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a b s t r a c t

This paper presents a new sliding mesh technique for the computation of unsteady viscous flows in the
presence of rotating bodies. The compressible Euler and incompressible Navier–Stokes equations are
solved using a higher-order (>2) finite volume method on unstructured grids. A sliding mesh approach
is employed at the interface between computational grids in relative motion. In order to prevent loss
of accuracy, two distinct families of higher-order sliding mesh interfaces are developed. These
approaches fit naturally in a high-order finite volume framework. To this end, Moving Least Squares
(MLS) approximants are used for the transmission of the information from one grid to another. A partic-
ular attention is paid for the study of the accuracy and conservation properties of the numerical scheme
for static and rotating grids. The capabilities of the present solver to compute complex unsteady vortical
flow motions created by rotating geometries are illustrated on a cross-flow configuration.

1. Introduction

Flow unsteadiness and noise generation are currently among
the most important limitations for the design of turbomachinery
and renewable energy devices. These configurations involve com-
plex unsteady flow patterns like vortex shedding, stalled flows,
blade wake interactions which are, in general, due to the presence
of moving or oscillating bodies. On one hand, one must employ
high-order numerical methods to accurately compute both the
unsteady flow field and the aeroacoustic field. On the other hand,
dedicated techniques must be employed to carefully deal with
the interface between static and moving grids in an unsteady flow
framework. Such issue can be addressed using several numerical
approaches, among others, the phase-lagged periodic boundary
conditions for rotor–stator interaction in axial compressor
[10,16,17], the body-fitted approach in an Arbitrary Lagrangian
Eulerian (ALE) setting, Cartesian grid methods based on the
immersed-boundary [40] or on the cut cell methods [3,54] and
the non-boundary conforming sliding mesh approach. The later is
attractive due to its ability to capture flow unsteadiness without
requiring the use of a filtering procedure nor computationally

expensive re-meshing strategies. The sliding mesh method was
successfully employed by Rai [42,43] for the computation of
rotor–stator interactions in a supersonic flow. This patched-grid
technique allows relative sliding of one mesh adjacent to another
static or moving mesh. A three steps explicit zonal scheme, which
preserve flux conservation at the interface, is proposed in [41].
More recently, Gourdain et al. [15] employed the sliding mesh
approach for the simulation of large-scale industrial flows in mul-
tistage compressors. In a comparative study between Chimera and
sliding mesh techniques for unsteady simulations of counter rotat-
ing open-rotors, Francois et al. [14] shown that these methods give
similar accuracy but the later requires much less memory than the
Chimera approach. Note also that the sliding mesh algorithm was
used by Steijl and Barakos [46] for the computational fluid
dynamic analysis of helicopter rotor-fuselage aerodynamics.

Nowadays, sliding mesh techniques are commonly used to
compute non-axisymmetrical unsteady flow fields and corre-
sponding aerodynamic performances of cross-flow fans [33,49]
and wind turbines [18,20,21,23,26,19,22,1]. In particular,
McNaughton et al. [31] obtained a good agreement between cou-
pled LES-sliding interfaces for thrust and power predictions of a
tidal-stream turbine. As far as aeroacoustic computations are con-
cerned, Moon et al. [33] developed a time-accurate viscous flow
solver for the prediction of unsteady flow characteristics and the
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associated aeroacoustic blade tonal noise of a cross flow impeller.
The sliding mesh approach, which was implemented in an
unstructured finite-volume solver on triangular meshes, was able
to correctly predict the oscillations of the eccentric vortex due to
the mismatch of blade incidence angles and the recirculation
bubbles around the blades.

However, most of the sliding mesh methods proposed in the lit-
erature belong to the family of low order interpolation schemes.
Therefore they cannot be used in conjunction with higher-order
numerical schemes without depreciating the overall accuracy of
the numerical methods.

To the authors knowledge, few studies addressed such problem.
A high order (order P 3) h=p Discontinuous Galerkin method with
sliding mesh capabilities was recently proposed by Ferrer and
Willden [12] for the computation of the unsteady incompressible
flow field of a three bladed cross-flow turbine. They have
successfully obtained spectral convergence rate when solving the
incompressible Navier–Stokes equations on non-conformal grids.
In [2] a mesh moving technique for sliding interfaces is presented
for the numerical simulation of a wind turbine with a FEM-based
ALE-VMS (variational multiscale formulation written in the
arbitrary Lagrangian–Eulerian frame) formulation.

In this work, we intent to develop higher-order sliding mesh
interface for the solution of transient flows on mixed rotating
and static computational domains. To this end, we consider a
high-resolution finite volume method based on Moving Least
Squares (MLS) reconstructions.

The theoretical fundamentals of the used finite volume method
(FV-MLS) were presented in [9,24,36,35,44] and references therein.
A first application of FV-MLS for turbomachinery aeroacoustics was
presented in [38]. In those works, artificial acoustic sources were
propagated using the Linearized Euler Equations. Only stator
blades and rotating sources into the propagating medium were
considered. This first tentative permits to study the attenuation
due to the acoustic screen effect of stator blades. The next step is
to introduce the rotating part into the propagation medium by
the use of sliding mesh method coupled to FV-MLS solver. In this
work we present a sliding mesh model based on the use of
Moving Least Squares (MLS) approximants [25]. It is used with a
high-order (>2) finite volume method that computes the deriva-
tives of the Taylor reconstruction inside each control volume using
MLS approximants [9,24,36,35]. Thus, this new sliding mesh model
fits naturally in a high-order finite volume framework for the com-
putation of acoustic wave propagation into turbomachinery. We
present two different approaches based on MLS approximants for
the transmission of information from one grid to another. An
interface-type sliding mesh approach, and a new methodology that
does not require the computation of intersections.

