity u(x,t), the total energy per unit
mass e(x,t) and the Cauchy stress tensor in the physical domain o(x,t). Here Y (x,t) is
the backward characteristics that for a time t and a point x in the deformed configuration,
gives the corresponding initial point in the initial configuration. The equation on V.Y
is required in order to record the deformation in the Eulerian frame. The initial density
p(x,0), the initial velocity u(x,0), the initial total energy e(x,0) and V,Y (x,0)=1I are given
together with appropriate boundary conditions.



We assume that the internal energy per unit mass e =e— % |u|? is the sum of a term
accounting for volumetric deformation depending on the density p and the entropy s,
and a term accounting for isochoric deformation depending on the modified left Cauchy-
Green tensor B given by

B(x,t) = [V Y] VLY T/ (xt),  J(x,t)=det([V,Y]) . (2.2)
We choose a general constitutive law that models gas, fluids and elastic solids given by

neohookean elastic solid

k()" P, X o
e(p,s,VyY)= ——— +—+4+=(Tr(B)—-3). 2.3
(05 V)= 20 P K (12(B) ) 23)
~——
perfect gas

~

stiffened gas
We obtain according to the formula o = paa—ﬁP T where F = [V,Y]™! is the deformation
tensor

a(0,5,VxY)=—p(0,5)[+2x] " <§—%§)I>, (2.4)

where
p(p,8)=x(s)p" — Poo- (2.5)

Here x(s) = exp(%) and c,, Y, P, X are positive constants that characterize a given ma-
terial. Parameter p, accounts for fluid or solid materials where intermolecular forces are
present (see for example [8,9]). The last term in the energy expression models a neo-
hookean elastic solid where the constant y is the shear elastic modulus. Here we stick to
a neohookean model as it has been shown to result in an hyperbolic system [5]. In order
to be self contained we provide below the analytical wave speeds for the neohookean
law.

Let us consider the one-dimensional problem in the x; direction ¥;+(F(¥))1 =0
associated to system (2.1). The wave speeds are the eigenvalues of F/(¥) and are given

by
/\E:{ul,ul,uli1 2t 22, /@}. (2.6)
0 0 0

Here, ay,ap and a3 are the roots of the polynomial of third order X34+Tr(Z)X>+

Tr(Cof((X))X+Det(X)=0 and

o o) o\ MY

n=[Vel[VY]= o3 op o3 || VG Y5 Y5, 2.7)
L G VAN SRR SRR



where 0], o) and ¢} denote the derivative of o/ with respect to Y}, Y2 and Y3 respec-

tively. For the neohookean law we can show that

2 —2A11 —5A22 —5A33 6A12 6A13 1 00
Z=§xf”3 6A1, —9A;;, 0 | —p|0 0 0], (28
6A13 0 —9A11 0 00

where ¢? = g—ﬁ |and A=] ~3B. We have proved that ; >0 for all deformations. Note that
the initial expression of X given in [5] depends on B, and B3 but they actually vanish.

3 Plasticity modelling

Plasticity describes the deformation of a material undergoing non-reversible changes of
shape in response to applied forces. When the force is unloaded the solid does not come
back to the initial configuration. Experimentally plasticity occurs when the stress exceeds
a critical value. Let the deviatoric part of the stress tensor

T
dev(c)=0— réa) I. (3.1)
We define the yield function of von Mises
2 2,
fou(0) =|dev(@) P~ 2 (o3 32)

The surface fypr(0) =0 represents the yield surface and oy is the plastic yield limit. We
have
{if fvm(0) <0 = elastic regime;

if fum(c)>0 = plastic regime.
In this paper, we restrict ourselves to the case of perfect plasticity where 0y is a constant.
We have that

dev(0) = 3 ((e1 =) +(e2—0a)+ (1 —03)?),

where 01,07,03 denote the principal stress components of o. Hence, the yield surface for

the von Mises criteria is a cylinder of radius \/g 0, with the axe 07 =0 =03.

