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Abstract

A new numerical technique for post-buckling analysis is presented by com-
bining the Asymptotic Numerical Method (ANM) and the Taylor Meshless
Method (TMM). These two methods are based on Taylor series, with respect
to a scalar load parameter for ANM and with respect to the space variables
for TMM. The advantage of ANM is an adaptive step length and this is very
efficient near bifurcation points. The specificity of TMM is a quasi-exact
solution of the PDEs inside the domain, which leads to a strong reduction of
the number of degrees of freedom (DOFs).
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1. Introduction

Many progresses have been made over the last forty years concerning the
numerical computation of bifurcation problems. A first way is to solve the
"extended system” characterizing the bifurcation points [1]. A simpler tech-
nique is to solve a continuation problem with an arc-length control for passing
limit points [2]. Nowadays this standard procedure is available in many exist-
ing codes, especially in extensively used commercial packages. Note that this
continuation technique requires the introduction of a perturbation to capture
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the bifurcation path in a secure manner and a balance between a sufficiently
large perturbation and a sufficiently small step length is required for captur-
ing the post-bifurcation response. This difficulty is partially removed with
the Asymptotic Numerical Method (ANM), where each step is a Taylor se-
ries with respect to a control parameter, see [3] [4], the key point being an
adaptive step length related to the radius of convergence of the Taylor series.
This adaptivity permits to compute the post-bifurcation curves with a very
small perturbation. Moreover, as underlined in [5], one observes an accumu-
lation of small ANM-steps close to a bifurcation point because the radius of
convergence is strongly connected with the distance to a neighbor bifurca-
tion point. So an accumulation of small ANM-steps is a simple criteron for
detecting bifurcations, but there are other techniques to analyse bifurcation
problems within ANM, for instance by computing a bifurcation indicator [6]
[7] or by identifying a geometric progression in the computed Taylor series
[8]. More generally, ANM is an efficient path following technique able to solve
a number of non-linear problems, including unilateral contact or plasticity
problems [9].

A discretization method has to be associated with a non-linear solver as
ANM and, in most of the cases, this was the finite element method. Never-
theless one can mention several papers where ANM was coupled with a mesh-
less discretization method [10][11][12]. Benefits and drawbacks of meshless
techniques are well known and will not be re-discussed here. In this paper,
we aim to combine ANM with a meshless method based on Taylor series
introduced in [13] and called Taylor Meshless Method (TMM). The latter
belongs to the large family of Trefftz methods that use exact solutions of the
PDE as shape functions, see for example [14]. The Method of Fundamen-
tal Solution (MFS) is likely the most used Trefftz method [15]. The main
advantage of Trefftz method and MFS is a strong reduction of the number
of unknowns: for instance in [16] a problem was solved with only 90 DOF's
while it needs more than 5000 with quadratic finite elements and much more
with linear interpolation. The main drawback of Trefftz-type methods is ma-
trix ill-conditioning that prevents solving large-scale problems [17] [18], even
if there were many works to try to improve this condition number, see for
instance [19][20]. Nevertheless, splitting in subdomains is a simple manner
to control the ill-conditioning and several procedures are available [21], what
allowed to solve large-scale problems in the Taylor meshless framework [22].

The treatment of non-linear problems is not straightforward within Trefftz
methods, because it is not possible to get exact solutions of non-linear or non



homogeneous problems by inverting the exact tangent operator. Thus, one
generally re-introduces a discretization of the domain by radial functions that
are combined with fundamental solutions of a reference operator. Typical
applications concern Poisson problem [23], newtonian fluids [24] or plasticity
[25] and the non-linear problem is solved by Picard iterations, but also by
ANM [10] [11]. Omne can avoid the spatial discretization when using the
method of Taylor series, in which case one can moreover obtain accurately
the general solution of the homogeneous tangent problem, see the paper [26].
In the latter paper, the polynomial shape functions were computed via an
Automatic Differentiation procedure [27], what could permit a wide range of
applications.

In the present paper, ANM will be combined with the Taylor meshless
method: in other words, we shall perform together Taylor series in space and
in load parameter. This double Taylor series expansion will be applied to
the famous Foppl-von Karman plate model [28].

2. Taylor series in loading (ANM)

The first part of the algorithm is the Asymptotic Numerical Method
(ANM) that permits to transform a non-linear PDE into a sequence of linear
ones, whose unknowns are the terms of a Taylor series. Here, it will be ap-
plied to the Foppl-von Karman equations for elastic plates that is a simple
and iconic model in non-linear structural mechanics. Roughly, this section
does not differ significantly from previous presentations of ANM, the novelty
being the combination of ANM with a new discretization technique. This
well-known system is as follows:

DA%w — [f,w] = \p
(1)

A%+ S[w,w] =0

In this equation (1), the two unknown fields are the transversal displacement
w(z,y) and the stress function of the in-plane problem f(z,y). The Young
modulus is named E, h is the plate thickness, D = Eh3/12(1 — v?) is the
bending stiffness, p is a reference transversal pressure and A is a scalar load
parameter. Often, the external loading is defined through the boundary
conditions, which will not be detailed here to save space. The classical bracket
operator, which is related to the Gaussian curvature, is defined by
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The Asymptotic Numerical Method aims at finding solution paths in the

space generated by {w(z,y), f(z,y),\} and these paths are represented by
Taylor series with respect to a path parameter called "a” :