The paper is organized as follows. In Section 2 the governing
equations are written. In Section 3, the basic finite volume formu-
lation is presented. Moving Least Squares (MLS) approximation
and the FV-MLS method are briefly described in Section 4. The
new MLS-based sliding-mesh technique is presented in Section 5.
Then, Section 6 is devoted to numerical simulations. Finally, the
conclusions are drawn.

2. Governing equations and numerical methods

In order to account the relative mesh motion of one mesh with
respect to other, it is advantageous to write the two dimensional
compressible Navier–Stokes equations in the Arbitrary
Lagrangian–Eulerian (ALE) form,
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For compressible flows the conservatives variables are defined
as
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and the inviscid fluxes are given by

Fx ¼

qvx � qvmesh
x

qv2
x þ p� qvxvmesh

x

qvxvy � qvyvmesh
x

qvxH � qEvmesh
x

0BBBB@
1CCCCA Fy ¼

qvy � qvmesh
y

qvxvy � qvxvmesh
y

qv2
y þ p� qvyvmesh

y

qvyH � qEvmesh
y

0BBBBB@

1CCCCCA
ð3Þ

where the ðumesh;vmeshÞ is the mesh velocity. The viscous fluxes FV

are given by the following expression,
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The viscous stresses are modeled as
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For incompressible flows, the assumption of incompressibility
lead us to a system of equations with the following variables

Uðx; tÞ ¼
0
vx

vy
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The inviscid fluxes are
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The viscous fluxes are given by
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3. Basic finite volume formulation

The basic finite volume discretization stems from the integral
form of Eq. (1) over a control volume XIZ

XI
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Using the divergence theorem for the viscous and inviscid
fluxes the following expression is obtained
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where CI is the control volume perimeter and n ¼ ðnx;nyÞT is the
unitary exterior normal of the contour.

Applying Gauss quadrature to evaluate the integral of the invis-
cid and viscous flux terms produces the following expression
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where AI is the area of cell I, U I represents the average value of U
over the cell I;Nf is the number of faces of the control volume, NG

represents the number of quadrature points,W ig is the correspond-
ing quadrature weight for the quadrature point at cell faces,
denoted with subscript ig, and n̂j is the unitary normal n times
the area of the face j. It has been shown by Chassaing et al. in [5]
that when Gauss-based quadrature rules are used the formal order
of accuracy of the integration procedure is almost recovered in spite
of the non-polynomial form of MLS approximations.

It is critical in the development of robust high order schemes for
the Navier–Stokes equations to acknowledge the distinct nature of
the inviscid and viscous fluxes [9]. The former is of hyperbolic
character, whereas the later is of elliptic character.

The inviscid fluxes are discretized using any suitable numerical
fluxes, that is based on the right (+) and left (�) Riemann states of
cell edge. In order to solve the Riemann problem the variables at
the cell centroid at both sides of the edge need to be approximated
to the integration point at the edge, obtaining the states Uþ and
U�. The viscous fluxes are evaluated directly at integration points
using a continuous approach.

A schematic representation of the reconstructed variables of the
inviscid fluxes is shown in Fig. 1.

The solution procedure of the compressible and incompressible
set of equations is different. The details can be found in [9,24] for
the compressible and [44] for the incompressible Navier Stokes
equations.

4. Moving Least-Squares reproducing kernel approximations

In this section we introduce briefly the Moving Least Squares
(MLS) approach [25] that is the key ingredient of the new sliding
mesh approaches presented in this paper.

We refer the interested reader to [25] for a complete description
of the method.

For the sake of brevity, we only recall that the MLS approxima-
tion of a given function uðxÞ is

buðxÞ ¼Xnx

j¼1

NjðxÞuj ð12Þ

The approximation is written in terms of the MLS shape func-
tions NT . In order to compute the MLS shape functions we need a
set of neighboring points, nx, where the variable uj is known.

The definition of the set of neighbors is a very important point.
The stencil should be as compact as possible, and the selection of
neighbors must be suitable for general grids. A typical stencil is
shown in Fig. 2. It is important to remark that MLS stencils are
typically centered around the node. This feature avoids the spatial
bias which is often found in patch-based piece-wise polynomial
approximations.

The MLS shape functions NT can be obtained as

NTðxÞ ¼ pTðxÞM�1ðxÞPXx WðxÞ ð13Þ

where pTðxÞ is the basis functions, PXx is defined as a matrix where
the basis functions are evaluated at each point of the stencil, WðxÞ is
a kernel or smoothing function and uXx contains the nx pointwise
values of the function to be reproduced. The moment matrix MðxÞ
is obtained through the minimization of an error functional [9]
and is defined as

MðxÞ ¼ PXx WðxÞPT
Xx

ð14Þ

The order of MLS approximations is determined by the polyno-
mial basis used in the construction of MLS shape functions. Here
we use cubic polynomial basis [8,5].

The kernel function WðxÞ plays a very important role in the MLS
method. It is used to weight the different points that take place in
the approximation. A wide variety of kernel functions are described
in the literature [30,28,29,34], most of them being spline or expo-
nential functions. More details can be found in [35]. In this work
the exponential kernel has been used,

Wjðxj; x; sxÞ ¼
e�

d
cð Þ2 � e�

dm
cð Þ

2

1� e�
dm

cð Þ
2 ð15Þ

for j ¼ 1; . . . ;nx, where d ¼ xj � x
�� ��;dm ¼ 2 max xj � x

�� ��� �
.

Fig. 1. Reconstructed variables used to evaluate the inviscid fluxes at the edges of
the control volume XI .

Fig. 2. Typical stencil for interior cells used for cubic MLS approximation centered
at cell centroid I.



