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Preface

The objective of this book is to present a consistent methodology for the
study and numerical computation of the thermomechanical response of
materials and structures, with a particular focus on composites. We recognize
that there are plenty of studies in the literature that successfully treat, both
theoretically and computationally, the thermomechanical response of various
categories of dissipative materials or composites and that are not included in
this manuscript. Our aim though is not to present an extensive review of these
studies, but to propose to the scientific community a general framework for
studying the vast majority of dissipative materials and composites under fully
coupled thermomechanical loading conditions. We cover many aspects of the
modeling process, so that the reader is able to find how to: (i) identify the
conservation laws and thermodynamic principles that need to be respected by
any solid material, (ii) construct proper constitutive laws for various types of
dissipative processes, both rate-independent and rate-dependent, by utilizing
an appropriate thermodynamic framework, (iii) design robust numerical
algorithms that permit accuracy and efficiency in the calculations of very
complicated constitutive laws, (iv) extend all the previous points to the study
of composites, utilizing rigorous homogenization theories for materials and
structures with both periodic and random microstructure. For the last point,
the book explores the concepts of periodic homogenization, namely the
asymptotic expansion homogenization method, as well as various
micromechanics theories based on the Eshelby approach. We believe that our
book, with the topics it covers, will be useful to both young and advanced
researchers that want to obtain a general guide to properly studying the
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thermomechanical response of dissipative materials and composites, and to
identifying robust and accurate computational schemes.

Chapter 1 is devoted to a quick presentation of tensor calculus, both in
Cartesian and curvilinear coordinate systems, as well as the various symbols
denoting tensor operations that are utilized throughout the book. While the
indicial notation with the Einstein summation rule is very helpful in many
situations, the large number of indices, mainly introduced in Chapter 3 on
computational methods and Chapters 5 and 6 on homogenization theories,
requires a more elegant representation of tensors. Thus, the tensorial notation
with bold fonts for vectors and higher order tensors is chosen in the book. The
first chapter also discusses the Voigt notation, which is particularly useful for
representing second and fourth order tensors as vectors and matrices
respectively, simplifying the computational procedures. In addition, a special
notation for isotropic fourth order tensors is included in section 1.1.3.

Chapter 2 is a short summary of the continuum mechanics theory and the
identification of constitutive laws based on thermodynamic principles. The
first four sections discuss the general principles of continuum mechanics
(kinetics, kinematics, conservation laws, thermodynamics) and their reduction
when small deformation procedures are considered. The fifth section of the
chapter focuses on the description of constitutive laws for dissipative
materials using a proper thermodynamic framework. The presented
framework is quite general in order to include many types of mechanisms:
viscoelasticity, plasticity, viscoplasticity and continuum damage constitutive
laws are discussed in this section. Even though not mentioned explicitly, the
framework is also capable of describing phase transformation mechanisms,
such as martensitic transformation occurring, for example, in shape memory
alloys. The chapter closes with the presentation of a thermomechanical
parameters identification strategy through appropriate experimental protocol
for an elastoplastic material.

Chapter 3 presents rigorous integration methods that make it possible to
identify and computationally simulate the response of materials and structures
under quasi-static loading conditions when nonlinear mechanisms appear.
The chapter introduces the general iterative scheme that can be applied for
solving a boundary value problem using the finite element method (though
without entering into details on finite element computations) and focuses
mainly on the numerical implementation of the constitutive law for a
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homogeneous material. The presented methodologies are based on the well
known return mapping algorithm scheme. Analytical description on the
methods is given for the case of rate independent plasticity. Numerical
applications in plasticity and viscoelasticity are also included in the chapter.
The numerical procedures discussed here, even though applied to
homogeneous materials, can be considered as the basis for the design of
numerical algorithms applied to composites.

Chapter 4 introduces the notion of homogenization, which is presented in
two different frameworks: one that focuses on homogenization from an
engineering point of view, and one that describes the principles of
mathematical homogenization. Both frameworks eventually lead to the same
conclusions, even though they start from a different theoretical background.
The engineering oriented homogenization accounts for composites with
periodic or random microstructure and its concepts are mainly utilized in
Chapter 6. On the other hand, the mathematical homogenization is the basis
of the asymptotic expansion homogenization method that is utilized in
Chapter 5 to describe the homogenization of composites with periodic
microstructure.

Chapter 5 focuses on composite materials and structures with periodic
microstructure. The asymptotic expansion homogenization method is
employed for identifying the microscopic and macroscopic principles that the
actual composite obeys (kinetics, kinematics, conservation laws,
thermodynamics). For quasi-static processes and composites with dissipative
material constituents a numerical scheme is proposed for solving the fully
coupled thermomechanical problem iteratively and simultaneously in the two
scales (microscopic and macroscopic). An illustrative example of
multilayered composite material is discussed and various numerical
applications with elastic, plastic and viscoplastic responses are presented.

Chapter 6 discusses homogenization techniques for composite materials
and structures with random microstructure. The described methodologies
belong to the mean field or Eshelby based theories. After presenting the
classical Eshelby problems the chapter introduces three homogenization
techniques: the Mori-Tanaka, the self consistent and the Ponte-Castafieda and
Willis method. For quasi-static processes and composites with dissipative
material constituents an iterative numerical scheme is proposed for solving
the fully coupled thermomechanical homogenization problem by using the
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concentration tensors calculated with an Eshelby-based approach. An
illustrative example of a composite material consisting of a matrix phase and
spherical particles is presented and various numerical applications with
elastic and plastic responses are examined.

Appendices 1 and 2 are devoted to large deformation processes and their
connection with the homogenization theories. Appendix 1 discusses the
average theorems in the reference configuration of a deformable body, i.e. the
stress is measured through the Piola stress tensor and the deformation is
identified through the deformation gradient tensor. Appendix 2 presents the
extension of the asymptotic expansion homogenization method for
composites with periodic microstructure, using the same stress and
deformation measurements (though without entering into details of proper
microscopic and macroscopic thermodynamic potentials). While these two
appendices do not provide the global picture of a general homogenization
framework in large deformation processes, they can be considered as
important contributions towards such a target.
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