
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/17473

To cite this version :

Lei CAI, Mohamed JEBAHI, Farid  ABED-MERAIM - Strain gradient crystal plasticity model based
on generalized non-quadratic defect energy and uncoupled dissipation - International Journal of
Plasticity - Vol. 126, p.102617 - 2020

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/17473
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/
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Abstract

The present paper proposes a flexible Gurtin-type strain gradient crystal plasticity (SGCP) model based on
generalized non-quadratic defect energy and uncoupled constitutive assumption for dissipative processes. A
power-law defect energy, with adjustable order-controlling index n, is proposed to provide a comprehensive
investigation into the energetic length scale effects under proportional and non-proportional loading con-
ditions. Results of this investigation reveal quite different effects of the energetic length scale, depending
on the value of n and the type of loading. For n ≥ 2, regardless of the loading type, the energetic length
scale has only influence on the rate of the classical kinematic hardening, as reported in several SGCP works.
However, in the range of n < 2, this parameter leads to unusual nonlinear kinematic hardening effects
with inflection points in the macroscopic mechanical response, resulting in an apparent increase of the yield
strength under monotonic loading. More complex effects, with additional inflection points, are obtained un-
der non-proportional loading conditions, revealing new loading history memory-like effects of the energetic
length scale. Concerning dissipation, to make the dissipative effects more easily controllable, dissipative
processes due to plastic strains and their gradients are assumed to be uncoupled. Separate formulations,
expressed using different effective plastic strain measures, are proposed to describe such processes. Results
obtained using these formulations show the great flexibility of the proposed model in controlling some major
dissipative effects, such as elastic gaps. A simple way to remove these gaps under certain non-proportional
loading conditions is provided. Application of the proposed uncoupled formulations to simulate the me-
chanical response of a sheared strip has led to accurate prediction of the plastic strain distributions, which
compare very favorably with those predicted using discrete dislocation mechanics.

Keywords: Strain gradient crystal plasticity, size effects, internal length scales, non-quadratic defect
energy, uncoupled dissipation

1. Introduction

In the size range between hundreds of nanometers and few tens of micrometers, the strength of mate-
rials is no longer scale-independent and the peculiar phenomenon “smaller is stronger” appears. This phe-
nomenon has been revealed by several small scale experiments, such as micro-indentation (Ma et al., 2012;
Sarac et al., 2016; Dahlberg et al., 2017), micro-bending of thin foils (Hayashi et al., 2011) and torsion of
thin wires (Liu et al., 2013). Conventional plasticity theories cannot predict the size-dependent behavior of
materials, due to lacking internal length scale(s). To overcome this limitation, Aifantis (1984) has proposed
in a pioneering work a strain gradient plasticity (SGP) model with a single internal length scale parameter
embedded in the conventional plasticity theory. This model is capable of predicting plastic deformation
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gradients (plastic inhomogeneities), which correlate with size effects as experimentally observed and nu-
merically predicted using dislocation mechanics (Zhou and Lesar, 2012; Dahlberg et al., 2017; Jiang et al.,
2019). Plastic deformation gradients can physically be interpreted because they represent the geometrically
necessary dislocations (GNDs; Ashby, 1970), which are associated with small scale crystalline incompat-
ibilities (e.g., incompatibility of the mesoscopic plastic distortion). Interesting differential-geometry-based
works studying, from a geometric point of view, the kinematics of these incompatibilities and their connec-
tion with nonlocal (gradient) concepts can be found in the literature (Nye, 1953; Bilby et al., 1955; Kröner,
1958; Kondo, 1964; Lardner, 1969; Teodosiu and Sidoroff, 1976). Based on these works, Le and Stumpf
(1996) and Clayton et al. (2005) have proposed generalized theoretical frameworks capable of describing
the finite deformation kinematics of several classes of crystalline defects in relation with gradient plasticity
theories. Thanks to their capabilities in capturing size effects, the latter theories have received a strong sci-
entific interest since the work of Aifantis (1984). This has led to the development of a wide variety of SGP
models in the last two decades. According to Hutchinson (2012), these models can be classified into two
categories: (i) incremental models in which increments of higher-order stresses are related to increments of
strain gradients, and (ii) non-incremental models in which the higher-order stresses themselves are expressed
in terms of increments of strain gradients. Without claiming to be exhaustive, a brief review of such models
is given hereafter. For more details about theoretical, numerical and experimental aspects of SGP theories,
the reader is referred to the interesting review of Voyiadjis and Song (2019).

The earliest SGP models proposed in the literature belong to the category of incremental models. In
this context, Mühlhaus and Alfantis (1991) have elaborated a generalized version of Aifantis (1984) model
by the inclusion of higher-order spatial gradients of the equivalent plastic strain in the yield condition. In
a similar way, Acharya and Bassani (2000) have proposed a simple constitutive framework in which gradi-
ent effects are incorporated in the hardening relations, using incompatibility-dependent hardening moduli.
These two models preserve the classical structure of the incremental boundary value problem (with con-
ventional stresses, equilibrium equations and boundary conditions) and are referred to in the literature as
lower-order SGP models. Fleck and Hutchinson (2001) have proposed a phenomenological higher-order
SGP model with the purpose of generalizing the classical J2 flow theory to account for gradient effects at
small scales. Both higher-order stresses and additional boundary conditions are considered and more than
one material length scale parameters are covered in this model. However, the compatibility of such a model
with the thermodynamic dissipation requirements (i.e., nonnegative dissipation) has not been addressed by
the authors. Gudmundson (2004) has pointed out that the nonnegative dissipation cannot always be guar-
anteed by this model. Later work of Gurtin and Anand (2009) has shown that this model is incompatible
with thermodynamics unless the nonlocal terms are dropped. A modified version of this model in which
the higher-order stresses are assumed to be fully energetic is proposed by Hutchinson (2012) to ensure its
thermodynamic consistency. The assumption of no higher-order contributions to dissipation has been used
in subsequent works to develop thermodynamically-acceptable incremental models (e.g., Fleck et al., 2015;
Nellemann et al., 2017, 2018). However, the consistency of this assumption with the current understanding
of dislocation physics is questioned. Until now, there are no acceptable recipes for an incremental model
including higher-order dissipative stresses (Fleck et al., 2015).

To overcome the thermodynamic deficiency of the above class of models, while considering higher-order
contributions to dissipation, several authors have proposed SGP models in which the higher-order stresses are
expressed in terms of increments of plastic strain gradients. These models are classified as non-incremental in
the classification of Hutchinson (2012). As examples of the pioneering models in this class, one can cite the
models proposed by Gurtin (2002, 2004). The great success of such a class of models has made it the class the
most studied in the literature in recent years. Consequently, a large number of interesting works associated
with this class have recently been published. In a series of papers, Gurtin and coworkers (Gurtin et al.,
2007; Gurtin, 2008, 2010; Anand et al., 2015) have developed several variations of single- and poly-crystal
SGP models, in which GNDs are represented either by scalar dislocation densities or by the full dislocation



density tensor (Nye, 1953). Mayeur and McDowell (2014) have shown that Gurtin-type models share several
features with micropolar approaches (Mayeur et al., 2011). Polizzotto (2010, 2014) has numerically studied
different aspects of SGP theories in small and finite deformation frameworks. Yalçinkaya et al. (2011) and
Klusemann and Yalçinkaya (2013) have proposed strain gradient crystal plasticity (SGCP) models with a
non-convex part in the free energy to study the plastic deformation patterning (microstructure formation)
and the localization phenomena in metals. For the same purposes, finite deformation SGP models have been
proposed by Anand et al. (2012); Klusemann et al. (2013) and Ling et al. (2018). In these models, the strain
softening and localization are caused by the nonlinear geometric effects. Dahlberg and Faleskog (2014) have
investigated the influence of the size and distribution of grains on the yield strength in poly-crystals using a
SGP model and a grain boundary (GB) deformation mechanism. Wulfinghoff et al. (2015) have proposed a
SGP model based on two formulations of defect energy to investigate their influence on the cyclic behavior
of laminate microstructures. Bardella and Panteghini (2015) have applied a phenomenological distortion
gradient plasticity model to study the effects of the plastic spin on the torsional response of thin metal
wires. Bittencourt (2018) has focused on the numerical study of indentation problems using a SGCP model
with two simplified hardening laws. Petryk and Stupkiewicz (2016) and Stupkiewicz and Petryk (2016) have
developed and studied a novel “minimal” framework of SGCP, including a variable internal length scale
derived from physically-based dislocation theory of plasticity. The effects of this “natural” length scale on
several existing SGCP models have been investigated by Ryś and Petryk (2018). Based on these works,
Dahlberg and Boåsen (2019) have proposed a new more general evolution equation for the length scale as a
function of the plastic strains and their gradients. Compared to the class of incremental models, the present
one always satisfies the thermodynamic requirements of nonnegative dissipation. However, as pointed out
by several authors (e.g., Hutchinson, 2012; Fleck et al., 2014, 2015), it may lead in some cases to likely
unacceptable results related to finite stress variation under infinitesimal loading change.