In Eq. (15) dm is the smoothing length, nx is the number of neigh-
bors and x is the reference point where the compact support is cen-
tered, the coefficient c is defined by c ¼ dm

sx
and sx is the shape

parameter of the kernel. This parameter plays defines the kernel
properties and therefore, the properties of the numerical scheme
obtained. In Fig. 3 the 1D exponential kernel is plotted for different
values of the shape parameter sx. As it will be shown later, this
parameter plays an important role when shock waves are present
in the solution. In this work the shape parameter is kept constant
as sx ¼ 4:5 for interior cells [35] and the effect of sx for interface
cells will be presented in Section 5.2.2. As far as 2-D applications
are concerned, a multidimensional kernel can be obtained by
means of the product of 1D kernels. For instance the 2D exponential
kernel is defined by the following expression

Wjðxj; yj; x; y; sx; syÞ ¼Wjðxj; x; sxÞWjðyj; y; syÞ ð16Þ

The high order approximate derivatives of the field variables
uðxÞ can be expressed in terms of the derivatives of the MLS shape
function. So the n-th derivative is defined as

@nbu
@xn
¼
Xnx

j¼1

@nNjðxÞ
@xn

uj ð17Þ

We refer the interested reader to [5,24] for a complete description
of the computation of MLS derivatives.

4.1. FV-MLS method

The FV-MLS method is a high-order finite volume method based
on MLS approximations. It has been used in this work for the
resolution of the set of Eq. (1). We refer to the interested reader
to [9,24,44] for a complete description of the method. Here we only
focus on the use of MLS for the development of high-order
sliding-mesh techniques.

The construction of the stencil is of crucial importance in the
context of high-order finite volume methods on unstructured grids
[9,39,6]. The number of control volumes must be a compromise
between affordable computational cost and solution accuracy
[24,35].

The local stencil is constructed by successfully adding neighbor
elements sharing a face with elements belonging to the previous
layer (Fig. 2). The minimum size of the stencil is dictated by
ðpþ 1Þðpþ 2Þ=2 grid nodes for a pth order polynomial basis
[9,39]. However, the size of the supporting nodes may be increased
in practice in order to enforce the robustness of the numerical
method [9].

It is important to remark that for a stationary mesh the con-
struction of the discretization stencil and the computation of the
MLS shape function derivatives are done as a preprocessing step
prior to the iterative procedure. As a consequence, the extra
computational time relative to the high-order FV-MLS scheme
compared to second order scheme is mainly due to the loop over
the quadrature points required for the high-order flux integration.
If the mesh is not stationary, for example when using the sliding
mesh approach, the MLS shape functions need to be recomputed
but only in those elements where the stencil has been modified
due to mesh displacement.

5. MLS-based sliding mesh

The sliding mesh technique requires two meshed zones in
relative motion between them. Even though the methodology
presented here is valid for any pair of grids in relative motion,
for clarity we focus on the case of one moving grid sliding over
one fixed grid. This is, for example, the case of turbomachinery,
where one of the grids is related to the stator (fixed) and the other
is related to the rotor (moving). The sliding takes place on a plane
that is called interface. Fig. 4 schematically shows this idea. Note
that in practice, the interface is composed by two coincident edges.
One of them belongs to the fixed grid and the other to the moving
mesh.

As the moving grid slides over the fixed grid, the mesh is no
longer conformal. Note also that the movement of the mesh is
not continuous, since each time step the moving region is dis-
placed a small distance.

In this work we investigate the use of MLS approximations to
compute the values required at the interface for the computation
of the fluxes in Eq. (11). Hereafter, we call intersection nodes/cells
to nodes/cells placed at interface between grids in relative motion
as shown in Fig. 4. First, the identification of the set of neighbors
for each of the intersection cells, namely the computational stencil,
must be performed in order to evaluate the MLS-shape functions.
To this end, both full stencil and half stencil are considered. The
former takes neighboring cells from both grids as shown by shaded
triangles in Fig. 5. The latter is simply made with cells of the same
grid.

Second, we must develop efficient and robust MLS-based sliding
mesh interfaces for the transmission of information for one grid to
another. The proposed different techniques belong to the two fol-
lowing sliding mesh families, namely the intersection-based and
the interface-halo-cell approaches.

Therefore, the three high-order approaches, which are pre-
sented in Sections 5.1 and 5.2, will be referred hereafter as

1. Full Stencil with Intersections (FS Intersections)
2. Half Stencil with Intersections (HS Intersections)
3. Full Stencil with Halo cell (FS Halo)

5.1. MLS-based sliding mesh with intersections

This approach requires the computation of intersections at the
interface. The novelty of this approach is the use of MLS to obtain
a high-order accurate reconstruction. We call main interface to the
interface edge that is part of the moving mesh, and secondary inter-
face to the interface edge that belongs to the fixed mesh (see Fig. 6).

First, we identify the main interface edges by performing a loop
over the edges of the moving mesh. If one edge is labeled as inter-
face edge, the secondary interface is straightforwardly determined.
Once the main and secondary interfaces are determined, intersec-
tion nodes can be found.

Fig. 3. Representation of the 1D exponential kernel for different values of the shape
parameter sx .



The exchange of information between the moving domain and
the fixed one is performed at both main and secondary interfaces.
Since the grid is not conformal at the interface between moving
and fixed domains, the corresponding numerical fluxes must be
computed for each cells sharing the face of the neighboring inter-
face cell. This procedure is illustrated in Fig. 7 where the flux
exchange between cells I=J1 and cells I=J2 must be computed.

5.1.1. Full stencil with intersections (FS Intersections)
In the full stencil approach, the stencil of cell I is built using the

union of the stencils of the cell I and all the fixed elements of the
secondary interface. Therefore, the total stencil of cell I is com-
puted by merging stencils of cell I and those cells having an inter-
face edge coincident with cell I (shaded in orange in Fig. 5). The
final stencil of cell I is shown in Fig. 8.