[bv C] =

’U)(I'7 y) N 'LUK(IE, y)
A K=0 Ak

In the practice, the initial point of the curve {wy(z,y), fo(z,y), Ao} is assumed
to be known and of course the series is truncated at a finite order N. Many
path parameters could be chosen and a complete discussion may be found
in [29]. The most used path parameter, inspired by the famous arc-length
continuation method [2], leads to a very robust continuation procedure. It is
given by

a = {(w— wp,wy) + <f — fo, fiy + (A= Ao) M1 (4)

where the bilinear form (.,.) can be defined in various ways. ANM relies on
a numerical calculation of the terms of Taylor series (3). With account of
the series (3), the system (1) becomes a Taylor series with respect to a and
all the terms of this series can be set to zero. At the order K = 1, one gets a
linear system satisfied by {w1(z,v), fi(z,y), A1} and that is nothing but that
the tangent system:

DA?*wy — [f1, wo] — [fo, w1] = Aip
ELhAQﬁ + [wo, wq] =0 (5)

(wi,wi) + (fr, fi) + AT =1

Note nevertheless that the last equation defining the path parameter is scalar,
but not linear and it will be adressed separately. At the generic order K,
the unknowns {wg (z,v), fx(x,y), Ak } are solutions of another linear system
involving the same linear operator as in (5):



DA*wie — [fre, wo] — [fo, wi] = Axp + g
A i + [wo, wie] = hig (6)

(i, wr) + (fr, [1) + Axkd =0

where the right-hand-sides are functions of the unknowns at the previous
orders:

K-1
1

9K = Z[fmwK W, b = 5 ;[wmwf(—k]/?
Note that the equations (5)(6) can be solved in a recursive manner.

The solution {w;(z,y), fi(x,y)} of (5) is uniquely defined, when it is
completed by consistent boundary conditions, and it depends linearly on Ay
that is unknown at this level. Hence, this solution can be written in the form
wi(z,y) = Mw(z,y), fi(z,y) = A\ f(z,y), where {w(z,y), f(x,y)} is solution
of the following system:

DA% — [f,wo] — [fo, 0] =
. (7)
ﬁAzf + [’UJO ZZ’] =0
As for the solution of the problem (6) at the generlc order K > 2, it can
be expressed as wx = Agth + w, fx = A f + A where {w?, } is also
solution of a linear problem:

DA2wit — [, wo] — [fo, w] = g

AR+ lwo, wif] = hi
Hence, the ANM-procedure leads to a family of linear systems with vari-
able coefficients (7)(8). This procedure does not differ from the one used
in previous ANM papers, where these tangent problems were discretized by

finite elements. In the present paper, the systems (7)(8) will be solved by
the Taylor Meshless Method.

(8)

3. Taylor series in space (TMM)

In this part, the Taylor Meshless Method (TMM) is used to solve the
lincar systems with variable coefficients (7)(8). The principle of TMM is to
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expand the unknown fields in Taylor series and to solve the PDEs in the
sense of Taylor series [13]. In [26], the corresponding series were computed
with the help of Automatic Differentiation (AD). Here, one takes advantage
of the algebraic simplicity of the equations to establish explicitly the needed
recurrence formulae, what can avoid additional computation costs due to
AD. The two unknowns of (7) are approximated by Taylor series truncated
at the order P:

(remt =S Somo-w{p) o

so that the discrete unknowns are the coefficients w;;, f,] Of course these
Taylor coefficients are related to derivatives. The systems (8) are solved in
the same manner.

The equations are also expanded into series up to the order P—4 (because
we deal with fourth order PDEs). For instance the bending equation in (7)
is approximated by

D(N*w)i; — [f,woliy = [fo, @)y =pij,  1<i+j<P—4 (10)
Let us now focus on the four Taylor coefficients appearing in the previous

equation (10) that combine derivatives and products. The computation of
the Taylor coefficients of the bilaplacian is obvious

(A%0);; = (i+4)(+3)(i+2)(i + 1)abiya,
+ 20+ 2)(i +1)(j +2)(J + DWigo,j42
+ G+ +3)G+2)(J + V)i ja (11)

as well as the tensor of the second derivatives

82w/8x2 (Z + 2)(7, + ].)’LZJH_QJ
0% /Oy =9 (+2)(J+ Dy (12)
0% /Oy ij (i + 1)+ Dwita41

Next, the bracket operator in (10)(2) involves simple products whose deriva-
tives are deduced by using the following formula

i g
=SS Gk (13)

k=0 [=0
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As for the transverse force p, its derivatives are straightforward when it is
constant or linear and they can be obtained by AD in other cases.