Despite the strong scientific effort on SGP theories, several related difficulties remain to be addressed.
One of them is how to define the defect energy which conditions the higher-order energetic effects. In most
existing SGP models, this energy is pragmatically assumed to be quadratic in plastic strain gradients (Gurtin,
2002, 2004; Gurtin et al., 2007; Panteghini and Bardella, 2016). Using this assumption, Gurtin et al. (2007)
have shown that the energetic length scale effects have only influence on the rate of the classical kinematic
hardening, but not on the material strengthening. Although this statement is widely recognized when using
quadratic defect energy, Bardella and Panteghini (2015) have recently shown that accounting for plastic spin
in this energy can lead to strengthening effects even if quadratic form is chosen. Despite their widespread
use, quadratic forms are not usual in classical dislocation theories and several investigations have shown
their inadequacy in the context of SGP (e.g., Cordero et al., 2010; Forest and Guéninchault, 2013). Mo-
tivated by line tension arguments, rank-one (linear) defect energy has been used by several authors (e.g.,
Ohno and Okumura, 2007; Hurtado and Ortiz, 2013; Wulfinghoff et al., 2015). In most cases, this form
shows strengthening effects of the energetic length scale. Bardella (2010) has studied the effects of the
defect energy nonlinearity with quadratic and non-quadratic formulations involving plastic spin. Results by
the author confirm the strengthening effects of the energetic length scale when using non-quadratic defect
energy. Inspired by the statistical dislocation theory of Groma et al. (2003), Forest and Guéninchault (2013)
and Wulfinghoff et al. (2015) have proposed logarithmic form of defect energy. To overcome the problem
of non-smoothness and non-convexity of this form, a quadratic regularization at small dislocation densities
has been used (Wulfinghoff et al., 2015; Wulfinghoff and Böhlke, 2015). El-Naaman et al. (2016) have in-
vestigated two defect energy formulations with the aim of improving the micro-structural response predicted
by SGP theories. A more complete investigation of these formulations using cyclic loading, as well as an
interesting discussion about the origins of the strengthening effects of the energetic length scale, have very
recently been published by the authors (El-Naaman et al., 2019). In almost all existing works on the subject,
the higher-order energetic effects are studied using only proportional loading. The present paper aims to
corroborate these works by proposing a comprehensive investigation of these effects under both proportional



and non-proportional loading conditions. To this end, a generalized power-law defect energy formulation,
with adjustable order-controlling index n, as a function of dislocation densities is proposed.

Another issue related to SGP theories is how to describe the dissipative processes. In almost all ex-
isting strain gradient works, theses processes are considered to be coupled and described with the help
of generalized effective plastic strain measures, which imply plastic strains and their gradients in a cou-
pled manner (e.g., Fleck and Hutchinson, 2001; Gurtin et al., 2007; Gurtin and Anand, 2009; Hutchinson,
2012; Fleck et al., 2015; Nellemann et al., 2017, 2018). This kind of (coupled) measures makes the issue
of proposing robust and flexible dissipation formulations and the control of important dissipative effects
difficult. Using coupled measures, it is not easy to control, for example, the elastic gaps at initial yield
or at the occurrence of non-proportional loading sources. However, in most cases, the coupling between
dissipative processes in the description of dissipation is only used by assumption. The existence of such
a coupling in reality appears not to be physically confirmed. Based on the current understanding of dislo-
cation physics, there exist no physical obstacles to assuming uncoupled dissipative processes. This can be
confirmed by the contributions of Forest et al. (1997, 2000) and Forest and Sievert (2003). These authors
have already adopted and extensively discussed uncoupling assumptions for the description of dissipative
processes associated with force-stress and couple-stress quantities in the context of Cosserat plasticity the-
ories. The resulting uncoupled-dissipation-based models are referred to in the literature as multi-surface or
multi-criterion models. In the context of phenomenological strain gradient theories, Fleck et al. (2015) have
also proposed uncoupled formulations for the description of dissipative processes associated with first- and
higher-order stresses. In the same context, the very recent model proposed by Panteghini et al. (2019) can
also be seen as a multi-criterion model. Indeed, several independent yield surfaces are introduced to describe
the higher-order dissipation, which is considered to be independent of the first-order one. With the aim of ex-
tending these works, and more particularly the work of Fleck et al. (2015), to strain gradient crystal plasticity,
the present paper proposes a flexible uncoupled dissipation assumption to describe dissipative processes due
to plastic slips and their gradients. These processes are assumed to be derived from a pseudo-potential that
is expressed as a sum of two independent functions of plastic slips and plastic slip gradients. Conclusions
about the physical consistency of this assumption will be drawn by comparing the associated results with
others from the literature obtained using coupled dissipation.

Following this introduction, the present paper is organized as follows. Section 2 presents the proposed
SGCP model, which is based on generalized non-quadratic defect energy and uncoupled dissipation. Section
3 discusses the implementation of a simplified two-dimensional (2D) version of the proposed model. This
version is used to investigate, in a simple manner, the effects of the model constitutive parameters on the
global response of a crystalline strip subjected to proportional and non-proportional shear loading conditions.
Results of this investigation and discussions are presented in Section 4. Section 5 presents some concluding
remarks.

2. Strain gradient crystal plasticity (SGCP) model

In this section, a Gurtin-type strain gradient crystal plasticity (SGCP) model is developed based on gen-
eralized non-quadratic defect energy and uncoupled dissipation, within the framework of small deformation.

2.1. Kinematics

Let u (x, t) denotes the displacement at time t of an arbitrary material point identified by x in a subregion
V of the considered continuum. In the framework of small deformation, the displacement gradient ∇u can
be additively split into elastic and plastic parts:

∇u = He +Hp (1)



where He and Hp represent respectively the elastic distortion, due to stretch and rotation of the underlying
lattice, and the plastic distortion, due to plastic flow. Their symmetric parts define respectively the elastic
and plastic strain tensors, and their skew-symmetric parts give respectively the elastic and plastic rotation
tensors:

εe =
1

2

[
He +H

T
e

]
, εp =

1

2

[
Hp +H
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p

]
, ωe =
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2
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T
p

]
(2)

In single-crystal plasticity framework, it is widely acknowledged that plastic flow occurs through slip on
prescribed slip systems, with each system α defined by a slip direction s

α and a slip-plane normal mα unit
vectors. With this description of plastic flow, the rate of Hp can be expressed as:

Ḣp =

q
∑

α=1

γ̇α [sα � m
α] (3)

where γ̇α is the rate of plastic slip on slip system α, q is the total number of slip systems, and “�” is the
tensor product operator. Using this expression, the plastic strain rate tensor ε̇p can be written as:

ε̇p =

q
∑

α=1

γ̇αPα (4)

where P
α is the symmetrized Schmid tensor associated with slip system α :

P
α =

1

2
(sα � m

α +m
α

� s
α) (5)

Equation (3), together with (1) and (2), can also be used to obtain a relation between u̇, ε̇e, ω̇e and γ̇α:

∇u̇ = ε̇e + ω̇e +

q
∑

α=1

γ̇αsα � m
α (6)

In what follows, γ and γ̇ (in bold) will be used to designate the list of plastic slips and their rates, respectively:

γ =
(
γ1, γ2, ..., γq

)
, γ̇ =

(
γ̇1, γ̇2, ..., γ̇q

)
(7)

2.2. Balance equations

The balance equations of the proposed strain gradient crystal plasticity (SGCP) model will be derived
based on a generalization of the virtual power density of internal forces. In the present enhanced continuum,
both displacement and plastic slip fields are considered as primary and controllable variables. As a conse-
quence, the rates of these variables and their gradients will be involved in the definition of the virtual power
density of internal forces:

{u̇, ∇u̇, γ̇, ∇γ̇} (8)

The internal virtual power expended within a subregion V of the considered continuum is computed by
means of density pint that is assumed to depend linearly on all the virtual variations of the modeling variables
given by (8):

pint = f i · δu̇+ σ : δ∇u̇+

q
∑

α=1

κα δγ̇α +

q
∑

α=1

ξα · δ∇γ̇α (9)



where f i is internal volumetric force, σ is macroscopic stress tensor, κα and ξα are respectively microscopic
stress scalar (work-conjugate to γα) and microscopic stress vector (work-conjugate to ∇γα) associated with
slip system α, and “ : ” is the double-dot product operator. The introduced microscopic stress scalar and
vector are referred to hereafter as first- and higher-order microscopic stresses, respectively. Since the virtual
power density of internal forces must be objective (i.e., independent of the frame in which the virtual varia-
tions are expressed), f i must be zero and σ must be symmetric. By using (6), it is then easy to demonstrate
that:

pint = σ : δε̇e +

q
∑

α=1

(κα + τα) δγ̇α +

q
∑

α=1

ξα · δ∇γ̇α (10)

where τα is resolved shear stress on slip system α defined by τα = σ : (sα � m
α). Introducing a new

first-order microscopic stress scalar πα such that πα = κα + τα, a more compact form of pint, which is
similar to that used by Gurtin et al. (2007), can be obtained:

pint = σ : δε̇e +

q
∑

α=1

πα δγ̇α +

q
∑

α=1

ξα · δ∇γ̇α (11)

Considering this expression of pint, the internal virtual power expended within the subregion V can be
expressed as follows:

Pint =

∫

V

σ : δε̇e dv +

q
∑

α=1

∫

V

πα δγ̇α dv +

q
∑

α=1

∫

V

ξα · δ∇γ̇α dv (12)

Assuming that no external body forces act on the subregion V and the contact forces acting on its bound-
ary S can be represented by a macroscopic traction vector t and a microscopic traction scalar χα on each
slip system α, the external virtual power expended on V can be expressed as:

Pext =

∫

S

t · δu̇ ds+

q
∑

α=1

∫

S

χα δγ̇α ds (13)

Application of the virtual power principle, which postulates that the internal and external virtual powers
are balanced for any subregion V and virtual variations of the modeling variables, leads to two kinds of
balance equations (since two kinds of primary variables are used). Macroscopic balance equations can be
obtained by setting:

δγ̇ = 0 (i.e., δ∇u̇ = δε̇e + δω̇e) (14)

Considering the symmetry of the stress tensor σ, after application of the Gauss (divergence) theorem, the
virtual power balance becomes:

∫

V

(∇ · σ) · δu̇ dv =

∫

S

(σ · n− t) · δu̇ ds (15)

which is valid for any arbitrary subregion V and virtual variations of the modeling variables. This leads to
the classical balance equations (static case) and the well-known traction conditions:

{
∇ · σ = 0 in V
σ · n = t on S

(16)



with n the outward unit normal to S . The microscopic counterparts of these balance equations and boundary
conditions can be obtained by setting:

δu̇ = 0 (i.e., δε̇e + δω̇e = −

q
∑

α=1

δγ̇αsα � m
α) (17)

Considering (17), it can be demonstrated that:

σ : δε̇e = −

q
∑

α=1

τα δγ̇α (18)

which leads, after application of the Gauss theorem, to the following form of the virtual power balance:

q
∑

α=1

∫

V

(τα +∇ · ξα − πα) δγ̇α dv =

q
∑

α=1

∫

S

(ξα · n− χα) δγ̇α ds = 0 (19)

Since (19) is valid for any arbitrary subregion V and virtual variations of the modeling variables, the micro-
scopic balance equation (static case) and the microscopic traction condition on each slip system α can be
obtained:

{
τα +∇ · ξα − πα = 0 in V

ξα · n = χα on S
(20)

2.3. Dissipation inequality

The dissipation inequality in local form will be derived based on the second law of thermodynamics. In
a mechanical perspective, this law can be expressed as follows: the temporal increase in free energy of any
subregion V is less than or equal to the external power expended on this subregion. Mathematically, this
means:

˙∫

V

ψ dv ≤ Pext (21)

where ψ is free energy per unit volume, which is assumed to be controlled by the following set of state
variables: {εe, γ, ∇γ}, as usually done in the framework of strain gradient crystal plasticity.