Numerical fluxes at interface are computed using Taylor recon-
structions at integration points of each edge. This procedure must
be performed each time step. In problems related with rotor/stator

configurations, the location of interface and the numeration of the
cells next to it in both domains, fixed and moving is known a priori.
The computational cost associated to the evaluation of MLS shape
functions at each time-steps is limited since the cells requiring
re-computation of the MLS shape functions are those near the
interface. This additional cost greatly depends on the grid topology
and the level of complexity of the configuration. Thus, the compu-
tational times are increased by a maximum factor of 4% for the
numerical examples presented in this paper.

5.1.2. Half stencil with intersections (HS Intersections)
In order to avoid both the search of neighbors and the compu-

tation of the MLS shape functions at each time step, we propose to
employ a biased stencil, taking only into account cells from the grid
in which the cell is placed. This procedure is depicted in Fig. 9.
Obviously, this half-stencil approach is expected to be less accurate
than its full stencil counterpart since the computational stencil of
cell I is not centered.

sliding mesh zone

 t + Δt t 

Fig. 4. Schematic illustration of the sliding mesh concept. The top zone slides over the fixed grid. Note the non-conformal grid.

Fig. 5. Schematic illustration of stencil for MLS interpolation at interface.

Fig. 6. Schematic representation of intersection nodes.



Fig. 7. Schematic representation of the flux exchange for the MLS-based sliding mesh with intersections approach.

Fig. 8. Schematic representation of the Full Stencil approach.

Fig. 9. Schematic representation of the Half Stencil approach.



5.2. Interface-halo-cell sliding mesh

The need for computation of face/edge intersections is one of
the drawbacks of previous approach. It therefore introduces addi-
tional complexity in the coding and also in the computing time.
Here, the Interface-halo-cell stencil is introduced as an alternative
to the intersection-based stencils described previously. Let us con-
sider a cell I. We create a halo cell in front of this cell, as it is shown
in Fig. 10. We call PH its centroid and APH the area of the halo cell.
Note that the halo cell is a specular image of cell I. In case of taking
into account the curvature of the interface, the areas of I and APH

will no longer be the same. The value of the variables at PH is
obtained as

UPH ¼
1

APH

Z
UdA ¼ 1

APH

Z Xnx

j¼1

NjðxPH ÞUjdA ð18Þ

The value U� at the integration point is then computed by a Taylor
approximation of U from PH and then we compute the flux at cell I
as usual. This is schematically presented in Fig. 10.

5.2.1. Halo cell computational stencil
In order to compute the value of the variables U at the centroid

PH of the halo cell as in (18) we need to compute the MLS shape
function NðxPH Þ at this point. We also compute the derivatives of
the shape function for the Taylor reconstruction of the value of
the variables at the interface U�. To this end, we need to obtain
the stencils for cells I and PH with cells from both regions (as
shown in Fig. 11). Once the stencils are defined, the computation
of the MLS shape functions is performed according Eq. (13).

Note that, similar to the intersection-based sliding mesh inter-
faces, the stencil and shape functions need to be updated each time
that the grid moves, but no intersections have to be computed.

The application of the halo cell methodology with other
cell-centered high-order technologies is possible. For example, it
could be applied to WENO schemes like those proposed in
[48,51]. In this case, we need to compute the reconstruction poly-
nomial for the halo cell to define the left/right state of the Riemann
problem. A possibility to perform this computation is to define the
set of stencils required for the WENO approach by using the most
suitable elements from the stencils of the cells overlapped to the
halo cell.

5.2.2. Conservation properties of Halo cell interfaces
Although the halo cell approach is not conservative by nature,

we aim in this section to demonstrate that the conservation error
is within the same order of magnitude than the error in variables,
and the convergence order of the conservation error is at least the
same than that of the numerical scheme.

To this end, we study the behavior of the Interface-halo-cell
sliding mesh formulation when a steady shock is located at the
interface. This case is taken from [53]. The flow is assumed to tra-
vel from left to right. The conditions on the left and right side of the
shock wave are

qL ¼ 1; qR ¼ 1:8621 ð19Þ
uL ¼ 1:5; uR ¼ 0:8055
pL ¼ 0:71429; pR ¼ 1:7559

The full computational domain is 0 6 x 6 10 and it is dis-
cretized in two regions of 25 elements each. The interface between
the two regions is located at x ¼ 5:0.

In Fig. 12 we show the results obtained with a single grid for the
whole domain and with two grids using the halo cell formulation
with full stencil. It is observed that when the parameter of the ker-
nel is less than sx ¼ 6 a spurious solution is obtained. If the kernel
parameter is set to sx ¼ 6 for the interface cells, the shock is pre-
served, as seen in Fig. 12(b). The reason of this behavior lies on
the nature of the interpolation. As seen in Fig. 3, when sx < 6 the
shape of the kernel is not close enough to the delta function [35],
and the value of the variables at the cells of the stencil far from
the shock introduce an oscillation that propagates downstream.

In the second test we continue to assess the performance of the
Interface-halo-cell sliding mesh formulation. We present an
unsteady shock that moves through the interface. This test case
corresponds to the Test 1 of [50]. The initial states are

qL ¼ 1:0; qR ¼ 0:125 ð20Þ
uL ¼ 0:75; uR ¼ 0:0
pL ¼ 1:0; pR ¼ 0:1

The domain ½0;1� is discretized in two domains with 200 computing
cells each and the interface is located at x ¼ 0:5. Fig. 13 presents a
comparison of the density profile obtained with a single grid and
with two different grids with the interface located at x ¼ 0:5.

The comparison presented in Fig. 13 shows an excellent agree-
ment between the single grid solution and the halo-cell interface

Fig. 10. Schematic representation of Interface-halo-cell sliding mesh. Note that the flux can be computed without the definition of intersections.



solution. Note that there is no any visible numerical artifacts at the
interface (x ¼ 0:5) when the halo cell formulation with full stencil
and sx ¼ 6 is used.

6. Numerical examples

This section presents numerical results for several test cases
aimed at assessing the accuracy and efficiency of the proposed
method for both steady and unsteady flow problems. The first
three test cases study the accuracy and the conservation property
of the method for non conformal meshes. The last example shows
the application of the method to the solution of the incompressible
Navier–Stokes equations.