3.1 Kinematics

Following [16], the total deformation is the composition of a plastic and an elastic defor-
mation (see Fig. 1).
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Figure 1: Elastic and plastic deformations.

The backward characteristics for elastic and plastic deformations are denoted by Y*
and Y7, respectively. Taking the gradient of the relation Y (x,f) = Y?(Y¢(x,t),t) we get
VY] =[V:YP][V,Y?] and the total deformation gradient F is given by

F:= [V, Y] ' = [V Y]V, YP] Li=F°FP

which is known in the literature as the multiplicative decomposition of the total defor-
mation gradient. We observe that after unloading the elastic force, F® =Id and F = F¥ so
the unstressed reference state has changed. In the following we use the notation V for
V.
Next, we derive the Eulerian form of the evolution equation for the plastic deforma-
tion tensor F7:
0t(FP)4+u-VFF =LPFP, (3.3)

where L7 is the constitutive law defining the plastic deformation rate. The equation on
deformations in (2.1) reads 9;(F 1)+ V (u-F~!) =0 and hence

(F N +u-VE1=—F1[Vu]. (3.4)
Following (3.3) and (3.4) we get that [VY*¢] =[F¢]~! = FFF~1 verifies
(VYY) +V (u-VY®) = LP[VY]. (3.5)

We model plasticity by the constitutive law [18]
1
LF = po [VY¢ldev(c)[VY] !, (3.6)

where y is the shear modulus and 7 is time of relaxation of the plastic process which will
be defined in the following in (3.17). Finally, the equations of conservation with plasticity



modelling are
oip+V-(pu)=0,
ot(pu)+V-(pu®@u—0o)=0,
1 (3.7)
H(VY)+V(u-VY®)= E [VY¢|dev(0),

9t (pe)+V - (peu—oTu)=0.
The plasticity appears as a source term in the equation of elastic deformations and can be
seen as a penalization of the deviatoric part of 0.
3.2 Volume change in the plastic process
We get with the relation 9;(det(A)) =det(A)Tr(A19;A), (3.3), (3.6) and Tr(dev(c)) =0
that
L (det(F?)) = d (det(EP)) +u-V (det(EP))

dt
~ldev(o)

:det(FP)Tr<[FP]—1 [F] pos FfFP) =0.

Hence, the plasticity relaxation occurs with no variation of volume.

3.3 Clausius-Duhem inequality

We assume that internal energy depends only on elastic deformations and entropy. Using
e=e—3|u|? and the equation on momentum conservation, the energy equation in (3.7) in
the non adiabatic case can be replaced by

p(ore+u-Ve)=0:[Vu]—div(q),

where ¢ is the heat flux. Internal energy is given by e =¢(F¢,s) so that

d d
p5- (Brs+1u-Vs) oo (34(F)+u-VF) =02 V). (3.8)

D

From (3.5), recalling that F¢=[VY*]~! and that 9;(A~!)=—A"19,(A) A, we have
1
0i(F)+u-VF = [VM]FG—EdeV(O')FE, (3.9)

and hence 5
e . e_ 1 e
D:P—ape : <[Vu]F X—Tdev(a)F ) .



Combining (3.8) with the following entropy inequality

pT (ds+u-Vs) 2—div(q)+¥, (3.10)
we obtain the adiabatic Clausius-Duhem inequality (g =0)

_as de T 1 oe T
— . A " e . 5% [T, >
P<T as>(ats+1/l Vs)+<a P3pe '] ) [Vu]+XTpaFe[P] dev(c)>0

that holds for any function s(x,t), u(x,t) and F¢(x,t). In order to satisfy this inequality,
the stress tensor has to be o= p% [Fe]T and the temperature T = %. Therefore, since
o:dev(c)=|dev(c)|? >0, the Clausius-Duhem inequality is indeed verified.