ψ = ψ (εe, γ, ∇γ) (22)

Considering the identity Pint = Pext , the above inequality can be rewritten in terms of internal power
components as follows:

∫

V

(

ψ̇ − σ : ε̇e −

q
∑

α=1

πα γ̇α −

q
∑

α=1

ξα ·∇γ̇α

)

dv ≤ 0 (23)

with

ψ̇ (εe, γ, ∇γ) =
∂ψ

∂εe
: ε̇e +

q
∑

α=1

∂ψ

∂γα
γ̇α +

q
∑

α=1

∂ψ

∂∇γα
·∇γ̇α (24)



Since V is arbitrary, (23) yields the local dissipation inequality (also called local free energy imbalance):

D = σ : ε̇e +

q
∑

α=1

πα γ̇α +

q
∑

α=1

ξα ·∇γ̇α − ψ̇ ≥ 0 (25)

Replacing ψ̇ by its expression (24), this local inequality can be rewritten as follows:

D =

(

σ −
∂ψ

∂εe

)

: ε̇e +

q
∑

α=1

(

πα −
∂ψ

∂γα

)

γ̇α +

q
∑

α=1

(

ξα −
∂ψ

∂∇γα

)

·∇γ̇α ≥ 0. (26)

In the present SGCP model, the macroscopic stress σ is regarded as energetic quantity having no contribution
to dissipation:

σ =
∂ψ

∂εe
(27)

whereas the microscopic stresses πα and ξα on each slip system α may possibly be divided into energetic
and dissipative parts:

πα = παen + παdis, ξα = ξαen + ξαdis (28)

with

παen =
∂ψ

∂γα
, ξαen =

∂ψ

∂∇γα
(29)

Therefore, the local dissipation inequality can be simplified as follows:

D =

q
∑

α=1

παdis γ̇
α +

q
∑

α=1

ξαdis ·∇γ̇α ≥ 0 (30)

This inequality will be considered in the definition of suitable constitutive laws for the dissipative micro-
scopic stresses παdis and ξαdis on each slip system α.

2.4. Constitutive laws

Constitutive relations are derived in this subsection to describe the evolution of the macroscopic and
microscopic stresses involved in the balance equations (first lines of systems (16) and (20)), and then to
reproduce the mechanical behavior of the considered continuum. This behavior is assumed to be governed
by energetic and dissipative processes.

2.4.1. Energetic constitutive laws

The energetic processes are represented by the density of free energy ψ. In this work, the classical
decomposition of ψ into an elastic strain energy ψe and a defect energy ψp is adopted. ψe is assumed to be a
quadratic function of εe:

ψe (εe) =
1

2
εe : C : εe (31)



where C is the elasticity tensor, which is assumed to be symmetric and positive-definite. Building on the
work of Gurtin et al. (2007), ψp is assumed to be function of dislocation densities:

ρ =
(
ρ1⊢, ρ

2
⊢, ..., ρ

q
⊢
, ρ1⊙, ρ

2
⊙, ..., ρ

q
⊙

)
(32)

where ρα
⊢

and ρα⊙ denote respectively edge and screw dislocation densities on slip system α. As shown by
Arsenlis and Parks (1999), these quantities can be calculated by:

ρα⊢ = −sα ·∇γα, ρα⊙ = l
α ·∇γα (33)

where l
α is the line direction of dislocation distribution defined by l

α = m
α × s

α (“×” is cross product
operator). However, contrary to the work of Gurtin et al. (2007), in the present paper, ψp is assumed to be
non-quadratic in these densities. A power-law form, with adjustable order-controlling index n, is applied to
define this energy:

ψp (ρ) =
1

n
X0 l

n
en

q
∑

α=1

[
|ρα⊢|

n +
∣
∣ρα⊙
∣
∣n
]

(34)

where X0 is a constant representing the energetic slip resistance, and len is an energetic length scale. To
ensure the convexity of ψp, the defect energy index n must be greater than or equal to 1 (n ≥ 1). Using (31)
and (34), the free energy density can be expressed as:

ψ (εe,ρ) =
1

2
εe : C : εe +

1

n
X0 l

n
en

q
∑

α=1

[
|ρα⊢|

n +
∣
∣ρα⊙
∣
∣n
]

(35)

The partial derivatives of this expression with respect to the state variables presented in (22) provide the ener-
getic constitutive laws that describe the evolution of the energetic stresses involved in the balance equations
(first lines of systems (16) and (20)). The (energetic) macroscopic stress tensor σ can be expressed as:

σ =
∂ψ

∂εe
= C : εe (36)

Since there is no explicit dependence between the assumed form of ψ and γ, the energetic part of the
microscopic stress scalar παen is zero for any slip system α:

παen =
∂ψ

∂γα
= 0 (37)

The energetic microscopic stress vector ξαen on slip system α can be expressed as:

ξαen =
∂ψ (εe,ρ)

∂∇γα
= X0 l

n
en

[

|sα ·∇γα|n−2
s
α ⊗ s

α + |lα ·∇γα|n−2
l
α ⊗ l

α
]

·∇γα (38)

2.4.2. Dissipative constitutive laws

As discussed in the introduction, in almost all existing strain gradient theories involving both first- and
higher-order dissipative microscopic stresses, the evolution of the latter is described using constitutive equa-
tions based on generalized effective plastic strain measures, which imply plastic strains and their gradi-
ents in a coupled manner (e.g., Fleck and Hutchinson, 2001; Gurtin et al., 2007; Gurtin and Anand, 2009;
Hutchinson, 2012; Fleck et al., 2015; Nellemann et al., 2017, 2018). An example of these measures is:

Ėp =

√

‖ε̇p‖
2 + l2dis ‖∇ε̇p‖

2, Ep =

∫

Ėpdt (39)



where ldis is a dissipative length scale. However, the use of such coupled measures to define the dissipative
constitutive equations largely restricts their flexibility and makes the control of some numerically noticed
unusual behaviors, e.g., the elastic gap at initial yield (Hutchinson, 2012; Fleck et al., 2015), difficult. Actu-
ally, in most cases, these coupled measures are only used by assumption, as the coupling between first- and
higher-order dissipative processes is hitherto not physically confirmed.

To allow for more flexible control of major dissipative effects, in present work, the dissipative micro-
scopic stresses are derived from a dissipation functional ϕ, which is postulated based on the assumption of
uncoupled dissipative contributions from plastic slips and plastic slip gradients. In spirit of multi-criterion
approaches available in the literature (Forest et al., 1997, 2000; Forest and Sievert, 2003; Fleck et al., 2015;
Panteghini et al., 2019), this functional is assumed to be divided into two independent parts: one part, which
describes first-order dissipative effects, is only function of plastic slips and their rates ϕπ; and the other part,
which describes higher-order dissipative effects, depends only on gradients of plastic slips and their rates
ϕξ . Note that similar (uncoupling) assumption was applied in the recent contribution of Fleck et al. (2015)
to describe first- and higher-order dissipative effects in the context of phenomenological strain gradient plas-
ticity. Therefore, the present work can be seen as an extension of this contribution to strain gradient crystal
plasticity.

Define independent first- and higher-order effective plastic strains for each slip system α (eαπ and eαξ ,
respectively) as follows:

ėαπ = |γ̇α| =

√

(γ̇α)2, eαπ =

∫

ėαπ dt (40)

ėαξ = ‖ldis ∇
αγ̇α‖ = ldis

√

(∇αγ̇α)2, eαξ =

∫

ėαξ dt (41)

where ∇
α is the projection of ∇ onto slip system α:

∇
αφ = (sα ·∇φ) sα + (lα ·∇φ) lα (42)

The proposed uncoupled dissipation functional can be expressed as:

ϕ (ėπ, eπ, ėξ, eξ) = ϕπ (ėπ, eπ) + ϕξ (ėξ, eξ) (43)

with

ėπ =
(
ė1π, ė

2
π, ..., ė

q
π

)
, eπ =

(
e1π, e

2
π, ..., e

q
π

)
, ėξ =

(

ė1ξ , ė
2
ξ , ..., ė

q
ξ

)

, eξ =
(

e1ξ , e
2
ξ , ..., e

q
ξ

)

(44)

For comparison purposes, expressions of ϕπ and ϕξ are postulated in such a way as to obtain dissipative
microscopic stresses having forms close to those proposed by Gurtin et al. (2007):

ϕi (ėi, ei) =

q
∑

α=1

Sα
i

γ̇α0
m+ 1

[
ėαi
γ̇α0

]m+1

(45)

where the subscript i takes as value π or ξ in reference to first- or higher-order dissipative microscopic
stresses, γ̇α0 > 0 is a constant strain rate representative of the flow rates of interest, m > 0 is a constant
characterizing the rate-sensitivity of the considered material, and Sα

i (i ∈ {π, ξ}) are stress-dimensional
internal state variables (Sα

π > 0 and Sα
ξ ≥ 0). These variables are referred to hereafter as dissipative slip

resistances and their evolutions are assumed to be governed by:

Ṡα
i =

q
∑

β=1

h
αβ
i

(

S
β
i

)

ė
β
i with Sα

i (0) = Si0 (46)



Si0 (i ∈ {π, ξ}) are initial dissipative slip resistances (with Sπ0 > 0 and Sξ0 ≥ 0), and hαβi (i ∈ {π, ξ}) are
positive hardening moduli assumed to evolve according to:

h
αβ
i

(

S
β
i

)

= sαβ hi

(

S
β
i

)

︸ ︷︷ ︸

+ lαβ hi

(

S
β
i

)