6.1. Ringleb flow

In this 2D example we study the rate of convergence and the
conservation error for the different sliding mesh approaches
derived in Section 5. This test case is widely used as a bench-
mark for compressible codes [7,36]. The flow is obtained as a
solution of the hodograph equation. The transformation

Fig. 11. Schematic representation of Interface-halo-cell sliding mesh with full stencil.
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Fig. 12. (a) Time evolution of the numerical results of the 1D steady shock when the FS Halo cell approach is employed with sx ¼ 4:5. The interface is located at x ¼ 5. A
numerical oscillation propagation can be observed. After 160 steps the stationary state is reached but the shock is not preserved. (b) Comparison of the numerical results of
the 1D steady shock between the FS Halo cell approach with sx ¼ 6:0 and when a single mesh grid is employed to discretize the domain. No discrepancies are observed.

0 0.2 0.4 0.6 0.8 10.5
0

0.2

0.4

0.6

0.8

1

Position

D
en

si
ty

Exact solution
FS Halo sx=6
Single grid

INTERFACE

Fig. 13. Numerical solutions at t ¼ 0:2 for the 1D Unsteady Shock with 3rd order
FV-MLS method. The interface is located at x ¼ 0:5.



equations between the Cartesian variables ðx; yÞ and the hodo-
graph variables ðV ; #Þ are described in [7]. The square domain
X ¼ ½�1:15;�0:75�� ½0:15;0:55� was discretized using four differ-
ent unstructured mesh with non conformality at the interface of
580, 2270, 9044 and 35,918 triangular elements. Fig. 14 shows
the schematic description of the problem and the coarsest grid.
The analytical solution is prescribed at the boundaries. In order
to check the formal order of accuracy of our numerical solver,
we compute the L2 norms of the entropy, total velocity and
energy errors as

Lent
2 ¼
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The conservation error is evaluated as the difference of sum of
the fluxes from both sides of the interface

Fig. 14. (a) Geometry description of Ringleb flow problem. (b) Unstructured mesh of 580 triangles. Note the non-conformal mesh at the interface.

Table 1
Accuracy orders, conservation error and L2 norms of entropy error, total velocity and energy for the Ringleb flow test case for the third-order FV-MLS scheme employing the three
different approaches described in this article on non-conformal meshes: Full Stencil Intersections (FSI), Half Stencil Intersections (HSI) and Full Stencil Halo cell (FSH).

Method Mesh Entropy error Order Conservation error Order Velocity error Order Energy error Order

Third order x ¼ 0 rad/s
FSI 580 8:44� 10�8 – – – 1:44� 10�7 – 2:16� 10�7 –

2270 9:05� 10�9 3.27 – – 1:75� 10�8 3.09 2:40� 10�8 3.22

9044 1:14� 10�9 3.00 – – 2:24� 10�9 2.98 2:94� 10�9 3.04

HSI 580 9:19� 10�8 – – – 1:54� 10�7 – 2:06� 10�7 –

2270 9:83� 10�9 3.28 – – 1:83� 10�8 3.13 2:38� 10�8 3.16

9044 1:27� 10�9 2.97 – – 2:39� 10�9 2.94 3:00� 10�9 3.00

FSH 580 9:19� 10�8 – 2:62� 10�8 – 1:47� 10�7 – 1:94� 10�7 –

2270 9:29� 10�9 3.36 2:03� 10�9 3.75 1:82� 10�8 3.06 2:32� 10�8 3.12

9044 1:19� 10�9 2.98 2:83� 10�10 2.85 2:34� 10�9 2.97 2:92� 10�9 3.00

Table 2
Accuracy orders, conservation error and L2 norms of entropy error, total velocity and energy for the Ringleb flow test case for the fourth-order FV-MLS scheme employing the
three different approaches described in this article on non-conformal meshes: Full Stencil Intersections (FSI), Half Stencil Intersections (HSI) and Full Stencil Halo cell (FSH).

Method Mesh Entropy error Order Conservation error Order Velocity error Order Energy error Order

Fourth order x ¼ 0 rad/s
FSI 580 3:76� 10�9 – – – 8:12� 10�9 – 1:39� 10�8 –

2270 2:72� 10�10 3.85 – – 5:61� 10�10 3.92 8:32� 10�10 4.13

9044 1:80� 10�11 3.93 – – 3:72� 10�11 3.93 6:07� 10�11 3.79

HSI 580 1:21� 10�8 – – – 1:76� 10�8 – 2:27� 10�8 –

2270 7:25� 10�10 4.12 – – 1:12� 10�9 4.04 1:47� 10�9 4.01

9044 4:00� 10�11 4.16 – – 6:52� 10�11 4.11 9:28� 10�11 3.99

FSH 580 4:16� 10�9 – 3:48� 10�9 – 8:31� 10�9 – 1:43� 10�8 –

2270 2:66� 10�10 4.03 2:97� 10�11 6.98 5:43� 10�10 4.00 8:58� 10�10 4.12

9044 1:76� 10�11 3.93 2:60� 10�12 3.53 3:66� 10�11 3.90 6:48� 10�11 3.74
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1
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where CInterface denotes the perimeter of the interface, F1
e the convec-

tive flux obtained at the interface of region 1 and F2
e is obtained at

the interface of region 2.
Tables 1–4 present the L2 norm of the entropy error, the conser-

vation error and corresponding orders of accuracy for 3rd and 4th
order accurate FV-MLS schemes. For validation purpose, we first
investigate the results of sliding mesh computations on non con-
formal static grids (Tables 1 and 2). The three methods show the
expected order of accuracy for the L2 norm of the entropy,total
velocity and energy errors. For the third-order scheme all the three
approaches give similar results in terms of accuracy, whereas for
the fourth-order scheme the HS-Intersection approach is clearly
less accurate. The conservation error of the halo-cell approach is
below the entropy error, and it keeps the expected order of
convergence.