We remark that the expression for the Cauchy stress tensor only involves VY*, that
in turn satisfies the third equation in (3.7). If the unstressed configuration and the plastic
deformations are sought, we need to integrate the nine equations (3.3) or equivalently
the nine equations on the total deformation 9;(VY)+V (u-VY)=0.

In summary, when plasticity occurs thermodynamic consistency is ensured since en-

tropy is increasing.

3.4 Stability of the deviator for the neohookean law

Let us show that for the neohookean law, the norm of the deviator decreases when plas-
ticity occurs. We consider a spatially homogeneous case for u and VY*, so that the defor-
mation equation reduces to

9 (VY*®) :%[VY"]dev((f). (3.11)
For the neohookean model
dev()=2x] 53 (B - TréB ) 1> , (3.12)

where B=[VY?]71[VY?]~T and [ =det([VY¢]). We have with (3.11)

0 ([VY]] )= —idev(&) VY=L, o ([VYe] )= _ L VY]~ Tdev(s), (3.13)
XT XT
Therefore because dev (&) is a polynomial in B
9B = — 2 dev(¢)B= — > Bdev(d) (3.14)
B=— e = ev (7). :

We get also with 9 (det(A)) =det(A)Tr(A~19;A), (3.11) and Tr(dev (7)) =0 that

9] =det(VY)Te ([VF] 13,(VY)) = %det(VYe)Tr(dev((f)) 0. (3.15)



Hence ] is constant in time. Using (3.12), (3.14) and (3.15)

8T—5/3

o1 ([dev(?)2) =~ L2 | dev(2): (Baev()) - I

3
=0 because Tr(dev(5))=0

T e (3 T (2 T

dev(d):1I

P

The matrix B is symmetric and positive definite since (Bx)-x=|[VY¢]"Tx|>>0so0 B is
diagonalizable in an orthonormal basis and the eigenvalues denoted by A; are positives.
We have that

P=5((A1)3+(A2)°4(A3)3) +1201 0245 — (A + A2+ A3)°
:Al(—2/\1+)\2+/\3)2+)\2(/\1 —2/\2—1—)\3)2—1-/\3(/\1—1—/\2—2/\3)2 >0.

Hence
9;(|dev(#)|?) <0. (3.16)

Here we use the relaxation time given in [7]:

1 |dev(o)?—5(ey)* .
_ ?0 )(2 if fVM(U)>0,

0 if fym(o) <0,

1
= (3.17)

where ) is a characteristic relaxation time. Therefore, during the plastic process the
quantity |dev(c)| is decreasing until reaching the yield surface of plasticity at constant

pressure (p=p(],s)).

4 Numerical scheme

A splitting strategy is used at each time step. First, we compute the solution of the equa-
tions (3.7) without the plastic source term. For sake of completeness we report here the
main ideas of the hyperbolic part of the scheme. Details can be found in [5,11,13].

4.1 Hyperbolic step

We use a finite-volume method on a Cartesian mesh and the fluxes are computed by ap-
proximate one-dimensional Riemann solvers in the direction orthogonal to the cell sides
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Figure 2: HLLC solver wave pattern.

of the Cartesian mesh. The numerical flux function F(¥;;'¥,) at the cell interface x =0 is
determined based on the solution of the HLLC [26] approximate Riemann problem. Even
though the exact wave pattern involves seven distinct waves, see (2.6), the approximate
solver approaches the solution using three waves: the contact discontinuity u7j, the fastest
leftward and rightward waves s; and s,. Hence, there exist only two intermediate states

¥~ and ¥ (see Fig. 2).
The HLLC scheme is based on the assumption that every wave is a shock and there-

fore Rankine-Hugoniot relations give
P(Tr) _f‘-‘r ZSr(Ty_lI[Jr),
Fr—F =u(Y"-¥),
F —F(‘Yl) =85 (‘Y_ _Tl)'

(4.1)

These relations allow to compute the intermediate states ¥~ and ¥*. The robustness
of the scheme is strongly influenced by the estimation of s; and s,. We use the estimate
presented in [4] which is a simple way to obtain robust speed estimates:

5] :min((u1 —A)l,(ul —)\)r), Sy :max((ul—l—/\)l, (ul+/\)r)-

where A =, /72% The numerical flux at the cell interface x =0 is then given by

P(Tl) if OSSZ,
F- if sl<0<u{,
F(Y,¥,)= - 4.2
(¥%) Ft if uy<0<s,, (4.2)
F(¥,) if s <O0.