︸ ︷︷ ︸

Self hardening Latent hardening
(47)

sαβ is self hardening parameter marking coplanar slip planes and is defined by:

sαβ =

{
1 if mα ∧m

β = 0

0 otherwise
(48)

and lαβ is latent hardening parameter defined in this work as:

lαβ =
∣
∣
∣s

α · sβ
∣
∣
∣

∥
∥
∥m

α ∧m
β
∥
∥
∥ (49)

to take into account the influence of the relative misorientation of slip planes on the hardening moduli.
hi (i ∈ {π, ξ}) are self-hardening functions which, motivated by several works from the literature (e.g.,
Kalidindi et al., 1992; Gurtin et al., 2007), are assumed to be defined as:

hi

(

S
β
i

)

=







Hi

(

1−
S
β
i

SiF

)a

for Si0 ≤ S
β
i < SiF

0 for S
β
i ≥ SiF

(50)

with SiF > Si0, a ≥ 1 and Hi ≥ 0.
Based on the above definitions of the ingredients of the proposed dissipation functional ϕ, it can easily be

verified that this functional is nonnegative and convex in γ̇α and ∇γ̇α, which guarantees a priori satisfaction
of the second principle of thermodynamics (nonnegative dissipation). The partial derivatives of ϕ with
respect to γ̇α and ∇γ̇α give the expressions of the dissipative stress scalar παdis and vector ξαdis on slip
system α:

παdis =
∂ϕ

∂γ̇α
= Sα

π

[
ėαπ
γ̇α0

]m
γ̇α

ėαπ
(51)

ξαdis =
∂ϕ

∂∇γ̇α
= Sα

ξ l
2
dis

[
ėαξ

γ̇α
0

]m
∇

αγ̇α

ėαξ
(52)

As mentioned above, the dissipation functional proposed in this work ϕ leads to dissipative microscopic
stresses close to those postulated by Gurtin et al. (2007) based on the normality rule. The latter can be
obtained from (51) and (52) by replacing the first- and higher-order effective plastic strains by a coupled one
defined by:

ḋα =

√

(ėαπ)
2 +

(

ėαξ

)2

, dα =

∫

ḋα dt (53)

and by replacing Sα
π and Sα

ξ by a single strictly positive slip resistance Sα calculated based on ḋα.



2.5. Flow rules

Based on the expressions of the microscopic stresses, the microscopic balance equation associated with
slip system α (first line of system (20)) can be reformulated as follows:

τα +∇ · ξαen +∇ · ξαdis − π
α
dis = 0 (54)

When augmented by the microscopic constitutive laws (38), (51) and (52), this equation acts as a flow rule
associated with slip system α:

τα +∇ · ξαen +∇ ·

{

Sα
ξ l

2
dis

[
ėαξ

γ̇α0

]m
∇

αγ̇α

ėαξ

}

− Sα
π

[
ėαπ
γ̇α0

]m
γ̇α

ėαπ
= 0 (55)

Bearing in mind (38), ∇ · ξαen can be expressed as:

∇ · ξαen = A
αα : ∇∇γα (56)

with

A
αα = (n− 1) X0 l

n
en

[

|sα ·∇γα|n−2
s
α ⊗ s

α + |lα ·∇γα|n−2
l
α ⊗ l

α
]

(57)

Using (56), the flow rule (55) becomes:

τα +A
αα : ∇∇γα +∇ ·

{

Sα
ξ l

2
dis

[
ėαξ

γ̇α0

]m
∇

αγ̇α

ėαξ

}

− Sα
π

[
ėαπ
γ̇α0

]m
γ̇α

ėαπ
= 0. (58)

The second term in the above equation, being energetic, represents the negative of a backstress, leading to
Bauschinger effects in the flow rule. The last two terms of this equation are dissipative (resulting from the
dissipation functional). A reversal of the flow direction (γ̇α → −γ̇α) simply changes their sign. Therefore,
these terms represent the dissipative (isotropic) hardening. The flow rule (58) can then be written in a more
convenient form as:

τα − (−Aαα : ∇∇γα)
︸ ︷︷ ︸

= Sα
π

[
ėαπ
γ̇α0

]m
γ̇α

ėαπ
−∇ ·

{

Sα
ξ l

2
dis

[
ėαξ

γ̇α0

]m
∇

αγ̇α

ėαξ

}

︸ ︷︷ ︸

Energetic backstress Dissipative hardening

(59)

3. Simplified two-dimensional version of the SGCP model and numerical implementation

In this section, a simplified two-dimensional (2D) version of the proposed SGCP model is derived and
implemented to investigate, in a simple manner, the influence of the constitutive parameters and the uncou-
pled dissipation functional on the global response of the considered continuum.

3.1. Simplified 2D SGCP model

The plane strain condition is adopted for the 2D model. Under this condition, the displacement field can
be degenerated as:

u (x, t) = u1 (x1, x2, t) e1 + u2 (x1, x2, t) e2 (60)

which results in a displacement gradient ∇u that is independent of x3. Furthermore, attention is restricted
to planar slip systems, i.e., slip systems satisfying:

s
α · e3 = 0, m

α · e3 = 0, s
α ×m

α = e3 (61)



with slips γα independent of x3. All other slip systems are ignored. This approximate assumption is widely
used in the literature under plane strain, as it allows for constructing simple 2D constitutive models. Using
this assumption, it can be shown that:

e3 ·∇γα = 0 and l
α = m

α × s
α = −e3 (62)

which implies that screw dislocations vanish:

ρα⊙ = l
α ·∇γα = 0, ∀ α ∈ {1, 2, ..., q} (63)

Ignoring the crystalline elastic anisotropy and using the proposed form of defect energy (34), with only
edge dislocation densities, the energetic macroscopic and microscopic stresses involved in the simplified
model can be expressed as:

σ = λ tr (εe) I+ 2µ εe
παen = 0

ξαen = X0 l
n
en

[

|sα ·∇γα|n−2
s
α ⊗ s

α
]

·∇γα
(64)

where λ and µ are the first and second Lamé elastic moduli. Concerning the dissipative microscopic stresses,
simplified equations obtained from (51) and (52), with the slip resistances Sα

π and Sα
ξ assumed to evolve

linearly with the effective plastic strains, are used to define these stresses:

παdis = Sα
π

[
ėαπ
γ̇α0

]m
γ̇α

ėαπ

ξαdis = Sα
ξ l

2
dis

[
ėαξ

γ̇α0

]m
∇

αγ̇α

ėαξ

(65)

where, for i ∈ {π, ξ}:

Ṡα
i =

q
∑

β=1

Hi ė
β
i with Sα

i (0) = Si0, Hi = constant ≥ 0 (66)

Note that Sπ0 > 0 and Sξ0 ≥ 0.
In summary, the overall constitutive equations of the simplified 2D SGCP model are:







σ = λ tr (εe) I+ 2µ εe

ξα = X0 l
n
en

[

|sα ·∇γα|n−2
s
α ⊗ s

α
]

·∇γα + Sα
ξ l

2
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[
ėαξ

γ̇α0
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πα = Sα
π

[
ėαπ
γ̇α0

]m
γ̇α

ėαπ

Ṡα
π =

q
∑

β=1

Hπ ė
β
π , Sα

π (0) = Sπ0 > 0

Ṡα
ξ =

q
∑

β=1

Hξ ė
β
ξ , Sα

ξ (0) = Sξ0 ≥ 0

ėαπ = |γ̇α| , ėαξ = ‖ldis ∇
αγ̇α‖

α = 1, 2, ..., q

(67)

These equations are solved numerically within the framework of finite element method. A brief presentation
of the numerical procedure is presented in the next subsection.



3.2. Numerical implementation

The weak forms of the macroscopic and microscopic balance equations (first lines of systems (16) and
(20)) may be formulated using the virtual power relations given in section 2. Here, the virtual fields δu̇ and
δγ̇, which are referred to as test fields, are assumed to be kinematically admissible to 0 on the portions of
the boundary of the studied domain on which Dirichlet (essential) boundary conditions are imposed. The
macroscopic and microscopic weak forms can then be respectively expressed as:

Gu =

∫

V

δε̇ : σ dv −

∫

St

δu̇ · t ds

Gγ =

q
∑

α=1

∫

V

∇δγ̇α · ξα dv +

q
∑

α=1

∫

V

δγ̇α πα dv −

q
∑

α=1

∫

V

δγ̇α Pα : σ dv −

q
∑

α=1

∫

Sα
χ

δγ̇α χα ds
(68)

where St and Sαχ are respectively the portions of the domain boundary on which macroscopic and micro-
scopic traction forces, respectively noted as t and χα, are imposed.

To numerically solve these weak forms, a User-ELement (UEL) subroutine is implemented within the
commercial finite element package ABAQUS/Standard. Both displacement and plastic slip fields (u and
γ) are considered as degrees of freedom in the UEL. Isoparametric two-dimensional eight-node quadratic
elements are used. Integration within these elements is carried out using 9-point Gaussian technique. In each
element, displacement fields ui (i ∈ {1, 2}) and plastic slip fields γα (α ∈ {1, 2, ..., q}) are approximated
based on nodal values as follows:

ui (x1, x2) =

8∑

k=1

Nk (x1, x2) U
k
i , γα (x1, x2) =

8∑

k=1

Nk (x1, x2) Γ
α
k (69)

where Uk
i and Γα

k are respectively the nodal values of displacement ui and plastic slip γα, and Nk are the
interpolation (shape) functions, which are assumed to be the same for both displacement and plastic slip
fields. Using these field approximations, the above weak forms can be written, in matrix form, within a
representative finite element as:

Ge
u =

(

δU̇
e
)T

·

(
∫

Ve

BT

u
· σ dv −

∫

Se
t

NT

u
· t ds

)

Ge
γ =

(

δΓ̇
e
)T

·

(
∫

Ve

BT

γ
· ξ dv +

∫

Ve

NT

γ
· π dv −

∫

Ve

NT

γ
· τ dv −

∫

Se
χ

NT

γ
· χds

) (70)

where σ, π and ξ are vector representations of the macroscopic stress and the microscopic stresses on all slip
systems, τ is a vector containing the resolved shear stresses on all slip systems, t is the macroscopic traction
vector, χ is a vector containing the microscopic tractions on all slip systems, N

u
and B

u
are interpolation

and gradient matrices associated with the displacement field, and N
γ

and B
γ

are interpolation and gradient

matrices associated with the plastic slip fields. Expressions of these vector and matrix quantities are long
and not revealing, they are not presented in this paper.