These remarks are confirmed by the plot of the L2 norm of
entropy errors as a function of different mesh resolutions
(Fig. 15). All sliding mesh approaches give very similar results for
the 3rd order scheme and the less accurate results of
HS-Intersection method are clearly visible for 4th order spatial
discretizations.

Next we perform the same analysis with a rotational velocity of
x ¼ 0:01 rad/s. The results are plotted in Tables 3 and 4. Note that
the accuracy of the sliding mesh methods is not depreciated com-
pared to the static case and similar behavior is observed.

6.2. Vortex convection

The second test case corresponds to the unsteady isentropic
vortex convection [45]. In this problem a vortex is convected with
the free stream velocity ðu1;v1Þ through the interface. This prob-
lem has an analytical smooth solution which can be subjected to
obtain the order of the scheme on a unsteady case. The exact solu-
tion is defined as
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¼ u1
a1
� K

2pa1
ŷeað1�r2Þ=2
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¼ 1� K2ðc� 1Þ
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1
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qðx; y; tÞ
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¼ Tðx; y; tÞ
T1

� � 1
c�1

pðx; y; tÞ
p1

¼ Tðx; y; tÞ
T1

� � c
c�1

where x̂ ¼ x� x0 � u1t; ŷ ¼ y� y0 � v1t and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ ŷ2

p
. In

this simulations the chosen parameters are a ¼ 1;q1 ¼ 1;
p1 ¼ 1; ðu1;v1Þ ¼ ð2;2Þ; ðx0; y0Þ ¼ ð�10;�10Þ and K ¼ 5. With this
set of parameters the vortex starts at ðx; yÞ ¼ ð�10;�10Þ and at
t ¼ 5 reach ðx; yÞ ¼ ð0;0Þ.

Fig. 16 shows a schematic description of the problem and an
unstructured mesh of 3884 quadrilateral elements employed in
the error convergence study.

Table 3
Accuracy orders, conservation error and L2 norms of entropy error, total velocity and energy for the Ringleb flow test case with an angular velocity of x ¼ 0:01 rad/s for the third-
order FV-MLS scheme employing the three different approaches described in this article on non-conformal meshes: Full Stencil Intersections (FSI), Half Stencil Intersections (HSI)
and Full Stencil Halo cell (FSH).

Method Mesh Entropy error Order Conservation error Order Velocity error Order Energy error Order

Third order x ¼ 0:01 rad/s
FSI 580 8:10� 10�8 – – – 1:40� 10�7 – 1:86� 10�7 –

2270 8:96� 10�9 3.23 – – 1:72� 10�8 3.08 2:27� 10�8 3.09

9044 1:14� 10�9 2.98 – – 2:24� 10�9 2.95 2:90� 10�9 2.98

HSI 580 8:76� 10�8 – – – 1:51� 10�7 – 1:92� 10�7 –

2270 1:01� 10�8 3.16 – – 1:88� 10�8 3.05 2:32� 10�8 3.10

9044 1:27� 10�9 3.01 – – 2:40� 10�9 2.98 2:92� 10�9 3.00

FSH 580 8:83� 10�8 – 3:46� 10�8 – 1:50� 10�7 – 1:95� 10�7 –

2270 9:53� 10�9 3.36 4:62� 10�9 2.95 1:84� 10�8 3.07 2:36� 10�8 3.10

9044 1:20� 10�9 2.99 3:17� 10�10 3.88 2:42� 10�9 2.94 2:93� 10�9 3.02

Table 4
Accuracy orders, conservation error and L2 norms of entropy error, total velocity and energy for the Ringleb flow test case with an angular velocity of x ¼ 0:01 rad/s for the
fourth-order FV-MLS scheme employing the three different approaches described in this article on non-conformal meshes: Full Stencil Intersections (FSI), Half Stencil
Intersections (HSI) and Full Stencil Halo cell (FSH).

Method Mesh Entropy error Order Conservation error Order Velocity error Order Energy error Order

Fourth order x ¼ 0:01 rad/s
FSI 580 3:61� 10�9 – – – 7:87� 10�9 – 1:29� 10�8 –

2270 2:78� 10�10 3.76 – – 6:03� 10�10 3.77 9:04� 10�10 3.89

9044 1:92� 10�11 3.86 – – 5:57� 10�11 3.45 7:70� 10�11 3.56

HSI 580 1:09� 10�8 – – – 1:63� 10�8 – 2:09� 10�8 –

2270 7:25� 10�10 3.98 – – 1:08� 10�9 3.98 1:39� 10�9 3.97

9044 4:05� 10�11 4.08 – – 8:11� 10�11 3.74 1:06� 10�10 3.73

FSH 580 3:89� 10�9 – 3:73� 10�9 – 7:94� 10�9 – 1:38� 10�8 –

2270 2:85� 10�10 3.83 1:65� 10�10 4.58 5:74� 10�10 3.85 9:94� 10�10 3.86

9044 1:99� 10�11 3.85 1:12� 10�12 3.89 5:35� 10�11 3.43 7:76� 10�11 3.69



First, we obtain the L2 norm of the variables error, conservation
error and corresponding orders of accuracy for the case with
x ¼ 0 rad/s and non-conformal meshes. The results are presented
in Table 5. Formal third order is reached for the variables error
for the three approaches presented in this paper. All methods give
very similar results in terms of accuracy.

In Table 6 the results with x ¼ 1:0 rad/s are showed. It is
observed that with rotation the accuracy decreases but the formal
order of convergence is not affected.

6.3. Acoustic pulse: Influence of the time step

In this example we aim to analyze the influence of the time step
in the accuracy of the FSI, HSI and FSH sliding mesh algorithms
proposed.