The multimaterial solver is detailed in one dimension for sake of clarity and the same
method in all directions. We consider a case where the interface separating materials
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Figure 3: Fluxes at the material discontinuity.

with different constitutive laws is located between the cell centers k—1 and k. The main
idea of the multimaterial solver is that, instead of (4.2) we take (see Fig. 3)

.715_1/2:.77, ]1(/_1/2:;+. (4:.3)

The scheme is extended to second-order accuracy using a piecewise-linear slope re-
construction in space (MUSCL), with minmod limiter. With this scheme the interface
remains sharp.

Coherently with a fully Eulerian approach, a level set function is used to follow the
interface separating different materials. The level set function is transported with the
velocity field by the equation:

pr+u-Ve=0. (4.4)

This equation is approximated with a WENO 5 scheme [14]. The conservation equations
and the interface advection are explicitly integrated in time by a Runge-Kutta 2 scheme.
The interface position is advected using the material velocity field. For numerical stabil-
ity, the integration step is limited by the fastest characteristics over the grid points.

4.2 Plastic step
Secondly, we solve the plastic ODE

2:(VY?) = X—lT [VY?]dev(c). (4.5)

If we use a explicit Euler scheme, the time step will be limited by a CFL condition of
the type At < Cxt which is very restrictive. Instead we use the following semi-implicit



scheme. The term dev(c) is taken explicitly at time t, and the term [VY*] is chosen
implicitly so the solution at time ¢, is given analytically by

(VY = [VY] exp <%dev(an)> . (4.6)

5 Numerical results

We present in this section simulations of elasto-plastic problems in one, two and three
dimensions. The code is fully parallelized with the MPI paradigm. It is used with one
grid cell in the directions y and z for one-dimensional simulations, and similarly for two-
dimensional cases.

5.1 1D validation with analytical solution

In TC1, an aluminium plate of 2 mm impacts a titanium plate of 9.8 mm. This case
was presented in [21]. The initial velocity of the aluminium plate is 700 m.s~!. The
computational domain is [0,17] mm where the intervals [0,1] mm and [12.8,17] mm are
filled with air. The initial configuration is presented in Fig. 4 and the physical parameters
in Table 1. The computation is performed on 2000 points with a CFL of 0.8.

7/

Air Al Titanium Air

f.z

| |
|
01 3 12.8 17 2 1073m

Figure 4: Sketch of the initial configuration for TCL.

Table 1: Material physical parameters of TCL1.

Media p(kgm™3) | 7 | pe (GPa) | x (GPa) oy (GPa) | 19 (s)
Air 1 1.4 0 0 — —

Aluminium (Al) 2712 3.5 32 26 0.06 10~°
Titanium 4527 2.6 44 42 1.03 108
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Figure 5: Solution pattern of elasto-plastic problem.

After the impact, two waves are created: an elastic shock wave named elastic pre-
cursor and a plastic region propagating with a smaller velocity. The wave pattern in
space-time of this elasto-plastic phenomenon is sketched on Fig. 5, where the plastic re-
gion is designated by a single plastic wave. The plastic wave represents the region where
the stress of the material is relaxing towards the plasticity surface.

Fig. 6 presents the numerical results for the density, pressure, velocity and normal
stress at t = 0.2us. We can see the plastic wave at x =4 mm and the elastic wave at
x=4.5 mm that propagate in titanium. These waves are less distinguishable in the alu-
minium plate because the plastic yield limit (0, =0.06 GPa) is reached almost immedi-
ately. However, we can see on the pressure plot the elastic wave at x=1.2 mm and the
plastic wave at x =1.6 mm. The results found in this work are similar to those observed
in [21] where a different constitutive law is used.