The principle of virtual power implies that Ge
u and Ge

γ are zero for any virtual variations of the element

nodal variables δU̇
e

and δΓ̇
e
. Therefore:

Re
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∫
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BT

u
· σ dv −

∫

Se
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NT

u
· t ds = 0

Re
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γ
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NT

γ
· π dv −
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NT

γ
· τ dv −

∫

Se
χ

NT

γ
· χds = 0

(71)



These equations are linearized with respect to the variations of the element nodal variables U e and Γe, which
results in an elementary system of linear equations that can be presented in matrix form as follows:

[

Ke

uu
Ke

uγ

Ke
γu

Ke
γγ

] [
∆U e

∆Γe

]

=

[
−Re

u

−Re
γ

]

(72)

where:

Ke

uu
=
∂Re

u

∂U e , Ke

uγ
=
∂Re

u

∂Γe , Ke

γu
=
∂Re

γ

∂U e , Ke

γγ
=
∂Re

γ

∂Γe (73)

The global system of linear equations can be obtained by assembling all the elementary systems associated
with the overall finite elements. This system is solved by means of a Newton-Raphson iterative solution
scheme for the overall increments of the displacement and plastic slip fields (∆U and ∆Γ, respectively). At
each iteration, updated values of these increments are obtained and used to numerically solve the constitutive
equations (67) at the Gauss points (algorithm 1).

Algorithm 1 Time integration of the SGCP constitutive equations

Inputs: ∆t, ∆u, ∆γ, u, γ, ε, εe, εp, σ, Sα
π , Sα

ξ , πα, ξα

Compute: ∆ε = [∇ (∆u)]sym , ∆εp =

q
∑

α=1

∆γαP α, ∆εe = ∆ε−∆εp

Update: u← u+∆u, γ ← γ +∆γ, ε← ε+∆ε, εe ← εe +∆εe, εp ← εp +∆εp
Compute: σ = λ tr (εe) I+ 2µ εe
for α=1 to q do

Compute: ∆eαπ = |∆γα|, ∆eαξ = ‖ldis∇
α (∆γα)‖

end for

for α=1 to q do
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q
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Hπ ∆eβπ , ∆Sα
ξ =

q
∑

β=1

Hξ ∆e
β
ξ
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π ← Sα

π +∆Sα
π , Sα

ξ ← Sα
ξ +∆Sα

ξ

Compute: πα = Sα
π

[
∆eαπ
γ̇α0 ∆t

]m ∆γα

∆eαπ

Compute: ξα = X0 l
n
en

[

|sα ·∇γα|n−2
s
α ⊗ s

α
]

·∇γα + Sα
ξ l

2
dis

[
∆eαξ
γ̇α0 ∆t

]m
∇

α (∆γα)

∆eαξ
end for

4. Assessment and parametric investigation of the SGCP model

To investigate the influence of the major constitutive parameters involved in the proposed SGCP model,
the simplified 2D version of this model is applied to simulate simple 2D shear tests. These tests have been
widely treated by existing strain gradient plasticity models and interesting comparison results related to these
tests exist in the literature (e.g., Shu et al., 2001; Bittencourt et al., 2003; Niordson and Hutchinson, 2003;
Gurtin et al., 2007; Nellemann et al., 2017). A 2D crystalline strip of height h and width w is considered,
with two active slip systems symmetrically oriented with respect to e1 direction (θ1 = −θ2 = 60°), as
illustrated in Fig. 1. This strip is discretized using 100 quadratic finite elements, which represents a good
compromise between results accuracy and computation cost. To model the infinite length of the strip in e1



Fig. 1. 2D crystalline strip with two active slip systems, symmetrically tilted by θ1 = 60° and θ2 = −60° with respect to e1

direction, for shear test simulations.

direction, the following periodic conditions are imposed on the left and right edges:

ui (0, x2, t) = ui (w, x2, t) , for i = 1, 2
γα (0, x2, t) = γα (w, x2, t) , for α = 1, 2

(74)

In addition, the bottom edge is subject to macro-clamped displacement boundary conditions and the top edge
is subject to a loading-unloading cycle of displacement in e1 direction:

u1(x1, 0, t) = u2(x1, 0, t) = 0, u1(x1, h, t) = hΓ (t) , and u2(x1, h, t) = 0 (75)

where Γ (t) is the prescribed shear strain, going from 0 to 0.02 and back to 0. In order to establish pro-
portional and non-proportional loading conditions, which are necessary to better investigate certain SGCP
aspects, two types of microscopic (slip) boundary conditions are also considered on the top and bottom
edges. In the case of proportional loading, both the edges are passivated from the beginning to the end of the
simulation:

γα(x1, 0, t) = γα(x1, h, t) = 0, for α = 1, 2 (76)

However, in the case of non-proportional loading, only the bottom edge is passivated over the entire simu-
lation. The top edge is assumed to be unpassivated until a certain value of the prescribed shear strain in the
plastic range (Γ = 0.01) and then passivated until the end of the simulation:

γα(x1, 0, t) = 0, γ̇α (x1, h, t > t0) = 0, for α = 1, 2 (77)

where t0 is the passivation time, i.e., time at which Γ (t0) = 0.01. Note that, in the considered case of
non-proportional loading, nonuniform plastic strain distribution develops within the strip before the non-
proportional loading source (top edge passivation) occurs. As will be seen later, this allows for a more
complete investigation of the higher-order energetic and dissipative effects under non-proportional loading
conditions.

Results in terms of macroscopic stress-strain curves and plastic shear strain distributions in e2 direction
are adopted to investigate the influence of the major constitutive parameters on the global response of the
considered material, with a focus on those implied in the definition of the higher-order energetic and dissipa-
tive stresses. The stress-strain curves are generated based on the average shear stress within the strip (simply
noted σ12 hereafter) as a function of the prescribed shear strain Γ. For the plastic shear strain distribution in



Tab. 1. Material parameters implied in system (67): the values of the fixed parameters are taken from Gurtin et al. (2007), for
comparison purposes.

Material parameter name Symbol Value Unit

First Lamé elastic modulus λ 150 GPa

Second Lamé elastic modulus µ 100 GPa

Reference slip rate γ̇α
0 0.04 s

−1

Rate-sensitivity parameter m 0.05 –

Higher-order energetic slip resistance X0 50 MPa

Initial first-order dissipative slip resistance Sπ0 50 MPa

Initial higher-order dissipative slip resistance Sξ0 case study MPa

First-order hardening modulus Hπ case study MPa

Higher-order hardening modulus Hξ case study MPa

Energetic length scale len case study µm

Dissipative length scale ldis case study µm

Defect energy index n case study –

e2 direction, the engineering plastic shear strain γp12 = 2 εp12 is employed. These results are mainly discussed
with respect to the results of Gurtin et al. (2007), whose theory is used as basis of the present one. Therefore,
the material parameters that are not concerned by the parametric investigation in system (67) are set equal to
those used by Gurtin et al. (2007), as illustrated in Tab. 1.

4.1. Influence of higher-order energetic stress parameters

In this subsection, the influence of the main higher-order energetic stress parameters, specifically the
energetic length scale len and the defect energy index n, and the interaction between them are investigated
in the absence of dissipative effects. For this purpose, the dissipative length scale ldis and the first-order
hardening modulus Hπ are set to zero.

4.1.1. Energetic length scale len: validation of the model implementation

Using ldis = 0, the higher-order effective plastic strain rates ėαξ (41) vanish and the first-order counter-
parts ėαπ (40) coincide with the coupled measures proposed by Gurtin et al. (2007):

ḋα =

√

(ėαπ)
2 +

(

ėαξ

)2

= ėαπ , for α = 1, 2 (78)

Therefore, by using the same values of constitutive parameters, the present model becomes equivalent to
the Gurtin et al. (2007) model. Comparison between the results of the two models in this case allows for
validation of the numerical implementation of present one. Fig. 2 presents the comparison results for dif-
ferent values of len, obtained using quadratic defect energy (n = 2) and proportional loading. The present
results are in very good agreement with the results of Gurtin et al. (2007), regardless of the len value. The
very small differences between the results would be due to the use of different types of finite elements and
different mesh refinements. As mentioned earlier, 8-node quadratic elements are used in this work, whereas
9-node quadratic elements are adopted in the work of Gurtin et al. (2007). As expected, for quadratic defect
energy (n = 2) and proportional loading conditions, the energetic length scale len contributes to hardening
but not to strengthening. By varying len, only the hardening rate after yielding changes, the plastic regime
always starts from the same yield point (Fig. 2a). The case of len = 0 corresponds to the classical crystal
plasticity (CP) with no hardening. This case, which will simply be designated by “Perfect CP” in subsequent
figures, leads to a flat stress-strain curve with no hardening after yielding and to a uniform plastic shear strain
distribution through the strip thickness. For len = 0.7h and len = h, kinematic hardening occurs, leading to
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Fig. 2. Influence of the energetic length scale len under proportional loading conditions in the absence of higher-order dissipative
effects: comparison between the present and Gurtin et al. (2007) results (n = 2, ldis = 0, Hπ = 0).

classical Bauschinger effects which become more marked with increasing len. The associated plastic shear
strain distributions along the strip thickness present a quadratic form (Fig. 2b).

4.1.2. Defect energy index n: investigation under proportional and non-proportional loading conditions

In the above len investigation, quadratic defect energy is employed (n = 2) with only proportional
loading conditions. The obtained results confirm a common belief that len only contributes to material hard-
ening (Gurtin et al., 2007). However, it has recently been demonstrated that this belief is not necessarily
true for other forms of defect energy (Fleck and Willis, 2015; Wulfinghoff et al., 2015; Forest et al., 2019).
Using two different defect energy formulations, El-Naaman et al. (2019) have recently conducted an inter-
esting investigation into the interaction between the energetic length scale effects and the form of the defect
energy. The obtained results highlight the complex nonlinear hardening effects of len in the case of non-
quadratic defect energy, resulting in an apparent material strengthening under monotonic loading. However,
only proportional loading conditions are used in their investigation. Hereafter, it is proposed to extend this
investigation by considering both proportional and non-proportional loading conditions.