We compute the propagation of a Gaussian pulse using the
non-dimensional Linearized Euler Equations (LEE) [13,47]. We con-
sider zero mean flow and constant mean density and pressure:
U0 ¼ ½1;0; 0;1=c�T . The Gaussian pulse is defined as
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Fig. 15. Ringleb flow (x ¼ 0). L2 norms of the entropy error (figures a and b) and of the energy (figures c and d) for the third and fourth FV-MLS schemes using the different
sliding mesh schemes proposed. Dashed line denotes the slope of the expected formal order of accuracy.

Fig. 16. (a) Geometry description of two dimensional vortex convection problem. (b) Unstructured mesh of 3884 quadrilateral elements.



Sðx; yÞ ¼ exp � ln 2

b2 r
� �

� ½1 0 0 1�T ð25Þ

where r ¼ ððx� xSÞ2 þ ðy� ySÞ
2Þ

1=2
is the radial distance to the loca-

tion of the center of the pulse (xS; yS). The half-width of the Gaussian

pulse is set at b ¼ 6. As in previous cases the computational domain
is divided into two grids: a circular fixed grid of diameter DF ¼ 100
centered at point SðxS ¼ 0; yS ¼ 0Þ and a circular sliding grid of
diameter DR ¼ 20 centered at RðxR ¼ 0; yR ¼ 20Þ which rotates
around its center with a non-dimensional rotational velocity x1.

Table 5
Accuracy orders, conservation error and L2 norm of variables error for the two dimensional vortex convection for the third-order FV-MLS scheme employing the three different
approaches described in this article with an angular velocity of x ¼ 0:0 rad/s.

Method Mesh L2 Order Conservation error Order

Third order x ¼ 0 rad/s
FS Intersections 3884 6:03� 10�2 – – –

16,407 9:34� 10�3 2.59 – –

52,136 1:07� 10�3 3.74 – –

HS Intersections 3884 6:27� 10�2 – – –

16,407 9:23� 10�3 2.66 – –

52,136 1:03� 10�3 3.80 – –

FS Halo 3884 6:49� 10�2 – 1:07� 10�1 –

16,407 1:08� 10�2 2.49 1:34� 10�2 2.88

52,136 1:11� 10�3 3.93 1:14� 10�3 4.27

Table 6
Accuracy orders, conservation error and L2 norm of variables error for the two dimensional vortex convection for the third-order FV-MLS scheme employing the three different
approaches described in this article with an angular velocity of x ¼ 1:0 rad/s.

Method Mesh L2 Order Conservation error Order

Third order x ¼ 1:0 rad/s
FS Intersections 3884 6:26� 10�2 – – –

16,407 1:26� 10�2 2.23 – –

52,136 1:95� 10�3 3.22 – –

HS Intersections 3884 6:10� 10�2 – – –

16,407 1:32� 10�2 2.13 – –

52,136 1:94� 10�3 3.31 – –

FS Halo 3884 6:58� 10�2 – 9:74� 10�2 –

16,407 1:31� 10�2 2.24 1:52� 10�2 2.58

52,136 1:92� 10�3 3.32 1:31� 10�3 4.24

Fig. 17. (a) Geometry description of the domain for the Gaussian pulse propagation problem. (b) Section of the pressure solution along (S, ~x) at t ¼ 30 with
Nc ¼ 17;698;DT ¼ 0:7;x ¼ 0:06. The shaded area corresponds to the moving grid zone.



The source is located at S. This configuration is schematically shown
in Fig. 17(a). The analytical solution of this problem is given in [47].
A fourth-order low storage explicit Runge–Kutta (LSERK) method
introduced by [4] is used. In order to perform a non-axisymmetric
benchmark, the moving grid is not centered on the source (yS – yR).

No numerical artifacts are observed at the interface, as can be
seen in Fig. 17(b). Fig. 18 shows the L1; L2 and L1 norms of the error
in the pressure for each method at a given non-dimensional rota-
tional velocity x ¼ 0:06 using different time steps. We also evalu-
ate the maximum time step allowed for different values of the
velocity at the sliding mesh interface (V ¼ xR) ranging from 0 to
3c1, where c1 is the non-dimensional speed of sound. Notice that
this speed range includes most of the turbomachinery applications
(see Fig. 19).

Fig. 18 shows that the error using the half stencil approach is
the smallest of the three approaches. This effect was already
observed for some of the meshes tested in the vortex convection
case. In our opinion, this is due to the directionality of the pulse
propagation (or vortex convection), and this behavior is not
expected for general cases. On the other hand, the results obtained
with the FSI and FSH are very similar.

6.4. Supersonic flow over a cylinder

In this section we present the results of the numerical method
applied to the simulation of the inviscid supersonic flow over a
cylinder. The aim of this problem is to analyze the performance
of the Interface Halo cell Sliding Mesh approach with supersonic
flows and to study the suitability of the halo formulation to deal
with shocks through the interface in a multidimensional problem.
The problem setup is presented in Fig. 20.

The computational domain is discretized with a structured
non-conformal mesh of 7200 quadrilateral elements. Fig. 21 shows
the mesh and a close view of the interface.

The freestream Mach number is M ¼ 3:0. Following [37] we
have used a shock detector based on MLS and the limiter of Van
Albada [52] was used.

The benchmark parameters for this test case are the pressure
coefficient Cp, the normalized stagnation pressure p0 and the
stand-off distance normalized by the diameter of the cylinder.
The stand-off distance is defined in Fig. 22.

Fig. 18. Error analysis of the proposed MLS-based Sliding Mesh methods for different time steps with a fixed velocity at the sliding mesh interface (V = 0.6).

Fig. 19. Maximum time step allowed as a function of the velocity at the interface
(V ¼ xR) for each of the proposed sliding mesh methods.

Fig. 20. Geometry description of the supersonic flow over a cylinder. The shaded
ring denotes the rotational zone.