A recurrence process is easily deduced from the previous formulae (10)(11)
(12)(13), which permits to build a particular solution as well as the whole
family of solutions of the associated homogeneous system, i.e. one polyno-
mial {P¥(x,y), P/(z,y)} and 8P — 4 polynomials {P¥(z,y), P! (x,y)} for
the kernel, see for instance [22] for more details about this computation pro-
cedure. Finally the general solution of each problem (7) or (8) is computed
in the form

wiey) | _f Py | N, Piey)

This method to solve the linearized PDEs (7)(8) is the original point of the
present paper. To complete it, one has to apply the boundary conditions,
what can be done with Lagrange multipliers as in [21] or by least-square
collocation as in [13][22]. Such piecewise resolutions are quite necessary to
solve generic boundary value problems and this will be illustrated in the next
section.

The auxiliary problems (7)(8) being solved, one can compute all the terms
of the ANM-series (3), after having obtained those of the path parameter Ag.
The latter are easily computed from the definition (4) of the path parameter
exactly as in the ANM-literature [3]. Last, we have to define the range of
validity of the series (3). In conformity with the basic ANM algorithm, one
requires that the last term of the series is small with respect to the first one:

PRV T
Amaz = {5|| {fv,xn} ||} (15)

This leads to adaptive step lengths and this is very important when deal-
ing with bifurcation problems. Indeed, as underlined in [5], the radius of
convergence is generally governed by the distance to the nearest bifurcation
point. That is why one observes an accumulation of small steps close to the
bifurcation: hence, such an accumulation leads to a simple bifurcation cri-
terion by sight. Moreover ANM permits to compute a response curve with
a very small perturbation force: one just has to choose a sufficiently small
accuracy parameter 9.



4. Numerical application and last comments

In this paper, the method described in the sections 2 and 3 will be assessed
with a single example. The difficulty in view of applications to non-linear
plate models lies in the handling of the Taylor series described in the previous
sections, the account of boundary and interface conditions being about the
same as in foregoing papers [21] [22]. Let us consider a square plate, the
domain is [—a/2,a/2] x [—a/2,a/2], the data are written in non-dimensional
form: Young’s modulus £ = 1, Poisson’s ratio v = 0.3 , thickness h = 1,

width @ = 2. The loading is a biaxial compression: 9%*f/On* = —ho,.
The out-of-plane boundary conditions correspond to a simple support w =
9w /on? = 0.

Let us begin with a single domain approach. The parameters of the al-
gorithm are the ANM-degree N = 20, the spatial degree P = 20, what
corresponds to 156 degrees of freedom and the accuracy parameter § = 108
in (15), whose smallness is chosen to ensure the path following for a quasi
perfect bifurcation. The boundary conditions are accounted by least-square
collocation as in [22], with 240 collocation points. This buckling problem
is solved by the method presented here and compared with finite element
calculations done with the well established code ANSYS. In both calcula-
tions, a small symmetry breaking is needed to compute a bifurcating branch
by path following. In ANSYS, this is done by a small modal geometric im-
perfection measured by the parameter wj,,,/h called ”scaling factor”. In the
ANM/TMM-calculation, the small perturbation will be a uniform transversal
pressure measured in dimensionless terms by p = pa’/Eh* = 16p.

The obtained bifurcation plots are presented in figures 1 and 2. They are
consistent with the analytic bifurcation stress o, = 472D/L*h ~ 3.615239.
Within ANSYS, we use a scaling factor of 10™* or 107% and, within the
present method, a transversal pressure p = 107%. ANSYS was not able
to compute the bifurcating curve with a smaller imperfection, even if we
suspect that some experts in non-linear calculation should be able to do such
a calculation with a commercial package. Clearly the new technique allowed
us to compute the bifurcation plot with a much smaller imperfection, simply
by choosing a sufficiently large ANM degree and a sufficiently small accuracy
parameter 0.

Next one discusses the convergence with the number of subdomains (h-
convergence) and with the degree P of the polynomials (p-convergence). The
interface and boundary conditions are accounted by the least-square collo-
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Figure 1: Effect of small perturbations on the buckling of a simply supported square
plate. The ANM-TMM algorithm is compared with a commercial finite element code.
On the ANM-TMM curve, each point corresponds to one ANM step.The non-dimensional
quantities are w = w/h and 7, = o.a*/Eh?.

cation method in a similar way as [22] [26]. One looks at the value of the
bifurcation stress 7,. One has applied degrees P = 5,8,10 and a number
of subdomains varying from 1 to 16. The results are reported in Figure 3.
Clearly the method converges with the degree and/or with the number of
subdomains, but good results (i.e. error less than 1073) are obtained with 9
subdomains and P > 8 or with 4 subdomains and P > 10.

So, the new method is very efficient to solve a quasi perfect bifurcation
response and this does not require a strong numerical expertise. It seems
possible to combine Taylor series in space and in loading parameter, what
can be easily extended to other hyperelastic models or to newtonian fluids.
This double Taylor series leads to an efficient path following technique. This
should be very interesting, for instance in the study of film-substrate systems
[30], where large domains are to be considered, in which case the model order
reduction by TMM would be very useful.
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Figure 2: A zoom of Figure 1. One sees that the ANM-TMM method permits to compute
easily quasi-perfect bifurcations. On the ANM-TMM curve, each point corresponds to one

ANM step.
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