Fig. 3 presents the stress-strain curves for different values of n < 2 and len, obtained under the pro-
portional and non-proportional loading conditions introduced at the beginning of the section. By analyzing
only the loading part of the results, len seems to contribute to material strengthening. Strengthening (elastic
gap at initial yield) is observed in both the proportional and non-proportional loading cases. The smaller
the value of n (i.e., n approaches 1), the larger are the gaps. Under the considered non-proportional loading
conditions, the obtained elastic gaps at initial yield are less marked than those obtained under proportional
loading conditions. Moreover, at the occurrence of the non-proportional loading source (passivation of the
top edge), no further elastic gaps are observed, there is only a short rapid rise in the average stress with a
slope much smaller than the elastic slope (Fig. 3b). With only the bottom edge passivated from the begin-
ning, lower plastic strain gradients develop within the strip, which explains the smaller elastic gaps at initial
yield. After yielding, the plastic strain gradients continue to develop over a large part of the strip and their ex-
istence prior to the top edge passivation prevents the occurrence of further gaps. Considering now the entire
loading-unloading results, two striking features can be noticed. The first feature, which is concerned with
both the proportional and non-proportional loading cases, is the concave form of the unloading curves. The
second feature, which is concerned with only the non-proportional loading case, is the presence of inflection
points at the middle of the associated unloading curves. Interestingly, these inflection points seem to occur
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Fig. 3. Stress-strain responses under proportional and non-proportional loading conditions for different values of the defect energy
index n in the range of n < 2 and different values of the energetic length scale len (ldis = 0, Hπ = 0).

at approximately the same plastic states at which the top edge was passivated, even though no modification
is made to the unloading conditions.

To better understand these features, more complete simulations under proportional and non-proportional
loading conditions were performed, using n = 1.3 and len = h. In these simulations, after a first (pro-
portional or non-proportional) loading to a macroscopic shear strain Γ = 0.02, a complete loading cycle is
applied, such that Γ goes from 0.02 to −0.02 and back to 0.02 (i.e., the simple unloading Γ = 0.02 → 0 is
replaced by a complete cycle Γ = 0.02 → −0.02 → 0.02). Fig. 4 presents the associated results in terms
of stress-strain responses and plastic slip distributions at key stages of the loading cycle. The stress-strain
response associated with the proportional case shows that the material only experienced an unusual pure
nonlinear kinematic hardening with steep-sloped inflection points (Fig. 4a). These inflection points occur
at zero plastic slips where the plastic slip gradients vanish (Stage 4 in Fig. 4b). They are caused by a rapid
increase followed by a rapid decrease in the evolution rate of the higher-order energetic stresses ξαen as the
latter approach their singularity at zero plastic slip gradients. The obtained stress-strain response under pro-
portional loading confirms the results of El-Naaman et al. (2019). Further discussion on this response can be
found in their paper. For the non-proportional case, more complex stress-strain response is obtained with ad-
ditional inflections points (Fig. 4a). Each of the (steep-sloped) inflection points observed in the proportional
case is split into two moderate-sloped ones. As can be noted from Fig. 4c, one of these moderate-sloped
inflection points takes place at plastic slips in the vicinity of the top edge equivalent to those measured at
this edge at its passivation, reflecting a loading history memory-like effect of len. This point corresponds
to nearly zero plastic slip gradients in the upper half of the studied strip (Stage 4′ in Fig. 4c). The other
moderate-sloped inflection point occurs at zero plastic slips in the vicinity of the bottom edge where nearly
zero plastic slip gradients occur in the lower half of the strip (Stage 7′ in Fig. 4c). With different passivation
conditions applied on the top and bottom edges, the plastic slip gradients do not vanish at the same time in
the upper and lower strip halves, leading to two distinct and smoother inflections points.

The nonlinear kinematic hardening with inflection points, which is observed under proportional and non-
proportional loading conditions, is largely controlled by the defect energy index n (Fig. 3). It becomes less
and less marked as n approaches 2. From n = 2, this hardening type disappears and is replaced by the
classical kinematic hardening with no apparent inflection points (Fig. 5). In this case, len has no longer
any contribution to material strengthening, neither under proportional loading nor under non-proportional



(a) Stress-strain curves

(b) Plastic slip distributions at stages 1 to 6 in Fig. 4a

(c) Plastic slip distributions at stages 1′ to 9
′ in Fig. 4a

Fig. 4. Stress-strain curves and plastic slip distributions at different loading stages, obtained under first proportional and non-
proportional loading to a macroscopic shear strain Γ = 0.02 followed by a complete loading cycle Γ = 0.02 → −0.02 → 0.02

(n = 1.3, len = h, ldis = 0, Hπ = 0).



(a) Proportional loading conditions (b) Non-proportional loading conditions

Fig. 5. Stress-strain responses for different values of the defect energy index n in the range of n ≥ 2 and different values of the
energetic length scale len, obtained under proportional and non-proportional loading conditions (ldis = 0, Hπ = 0).

loading. For the latter type of loading, the top edge passivation is only marked by a change in the hardening
rate to match that corresponding to proportional loading with the top and bottom edges passivated from the
beginning. In the range of n ≥ 2, len has only effects on the rate of the classical kinematic hardening, which
decrease with increasing n. A large value of n can even cancel these effects of len (case of n = 4 in Fig. 5).

In the framework of SGCP, the unusual nonlinear kinematic hardening, at least that obtained under pro-
portional loading, was first reported by Ohno et al. (2009), using rank-one defect energy. However, the
authors did not recognize the physical origin of this phenomenon. Instead, they further developed their
model to replace the rank-one defect energy by a dissipative formulation removing the inflection points.
More recently, this phenomenon was also obtained by several authors using other forms of defect energy
(Wulfinghoff et al., 2015; Forest et al., 2019; El-Naaman et al., 2019). Wulfinghoff et al. (2015) were the
first to provide a physical explanation to the phenomenon in the context of SGCP. According to them, it
corresponds to the kinematic hardening type III (KIII) of Asaro (1975). This type is associated with a “first
in/last out” sequence of dislocation motion and represents the most perfect form of recovery of plastic mem-
ory. Although uncommon, experimental evidence of the obtained nonlinear kinematic hardening exists in the
literature. Unusual stress-strain hysteresis loops with inflection points have already been observed in some
Al-Cu-Mg and Fe-Cr polycrystalline alloys (Stoltz and Pelloux, 1976; Taillard and Pineau, 1982). An illus-
tration of these loops, which is obtained by Taillard and Pineau (1982) in a large-grained Fe-Cu alloy aged
at 923K for 72 h after one loading cycle, is given in Fig. 6. TEM observations by Stoltz and Pelloux (1976)
and Taillard and Pineau (1982) show that the inflected loops are caused by the piling-up of dislocations at
the precipitates and their possible destruction under reverse loading. These experimentally observed mech-
anisms are analogous to the piling-up and unpiling-up of dislocations at the passivated edges in the present
simulations. The use of non-quadratic defect energy with n < 2 seems to provide an accurate continuum
description of the piling-up and unpiling-up phenomena. This results in plastic shear strain distributions
more in consistency with small scale predictions using dislocation mechanics (e.g., Shu et al., 2001). Fig.
7a gives the plastic shear strain profiles along the strip thickness for different values of n, obtained using
proportional loading. Using n < 2, obvious boundary layers develop in the vicinity of the top and bottom
boundaries with nearly uniform plastic shear strain distribution outside these layers, as generally predicted
using discrete dislocations mechanics (e.g., Shu et al., 2001). This would constitute another argument in
favor of defect energy formulations with order-controlling index n < 2.



Fig. 6. Experimental evidence of the nonlinear kinematic hardening after one loading cycle in a large-grained Fe–Cr alloy aged at
923 K for 72 h (Reproduced from Taillard and Pineau (1982)).
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4.2. Influence of higher-order dissipative stress parameters

In this subsection, the main higher-order dissipative stress parameters are investigated in the framework
of uncoupled dissipation. For a better analysis of these parameters, the energetic and first-order hardening
effects are ignored (i.e., len = 0 and Hπ = 0).

4.2.1. Dissipative length scale ldis: investigation of the uncoupled dissipation assumption

In this investigation, the initial higher-order dissipative slip resistance is set equal to the first-order one
(Sξ0 = Sπ0). Moreover, the higher-order hardening effects are first ignored (Hξ = Hπ = 0). By doing so,
the only difference between the present and Gurtin et al. (2007) models lies in the way the effective plastic
strain measures are calculated. Comparison between the results of the models in this case makes it possible
to underscore the influence of the uncoupled dissipation assumption adopted in this work. Fig. 8 gives
the comparison results for different values of dissipative length scale, obtained under proportional loading.
These results are achieved by setting Sξ0 = Sπ0 = 50MPa, which corresponds to the initial slip resistance
used by Gurtin et al. (2007) in their study of ldis. As can be seen in Fig. 8a, in terms of stress-strain response,
the results are not particularly sensitive to the use of coupled or uncoupled formulation for the dissipation
processes. Both the formulations lead to the same conclusions about the influence of ldis on the material
response. The parameter ldis influences the yield strength, which increases with increasing ldis, but not the
strain hardening after yielding. A slight overestimation of the yield strength as predicted by the present
SGCP model can however be reported. This overestimation is due to the fact that the uncoupled plastic
strain measures lead to slightly smaller values, compared to those which can be obtained using coupled
ones (Gurtin et al., 2007). This results in overestimating the higher-order dissipative stresses and then the
energetic macroscopic stress σ via the flow rule (59).