The numerical results obtained for Mach number isolines with
sliding mesh FS intersections and FS halo cell are plotted in
Fig. 23 for a rotational velocity of 1000 rpm. In order to compare

the results we have computed the case on a conformal single mesh
with no interface. Almost no differences can be observed between
the different solutions.

In Fig. 24 the pressure coefficient around the cylinder is com-
pared for the different approaches. Again no differences are
observed. In Table 7 we show the results obtained for the normal-
ized stagnation pressure p0 and the stand-off distance normalized
by the diameter of the cylinder. The sliding-mesh computations
give the same results. These values are in very good agreement
with the ones obtained for a single grid and to the reference solu-
tion [27].

6.5. Three bladed cross-flow turbine

In order to demonstrate the capabilities of our higher-order
sliding-mesh interfaces to deal with viscous flows on complex con-
figurations, we compute the unsteady incompressible flow through
a cross-flow turbines. Such cross-flow turbine configuration leads
to the occurrence of complex flow phenomena, such as
blade-vortex interactions.

The problem setup considered in the present work was defined
by Ferrer and Willden in [12]. The incompressible Navier–Stokes
equations are solved using the SIMPLE algorithm with a collocated

Fig. 21. Structured non-conformal mesh of 7200 quadrilateral elements and closer view to the cylinder and the interfaces.

Fig. 22. Schematic representation of the stand-off distance.

Fig. 23. Comparison of Mach field for the supersonic flow over a cylinder. The
solutions are obtained using third-order FV-MLS scheme. Dashed line denotes the
solution obtained with a single mesh, purple line is obtained with FS Intersections
approach and blue line refers to the solution obtained when the FS Halo approach is
employed. The interfaces are highlighted in red. Note that blue and purple lines are
practically coincident. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 24. Comparison of the Cp distribution the supersonic flow over a cylinder. The
solutions are obtained using third-order FV-MLS scheme.



grid arrangement. We refer the interested reader to [44] for a com-
plete description of the methodology. Here, we have used the
Interface-halo-cell approach. The basic configuration of the prob-
lem is shown in Fig. 25. The turbine is formed with three
NACA0015 airfoil of chord c ¼ 1. The blades are disposed with a
relative angle of 120�. between them and a radial distance of
R ¼ 2c from the center of rotation.

The free-stream velocity is U0 ¼ 0:5. The Reynolds number is
defined as Re ¼ U0c

m ¼ 50 and the rotational velocity x ¼ 0:5.
The tip speed ratio which is, defined as k ¼ xR=U0, is equal to

k ¼ 2 in this work.
The angle of attack a corresponds to the angle between the

chord line and the direction of the relative flow direction. Since
the turbine rotates a varies throughout the rotation cycle as shown
in Fig. 26. The angle of attack can be expressed as function of the
tip speed ratio and the angular location h as [32]

a ¼ tan�1 sin h
cos hþ k

� �
ð26Þ

The computational domain is discretized with an unstructured
mesh of 26234 quadrilateral elements. Note that with this number
of elements, the spatial resolution of the mesh is similar to the one
in [12]. A close view of the computational grid near the rotating
grid is presented in Fig. 27.

The force on each blade is computed in Cartesian coordinates as

f ¼
f x

f y

( )
¼
I
ðpn� mðrU � nÞÞdC ð27Þ

Table 7
Comparison of the normalized stagnation pressure p0 and the stand-off distance obtained using a single mesh and the three sliding mesh methods
(present computations were performed using a 3rd order FV-MLS scheme).

Method p0=ðp0Þ1 Stand-off distance/D

Single mesh 0.327 0.405
Sliding Mesh FS Halo 0 rpm 0.324 0.407
Sliding Mesh FS Halo 1000 rpm 0.324 0.408
Sliding Mesh FS Intersections 1000 rpm 0.324 0.408
Reference solution [27] 0.328 –

Fig. 25. Basic configuration of the three bladed cross-flow turbine.

Fig. 26. Diagram of velocities, angles and forces on a single blade.

Fig. 27. Close view of the unstructured mesh around the cross flow turbine. The red
line denotes the interface. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 28. Velocity field and contours around the three bladed cross-flow turbine. The
solution is obtained with a third-order FV-MLS method. The solution is obtained
after three rotation cycles, h ¼ 1080� .



where n is the outward pointing normal at each blade. Once the
forces are obtained in Cartesian coordinates, they can be expressed
on a normal-tangential frame on each blade as

f N ¼ f y cos h� f x sin h ð28Þ
f T ¼ �f x cos h� f y sin h ð29Þ

The numerical solution obtained after three rotation cycles is
plotted in Fig. 28 in terms of the velocity magnitude. We observe
no numerical artifacts near the interface and the velocity isolines
are perfectly smooth across the non conformal grids.

Fig. 29 compare the normalized tangential and normal forces
against the angular rotation h for one of the blades of the turbine.
Results are in good agreement with those obtained by Ferrer [11]
using 3rd order Discontinuous Galerkin method.

7. Conclusions

In this paper we have presented a new high-order-preserving
sliding-mesh methodology based on Moving Least Squares approx-
imants. Two distinct approaches were considered, namely the
intersection-based and the halo cell sliding mesh methods. The lat-
ter is more flexible since it avoids the computation of intersections.
As a drawback, it does not conserves mass from a theoretical point
of view. However numerical results show that conservation errors
are within the order of magnitude of the intersection-based sliding
mesh and the rate of convergence is not affected. The accuracy and
robustness of the new methodology has been investigated using
various numerical test for both inviscid compressible and viscous
incompressible flows. Numerical results have shown that the pro-
posed high-resolution sliding-mesh methods are able to preserve
the formal order of accuracy of the high-order spatial discretization
scheme. One clear advantage of the present methodology is that
the same high-order discretization scheme is used through the
whole computational domain involving both static and moving
grids, naturally avoiding numerical artifacts.
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