In order to validate the numerical scheme, the analysis done in [21] is adapted to the
neohookean model. The problem is 1D and the initial condition on velocity is u=(u1,0,0),
so [VY] is diagonal for all times and hence

Y, 0 0
VY]=[ 0 Y3 0
0 0 v

Even if the problem is 1D in the x; direction, the three components of the diagonal matrix
[VY] are modified in the plastic regime because dev(c) is a non linear function of [VY].
The density p is defined by p=pg Ylleng For the neohookean model, the internal energy
is given by ,

+ o0 _4
= Do yaYT g ((AYAYR) T (VDP(V+ (VP37 + (3P (Y3)7) -3),
17,273
(5.1)

whereas the deviatoric of the Cauchy stress tensor is diagonal and its components are
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Figure 6: TC1: Solution at t=0.2us for density, pressure, velocity and normal stress.
given by
2x 2127132 1\2((v232 312
[deV(U)]n:—% 2(Y5)7(Y3) = (Y1) 7 ((Y3)"+(Y3) )),
1v2v3
3(v1v3v3)
2x 1N2/v3\2 _ (v232( (v1\2 L (V312
[dev(e)]zn= ——— (20} (¥3) - (V32 (Y1)*+(13)?),
1v2v3
3(v1v3v3)
2x 1N2/v2\2 _ (v3Y2( (v1\2 L (v232
dev(o)las =——2— (20023~ () (YD) +(¥3)).
1v2v3
3(v3var3)

In this test case the material is not prestressed so Y/Z = Y33 =1 at initial time.

Region between the elastic precursor and the plastic region. In this case the plastic
source term vanishes so that Y3 =Y3 =1 and p = POY,11- We suppose that ¢ lays on the



Table 2: TC1: Analytic and numerical results for different mesh size in the elastic region for aluminium and
titanium.

Variables analytical results numerical results

Mesh size 1000 2000 4000
pal (kg.m=3) 2713.565 2713.476 | 2713.539 | 2713.540
up (ms™1) 695.283 695.544 | 695.352 | 695.349
pa1 (GPa) 0.0648 0.0611 0.0637 0.0638
OTi (kg.m_3) 4554.726 4554.332 | 4554.538 | 4554.643
ui (m.s™1) 43.246 42.634 42.954 43.117
p1i (GPa) 0.704 0.694 0.699 0.702

surface of plasticity in the elastic region so

8x?
3(1(11)%

[dev(o)[? =

The elastic wave is a shock wave so Yl1 > 1. Therefore, the equation becomes
(Y1) =52 (v))5—1=0. (5.2)

The solution Yl1 of this equation is unique. Therefore, the density p and the values of
pressure p and velocity u can be computed with the Rankine-Hugoniot conditions. These
values are reported for the aluminium and the titanium in Table 2 along with the numer-
ical results for different mesh sizes.

Plastic plateau. In this case, the plastic source term does not vanish and hence Y% and Y33'

can be different from 1. However, by symmetry Y3 = Y3 and, therefore, p=po(Y])(Y3)>.
After relaxation, ¢ is on the surface of plasticity and hence

dev() P = —E (1) (V)R- () =2 63)

3w’

The plastic relaxation region is now approximated by a shock wave. Hence, applying the
Rankine-Hugoniot relations and using the assumption that the stress and the velocity are
continuous across this wave, a system of 12 equations is obtained and is solved numeri-
cally. These values are reported for the aluminium and the titanium in Table 3 along with
the numerical results for different mesh sizes.

We conclude that the numerical and analytical results are in good agreement (< 1%)
in the elastic and plastic regions. The numerical results converge with the decrease of the
mesh size in the elastic region.




Table 3: TC1: Analytic and numerical results for different mesh size in the plastic region for aluminium and
titanium.