Although leading to close results in terms of stress-strain curves, the assumption of uncoupled dissi-
pation has a strong influence on the distribution of the plastic shear strain across the thickness. As illus-
trated in Fig. 8b, the plastic shear strain profiles obtained in this work are quite different from those ob-
tained by Gurtin et al. (2007) using coupled dissipation. The latter profiles have always smooth parabolic
forms with more or less sharp gradients in the vicinity of the top and bottom boundaries. With the hy-
pothesis of uncoupled dissipation, more clearly distinguishable boundary layers develop in the vicinity of
the top and bottom boundaries; beyond these layers, the plastic shear strain becomes near-uniform with a
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Fig. 9. Influence of the higher-order hardening modulus Hξ in the absence of higher-order energetic effects (len = 0, ldis = h,
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plateau-shaped distribution (Fig. 8b). With no higher-order hardening (Hξ = 0), these layers present a very
small thickness, which is in very good agreement with the results of Gurtin et al. (2007). The thickness of
such layers can, however, be controlled by the higher-order hardening modulus Hξ . Fig. 9 compares the
stress-strain results and the associated plastic shear strain profiles with and without higher-order hardening
(Hξ = 0, 100, 200MPa), obtained using proportional loading. The thickness of the obtained boundary lay-
ers depends on Hξ. The larger this parameter, the thicker are the boundary layers (Fig. 9b). Such a parameter
generates isotropic hardening effects of more or less standard type (Fig. 9a).

The plastic shear strain distributions obtained in this work using uncoupled dissipation seem to be more
in consistency with small scale numerical predictions (e.g., Bittencourt et al., 2003; Shu et al., 2001). Fig.
10 compares the plastic shear strain profiles predicted by the present model with those predicted by Shu et al.
(2001) using discrete dislocation plasticity, for different values of applied shear strain Γ under proportional
conditions. The material parameters used to obtain the present profiles are determined by identification
procedure considering only dissipative stresses: len = 0, Sπ0 = 15MPa, Hπ = 0, ldis = 0.3h, Sξ0 =
3MPa, and Hξ = 200MPa. The obtained results are in good agreement with the results of Shu et al.
(2001). The small differences between the results in the boundary layers at large applied shear strains Γ are
due to the asymmetry of the discrete dislocation profiles, which is caused by the fluctuations in the plastic
strains.

4.2.2. Initial higher-order dissipative slip resistance Sξ0: towards a more flexible control of elastic gaps

In the above ldis study, the initial higher-order dissipative slip resistance is fixed at Sξ0 = Sπ0 = 50MPa
and only proportional loading is applied. The obtained results highlight the contribution of ldis to material
strengthening, which increases with increasing ldis (Fig. 8a), as noted in the literature using coupled dis-
sipation. Further investigation into ldis effects under varying Sξ0 is given hereafter, using proportional and
non-proportional loading conditions.

Starting with the proportional loading conditions, Fig. 11a displays the associated stress-strain results
for different values of Sξ0, with ldis = h and Hξ = 100MPa. At fixed ldis, elastic gaps at initial yield are
largely controlled by Sξ0. The smaller this parameter, the smaller are the gaps, which can also be removed
by setting Sξ0 = 0 (in practice, a small value must be used instead of 0 to avoid excessively small time steps
for convergence). Using Sξ0 = 0.01MPa, no apparent elastic gaps are obtained at initial yield. This is in
accordance with the outcomes of Fleck et al. (2015) and can be explained by zero (nearly zero) higher-order



Fig. 10. Comparison between the plastic shear strain profiles obtained using the present model and those obtained by Shu et al.
(2001) using discrete dislocation plasticity at different values of applied shear strain Γ under proportional loading conditions (len =

0, ldis = 0.3 h, Sπ0 = 15MPa, Sξ0 = 3MPa, Hπ = 0, Hξ = 200MPa).

dissipative stresses ξαdis at the onset of yield. It is worth recalling that, with the assumption of uncoupled
dissipation, the higher-order dissipative stresses ξαdis depend only on plastic slip gradients and their rates,
and then they continue to be zero after any uniform plastic straining. Therefore, the proposed model allows
for avoiding elastic gaps not only at initial yield but also after any uniform plastic straining.

Concerning the non-proportional loading conditions, Fig. 11b presents the corresponding results ob-
tained using different values of Sξ0, with ldis = h and Hξ = 100MPa. This figure shows that, unlike len,
the dissipative length scale ldis can lead to elastic gaps not only at initial yield but also at the passivation
of the top edge. For nonzero Sξ0, the gaps observed at initial yield under proportional loading conditions,
with both edges passivated from the beginning, are divided into two parts. One part occurs at initial yield,
where only the bottom edge is passivated; and the other part occurs at the passivation of the top edge. Un-
der the considered non-proportional loading conditions, for zero (nearly zero) Sξ0, no apparent elastic gaps
are observed, neither at initial yield nor at the occurrence of the non-proportional source. If the absence of
elastic gaps at initial yield can be explained in the same way as beforehand, their absence at the passivation
of the top edge is more difficult to explain. Indeed, with the bottom edge passivated from the beginning,
nonuniform plastic strains develop within the studied strip before passivation of the top edge, making the
current higher-order slip resistances Sα

ξ (and then ξαdis) under evolution within the studied strip. To better
explain the absence of elastic gaps in this case, the rate-sensitivity terms, which are only used for regular-
ization, are ignored hereafter. In the rate-independent limit, avoidance of elastic gaps at the occurrence of a
non-proportional loading source reveals the existence of nonzero plastic slip rates γ̇α that satisfy the micro-
scopic balance equations (first line of system (20)). Assuming, for simplicity, that the boundary conditions
are such that either γ̇α = 0 or χα = 0 on the boundary, in the absence of higher-order energetic stresses,
these equations can be written, in weak form, as:

Gγ =

q
∑

α=1

∫

V

[
(|τα| − Sα

π ) ė
α
π − S

α
ξ ė

α
ξ

]
dv = 0 (79)

For this expression to have nonzero γ̇α solutions at the occurrence of a non-proportional loading source, the
latter must not significantly alter the ratio between ėαπ and ėαξ in the regions where the higher-order dissipative
stresses ξαdis are activated (Sα

ξ 6= 0). Otherwise, the plastic flow is interrupted until the resolved shear stresses
τα (evolving elastically) reach sufficient values to offset the disproportionate variations between terms of
(79). By passivating only the bottom edge, plastic strain gradients develop only within the lower half of the
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Fig. 11. Influence of the initial higher-order dissipative slip resistance Sξ0 on the elastic gap under proportional and non-proportional
loading conditions (len = 0, ldis = h, Hπ = 0, Hξ = 100MPa).

studied strip (the plastic slip profiles are similar to those obtained at stage 4′ in Fig. 4c). Using Sξ0 = 0, after
yielding, the stresses ξαdis are continuously activated (from 0) in this part of the strip and remain inactive
otherwise. The occurrence of the top edge passivation modifies the plastic slip distributions only within the
upper half of the studied strip, where the stresses ξαdis are not yet activated. This explains the absence of
elastic gaps at the passivation of this edge.

By assuming uncoupled dissipation with Sξ0 = 0, two important mechanisms generating or amplify-
ing elastic gaps in conventional Gurtin-type models have been disabled. The first mechanism is due to the
nonzero higher-order dissipative stresses ξαdis at their activation, and the second mechanism is due to the
possible evolution of the current higher-order slip resistances Sα

ξ under uniform plastic straining. Disabling
these mechanisms, the proposed model has allowed elastic gaps to be removed under the considered non-
proportional loading conditions. However, this model is not completely gap-free in the sense that it cannot
avoid gaps for any non-proportional loading conditions. Indeed, application of a loading source generating
large variation in the plastic slip gradients within regions with activated higher-order dissipative stresses ξαdis
can lead to elastic gaps. This would be the case if the studied strip is submitted to pure bending into the
plastic range with microfree conditions followed by both edges passivation and continued bending (Fig. 12).
In this case, the model can remove gaps only at initial yield. At the occurrence of the edges passivation,
Sξ0 has only influence on the amplitude of the generated gaps but does not remove them. To the authors’
knowledge, to date, there is no gap-free model in the literature including thermodynamically-consistent
higher-order dissipative stresses, except for the very recent model of Panteghini et al. (2019) in which dissi-
pation is implicitly embedded within the definition of the defect energy. It should be noted that the attitude
taken here is rather agnostic on the occurrence of elastic gaps in reality. Some authors link these gaps to
the size-dependence capabilities of gradient-based theories, whereas others see no physical reasons for their
occurrence within a single crystal. Keeping with the latter opinion, Wulfinghoff et al. (2013) have proposed
a SGCP approach with no elastic gaps (in effect, the involved higher-order stresses are assumed to be fully
energetic and to stem from quadratic defect energy) for polycrystalline solids, in which the size-dependence
effects are embedded within a grain boundary constitutive model. In the absence of experimental data for
ruling on the existence of elastic gaps in reality, development of a model allowing for a more flexible control
of these gaps, while explicitly including higher-order dissipative processes, would be very worthwhile.
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4.3. Interactions between microscopic stresses: recommendations for material parameters identification

Interaction between the different stresses involved in the SGCP model, including both first- and higher-
order microscopic stresses, is presented in Fig. 13. Although only proportional loading conditions are ap-
plied for this figure, the following discussion is also valid for non-proportional loading conditions. At small
scales, the global response of the considered material is (not surprisingly) more sensitive to the higher-order
energetic and dissipative stresses. The energetic ones have mainly kinematic hardening effects, whereas the
dissipative counterparts have isotropic hardening effects. The first-order dissipative stresses can also lead to
isotropic hardening effects. However, compared to those generated by the higher-order ones, these effects
have only small impact on the global material response. Using these observations, recommendations to iden-
tify the major model parameters for a real material are given hereafter. It is noteworthy, however, that, with
the current understanding of dislocation physics, it is still early to confirm which small scale mechanisms
must be considered in this model to correctly reproduce the small scale behavior of real materials. The great
flexibility offered by the proposed model, thanks to the assumption of uncoupled dissipation, in controlling
a wide selection of these mechanisms makes the task of switching between them relatively easy.