Variables analytical results numerical results

Mesh size 1000 2000 4000
pal (kg.m™2) 2879.483 2879.057 | 2879.254 | 2879.383
pri (kg.m™3) 4784.050 4783.976 | 4778.498 | 4783.964
Unterface (M.5™1) 297.771 297.970 | 298.006 | 297.932
ol rtace (GPa) -7.546 7537 | -7.537 | -7.540

5.2 2D Simulations

We present two test cases of impacts of a projectile on a plate. In the first case the two
media have different material properties whereas in the second one the materials are the
same. In both cases, the projectile and the plate are represented by two different level set
functions advected by a WENOS5 scheme.

5.2.1 Impact of iron on aluminium

In TC2, an iron projectile impacts an aluminium plate immersed in air. The initial hor-
izontal velocity of the iron projectile is 1000 m.s~!. The initial configuration is pre-
sented in Fig. 7 and the physical parameters in Table 4. The computational domain is
[—0.3,0.7] X [-0.4,0.4] m2. The computation is performed on a 2000 x 1600 mesh with 144
processors. Homogeneous Neumann conditions are imposed on the left and right bor-

ders and cantilever conditions are imposed on the top and bottom.

ES
3 o 7(7)73711717 o Aluminium| d :5;& 777777777

0.8m | /_@ -
.| Iron [PRNEN 1
| @ 0.1m |
3 3 0.4m
| Air ) 707.2{117 - Air |
M x

Figure 7: Sketch of the initial configuration for TC2.



Table 4: Parameters of materials for TC2.

Media 0 (kg.m‘3) Y | P (GPa) | x (GPa) | 0y (GPa) | 79 (s)
Air 1 1.4 0 0 — —
Iron 7860 3.9 43.6 82 0.2 2,107
Aluminium 2712 3.5 32 26 0.06 3.10~7

The results are presented in Fig. 8 with a Schlieren image (bottom) and the von Mises
criteria |dev(c)[>—3(0y)? (top) at different time steps. To plot the von Mises criteria, a
log scale is used and the minimum value is fixed to 10°. Fig. 8a shows the shock waves
that propagate into the aluminium target plate following the impact of the iron projectile
on the plate. The Schlieren plot shows the longitudinal wave followed by the shear wave
that induces the plastic deformation of the material. The waves reflect on the rear surface
back into the plate (Fig. 8b). As the waves travel back and forth in the aluminum plate,
the successive reflections of the waves on the front and rear surface transmit waves in
the air. Note that, in Fig. 8f, the front wave generated in the air reflects on the top and
bottom domain boundaries. The projectile penetrates into the plate. It deforms but does
not flatten as much as in [25], where an aluminium projectile is used, because the yield
plastic limit of iron is higher. The plate is strongly deformed and forms at the end a
filament.

5.2.2 Impact of copper on copper

In TC3, a disc of copper impacts a plate of copper immersed in air. The initial horizontal
velocity of the disc is 500 m.s~!. The initial configuration is presented in Fig. 9 and the
physical parameters in Table 5. The computational domain is [—1,1] x [~1,1] m?. The
computation is performed on a 2000 x 2000 mesh with 144 processors. Homogeneous
Neumann conditions are imposed on the borders except for a symmetry condition on the
right border.

Table 5: Parameters of material for TC3.

Media v |p (kg.m’3) P (GPa) | x (GPa) | 0y (GPa) | 10 (s)
Air 1.4 1000 0 0 — —
Copper | 4.22 8900 34.2 50 0.6 4107

The results are presented in Fig. 10 with a Schlieren image (bottom) and the von Mises
criteria |dev(c)[*—3(0y)? (top) at different time steps. The projectile impacts into the
metal layer and symmetric compression and shear waves emerge in both the impactor
and the plate, as the materials are similar. The waves reflect on the right domain bound-
ary back into the plate. A strong jet of air is generated by the collision of the objects. The
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Figure 8: TC2: Impact of iron on aluminium. Schlieren image and von Mises criteria at t =0.03ms, 0.06ms,
0.13ms, 0.26ms, 0.53ms and t=1.04ms.