Using the dissipation uncoupling assumption, the constitutive equations of the first-order dissipative
stresses correspond exactly to those classically used to describe the evolution of the resolved shear stresses
in the context of conventional crystal plasticity. It is then suggested to separately identify the parameters of
these equations in such a way as to reproduce the behavior of the considered material in the absence of size
effects. This allows for application of the model on large specimens in which size effects are negligible. To
this end, experimental results obtained using relatively large samples with sufficient number of grains must
be used for the identification of these parameters. Note that such parameters can also be found in literature
for several common materials. To model size effects at small scales, the higher-order constitutive param-
eters must then be included and identified. Preliminary experimental tests under cyclic loading would be
necessary to determine which higher-order parameters are required. If only kinematic hardening is obtained,
parameters associated with higher-order dissipative stresses can be neglected (ldis = 0). On the contrary,
if mainly isotropic hardening is found, parameters associated with higher-order energetic stresses may be
ignored (len = 0). If combined hardening is obtained, all higher-order parameters need to be taken into
consideration. The retained parameters can finally be identified based on further experimental tests implying
small specimens with different grain sizes to find out about the elastic gaps. In the case of higher-order
energetic stresses, these gaps can be controlled by n < 2 and len. Although not treated in this work, the
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Fig. 13. Interaction between the different stresses involved in the proposed SGCP model under proportional loading (n = 2,
Sξ0 = 50MPa).

higher-order energetic slip resistance X0 can also influence such gaps in the range of n < 2. According
to expressions of higher-order energetic stresses, this parameter behaves as lnen and may be used to control
the range in which len contributes to material hardening and/or strengthening. In the case of higher-order
dissipative stresses, the elastic gaps can be controlled by Sξ0 and ldis. Depending on the number of re-
tained constitutive parameters to be identified, robust identification algorithms can be applied to simplify
this task (Chtourou et al., 2017). It should, however, be noted that these algorithms are generally based on
mathematical optimization and do not necessarily lead to a unique set of optimized parameters.

5. Conclusion

A flexible Gurtin-type strain gradient crystal plasticity (SGCP) model has been developed in this paper,
based on non-quadratic defect energy and uncoupled dissipation. Both energetic (recoverable) and dissi-
pative (unrecoverable) microscopic stresses are considered in this model. The higher-order energetic mi-
croscopic stresses are derived from a generalized power-law defect energy, with adjustable order-controlling
index n. This form of defect energy is proposed to investigate the interaction between the form of this energy
and the energetic length scale effects under proportional and non-proportional loading conditions. In spirit
of multi-criterion approaches available in the literature (Forest et al., 1997, 2000; Forest and Sievert, 2003;
Fleck et al., 2014; Panteghini et al., 2019), the dissipative microscopic stresses are derived from an uncou-
pled dissipation functional, which is expressed as a sum of two separate functions of first- and higher-order
effective plastic strain measures. To evaluate the proposed SGCP model and to investigate the influence of
its major constitutive parameters, a simplified two-dimensional (2D) version of this model was derived and
implemented within the commercial finite element package Abaqus/Standard, using a User-ELment (UEL)
subroutine. This version was then applied to simulate the classical 2D simple shear problem of a constrained
crystalline strip submitted to proportional and non-proportional loading conditions. Major simulation results
and conclusions are recalled hereafter.

Starting with the energetic length scale effects, it was found that these effects depend on the value of the
order-controlling index n and loading conditions. Two cases can be distinguished: n < 2 and n ≥ 2. In the
range of n < 2, the energetic length scale len leads to unusual nonlinear kinematic hardening, resulting in an
apparent increase of the yield strength (strengthening) under monotonic loading. This is in accordance with
results from the literature (e.g., Fleck and Willis, 2015; Wulfinghoff et al., 2015; El-Naaman et al., 2019).



Under non-proportional loading conditions, more complex kinematic hardening with additional inflection
points is obtained. Interestingly, these additional points take place at approximately the same plastic state
at which the non-proportional loading source occurred, revealing new loading history memory-like effects
of len. The unusual nonlinear kinematic hardening with inflection points, at least that obtained under pro-
portional loading conditions, complies with the kinematic hardening type III (KIII) of Asaro (1975). It
corresponds to a “first in/last out” sequence of dislocation motion and represents the most perfect form of
recovery of plastic memory. Although uncommon, this phenomenon has already been observed experimen-
tally in some polycrystalline materials, such as Fe-Cr alloys (Taillard and Pineau, 1982). For n < 2, KIII
type hardening is the only active hardening mechanism, allowing for accurate continuum description of the
piling-up and unpiling-up phenomena. Increasing n (i.e., n approaching 2), this hardening type becomes
less and less marked and vanishes at n = 2 to be replaced by the classical kinematic hardening (KI type
hardening, in the terminology of Asaro (1975)). From n = 2, regardless of loading type, len has only influ-
ence on the rate of hardening after yielding but not on the material strengthening, as widely recognized in
the literature.

Concerning dissipation aspects, in terms of stress-strain response, the assumption of uncoupled dissi-
pation has no significant impact. It leads to a slight overestimation of the yield strength, compared to the
results of Gurtin et al. (2007), which are obtained using coupled dissipation. This overestimation is due to
the fact that the uncoupled plastic strain measures used in the present model predict slightly smaller values,
compared to those which can be obtained using coupled measures (Gurtin et al., 2007). This results in over-
estimating the dissipative microscopic stresses and then the energetic macroscopic stress σ via the flow rule
(59). However, in terms of plastic shear strain distributions across the thickness of the studied strip, quite
different results were obtained depending on whether coupled or uncoupled dissipation is adopted. Using
the assumption of uncoupled dissipation, obvious boundary layers develop in the vicinity of the top and
bottom edges of the studied strip. Beyond these layers, the plastic shear strain becomes near-uniform with
a plateau-shaped distribution. On the contrary, using coupled dissipation, the plastic shear strain distribu-
tions obtained by Gurtin et al. (2007) have always near-quadratic forms, even outside the boundary layers.
The distributions of plastic shear strain obtained in this work, with obvious boundary layers and a plateau
outside the layers, seem to be more in accordance with those produced by discrete dislocation simulations
in the work of Shu et al. (2001) and Bittencourt et al. (2003). Accurately capturing boundary layer effects
is essential since they represent important nonlocal (size) effects that emerge at small scales. The thickness
of these layers can easily be controlled by the higher-order hardening modulus Hξ. Another advantage of
using uncoupled dissipation is the flexible control of some important dissipative effects, such as elastic gaps,
which can easily be controlled by varying the initial higher-order slip resistance Sξ0. By canceling the latter
parameter, a variant of the proposed model can be obtained that allows for removing such gaps under certain
circumstances, e.g. at initial yield or, in a general manner, when a non-proportional loading source does not
significantly variate the plastic slip gradients within regions in which the higher-order dissipative stresses are
activated.

Although it is still early to confirm which small scale mechanisms must be considered to correctly repro-
duce the small scale behavior of real materials, the proposed model, with its energetic and dissipative parts,
offers a great flexibility in monitoring major of these mechanisms. This makes the task of switching between
them relatively easy.
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Ryś, M., Petryk, H., 2018. Gradient crystal plasticity models with a natural length scale in the hardening
law. Int. J. Plast. 111, 168–187.

Sarac, A., Oztop, M. S., Dahlberg, C. F. O., Kysar, J. W., 2016. Spatial distribution of the net burgers vector
density in a deformed single crystal. Int. J. Plast. 85, 110–129.

Shu, J. Y., Fleck, N. A., Van der Giessen, E., Needleman, A., 2001. Boundary layers in constrained plastic
flow: comparison of nonlocal and discrete dislocation plasticity. J. Mech. Phys. Solids 49 (6), 1361–1395.

Stoltz, R. E., Pelloux, R. M., 1976. The bauschinger effect in precipitation strengthened aluminum alloys.
Metall. Trans. A 7 (8), 1295–1306.



Stupkiewicz, S., Petryk, H., 2016. A minimal gradient-enhancement of the classical continuum theory of
crystal plasticity. part ii: Size effects. Arch. Mech. 68 (6), 487–513.

Taillard, R., Pineau, A., 1982. Room temperature tensile properties of Fe-19wt.%Cr alloys precipitation
hardened by the intermetallic compound NiAl. Mater. Sci. Eng. 56 (3), 219–231.

Teodosiu, C., Sidoroff, F., 1976. A theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci.
14, 713–723.

Voyiadjis, G. Z., Song, Y., 2019. Strain gradient continuum plasticity theories: Theoretical, numerical and
experimental investigations. Int. J. Plast.

Wulfinghoff, S., Bayerschen, E., Böhlke, T., 2013. A gradient plasticity grain boundary yield theory. Int. J.
Plast. 51, 33–46.

Wulfinghoff, S., Böhlke, T., 2015. Gradient crystal plasticity including dislocation-based work-hardening
and dislocation transport. Int. J. Plast. 69, 152–169.

Wulfinghoff, S., Forest, S., Böhlke, T., 2015. Strain gradient plasticity modeling of the cyclic behavior of
laminate microstructures. J. Mech. Phys. Solids 79, 1–20.

Yalçinkaya, T., Brekelmans, W. A. M., Geers, M. G. D., 2011. Deformation patterning driven by rate depen-
dent non-convex strain gradient plasticity. J. Mech. Phys. Solids 59 (1), 1–17.

Zhou, C., Lesar, R., 2012. Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int. J.
Plast. 30-31, 185–201.


	1 Introduction
	2 Strain gradient crystal plasticity (SGCP) model
	2.1 Kinematics
	2.2 Balance equations
	2.3 Dissipation inequality
	2.4 Constitutive laws
	2.4.1 Energetic constitutive laws
	2.4.2 Dissipative constitutive laws

	2.5 Flow rules

	3 Simplified two-dimensional version of the SGCP model and numerical implementation
	3.1 Simplified 2D SGCP model
	3.2 Numerical implementation

	4 Assessment and parametric investigation of the SGCP model
	4.1 Influence of higher-order energetic stress parameters
	4.1.1 Energetic length scale len: validation of the model implementation
	4.1.2 Defect energy index n: investigation under proportional and non-proportional loading conditions

	4.2 Influence of higher-order dissipative stress parameters
	4.2.1 Dissipative length scale ldis: investigation of the uncoupled dissipation assumption
	4.2.2 Initial higher-order dissipative slip resistance S0: towards a more flexible control of elastic gaps 

	4.3 Interactions between microscopic stresses: recommendations for material parameters identification

	5 Conclusion