projectile deforms and tends to form a bulge. The von Mises criteria shows that the region
where the plasticity effects are larger is at the triple point between the three materials and
in the pleating of the deformed projectile. This is coherent with the deformation of the



x
} 0.5m
2m 3 ES
} i Im
| S EON !
! < 1m / 1
! 0.01m 1
L | Air Copper | |
X

Figure 9: Sketch of the initial configuration for TC3.

projectile and the formation of the bulge as the rest of the body undergoes less plastic
strain. Reciprocally, the plate follows the deformation of the impactor. A striated pat-
tern of the waves is observed in both the projectile and the plate. The von Mises criteria
highlights the shear waves.

5.3 3D simulation

In TC4, an iron sphere impacts an aluminium plate immersed in air. The initial configura-
tion is presented in Fig. 11 and the physical parameters are in Table 6. The computational
domain is [—0.3,0.7] x [-0.4,0.4] x [-0.4,0.4] m>. The initial velocity of the projectile is
1000 m.s~!. The computation is performed on a 500 x 400 x 400 mesh with 216 proces-
sors. Homogeneous Neumann conditions are imposed on the left and right borders and
cantilever on the others.

Table 6: Parameters of materials for TC4.

Media 0 (kg.m*3) Y | Po (GPa) | x (GPa) | 0y (GPa) | 10 (s)
Air 1 1.4 0 0 — —
Iron 7860 3.9 43.6 82 0.2 2.1074
Aluminium 2712 35 32 26 0.06 1.107°

Fig. 12 shows the material interfaces and the Schlieren results on the vertical symme-
try plane. As in the 2D case, the projectile impacts the plates generating an elastic wave
followed by a plastic wave. The waves are transmitted in the air at the rear of the plate
and a jet of air emerges at the locations where the objects collide. The projectile perforates
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Figure 10: TC3: Impact of copper on copper. Schlieren image and von Mises criteria at f =120us, 180us,
328us, 540us, 760us et 960us from left to right, top to bottom.
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Figure 11: Sketch of the initial configuration for TC4

Figure 12: TC4: Impact of Iron on Aluminium. Interfaces and Schlieren image at t=110yus, 227us, 337us and
675us from left to right, top to bottom.




the aluminium plate which is strongly stretched. The breaking of the plate at final time
is due to the level set function resolution and not to a damage model.

6 Conclusions and future work

We have presented a three-dimensional multimaterial model that describes the dynamics
of the interaction between gas, liquids and elasto-plastic solids. We were explicitly able
to show that the plasticity model for the neohookean hyperelastic constitutive law de-
creases the deviatoric norm. The numerical scheme is based on an approximate Riemann
solver that is able to model multimaterial interfaces and extends to plasticity the scheme
presented in [5,11]. For hyperelastic-plastic compressible materials existing methods ei-
ther rely on the definition of ghost materials or on mixture models and diffuse inter-
faces. In this paper we have proposed a simple, stable and non-oscillatory scheme for
hyperelastic-plastic multimaterials that avoids the definition of a ghost medium or mix-
ture models. Compared to such numerical models, this scheme is simpler as it does not
require the storage of any additional variables or equations of state. This is a significant
advantage for parallel schemes since communication overhead and algorithmic complex-
ity are significantly reduced at the grid partitioning interfaces. Several stiff test cases of
elasto-plastic impacts have been simulated thanks to this approach proving the robust-
ness of this numerical model.

The explicit solver proposed is constrained by the time scale of the elastic waves
and by the plasticity relaxation time. For problems such as impacts or in general fast-
dynamical processes, this is the relevant scale of the physical phenomenon. For physical
phenomena that take place on the time scale determined by the material velocity, the
stability condition represents a significant limitation of these approaches. Present devel-
opments are dedicated to this issue.
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