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a b s t r a c t

Background: Accurate knowledge about the length variation of the knee ligaments (ACL, PCL, MCL and LCL) and
the popliteal complex during knee flexion/extension is essential for modelling and clinical applications. The
aim of the present study is to provide this information by using an original technique able to faithfully reproduce
the continuous passive knee flexion–extension kinematics and to reliably identify each ligament/tendon
attachment site.
Methods: Twelve lower limbs (femur, tibia,fibula, patella)were tested and set inmotion (0–120°) using an ad hoc
rig. Tibio-femoral kinematics was obtained using an optoelectronic system. A 3D digital model of each bone was
obtained using low-dosage stereoradiography. Knee specimens were dissected and the insertion of each liga-
ment and popliteal complex were marked with radio opaque paint. ACL, PCL and MCL were separated into two
bundles. Bone epiphyses were CT-scanned to obtain a digital model of each ligament insertion. Bones and
attachment site models were registered and the end-to-end distance variation of each ligament/tendon was
computed over knee flexion.
Results: A tibial internal rotation of 18°± 4°with respect to the femurwas observed. The different bundles of the
ACL, MCL and LCL shortened, whereas all bundles of the PCL lengthened. The popliteal complex was found to
shorten until 30° of knee flexion and then to lengthen.
Conclusion: The end-to-end distance variation of the knee ligaments and popliteal complex can be estimated dur-
ing knee flexion using a robust and reliable method based on marking the ligaments/tendon insertions with ra-
diopaque paint.
Level of evidence: Level IV
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1. Introduction

The knee is one of the most studied joints with more than 110,000
occurrences in Pubmed. It is also probably the most complex one,
characterised by a compromise between great stability and mobility.
This is allowed by the interaction of different passive structures:
femur, tibia, patella, ligaments, and menisci. Among them, the four
major knee ligaments (anterior and posterior cruciate ligaments, ACL
and PCL, medial and lateral collateral ligaments, MCL and LCL, respec-
tively), togetherwith the popliteal complex (comprising the femoral in-
sertion of the popliteus tendon and the fibular insertions of the
popliteo-fibular ligament [22]), play a crucial role in guiding the knee
passive kinematics and stabilising this joint [39,42]. The knowledge of

the biomechanical behaviour of these elements is essential to under-
stand the complex kinematics of the healthy joint, and is an important
prerequisite to understand ligament injury mechanisms, predict the
consequences of ligament disruption, and properly design surgical
interventions.

The variation of the length (commonly defined as the geometric
distance between the ligament origin and insertion and hereinafter
referred to as “end-to-end distance”) of the major knee ligaments
has beenwidely dealt with in the literature. However, most studies con-
sidered each ligament individually, with particular attention to the ACL
[1,16,44] or the PCL [8,17,19,31] or, to a lesser extent, to theMCL [33,41]
or the LCL [33,40,41]. Fewworks studied the popliteal complex [40], al-
though it has a critical role in the control of the rotation of the knee joint,
especially limiting the external rotation of the tibia with respect to the
femur [34]. Last but not least, methodological issues still exist related
to the reliable identification of each ligament insertion [36] and, when
ex-vivo studies are considered, to the reproduction of the knee passive
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kinematics, which are both crucial aspects when the accurate estima-
tion of the ligament end-to-end distance is aimed.

To the authors' knowledge only twopublications studied the end-to-
end distance variation of all the four major ligaments simultaneously
during passive knee flexion ex-vivo, including the individual identifica-
tion of the ligament attachment site locations [4,5]. In the first study,
Belvedere et al. [4] used an optoelectronic system to identify the liga-
ment attachment sites after minimal cadaver dissections and the posi-
tion of each ligament insertion was digitised and expressed with
respect to tibia and femur anatomical systems of reference by means
of cluster of markers attached on a pointer and on the bones. However,
although optoelectronic systems are considered as the gold-standard
for the estimation of the knee kinematics, this is not the case for what
concerns the ligament insertion identification. The above-mentioned
procedure, in fact, apart from being time consuming, is affected by
uncertainties due to difficulties for the surgeon to accurately palpate
the ligament attachment sites without performing a complete dissec-
tion, particularly those of the medial and lateral collateral ligaments
and of the PCL on the tibia. In the second study [5], a virtual palpation
procedurewas carried out to identify the ligament insertions on generic
digital bonemodels. Subject-specific insertion locations were then esti-
mated by matching the generic models to low-dose stereoradiography
images of knee specimens. However, the accuracy of the ligament inser-
tion identification was not assessed and no bundle separation was per-
formed for the ACL, PCL and MCL. Moreover, none of these studies
provided information about the insertion locations of the popliteal com-
plex as well as about its end-to-end distance variation during knee
flexion.

In the light of the above-mentioned considerations, the aim of the
present study is to propose an original and robust technique to identify
the knee ligaments and popliteal complex attachment sites and to de-
scribe how the end-to-end distance of these structures vary over pas-
sive knee flexion–extension movement.

2. Methods

2.1. Specimens

Twelve fresh frozen lower limbs were used in this study, six left and
six right knees harvested from subjects aged between 47 and 79 years.
Each specimen included entire femur with femoral head, patella, fibula
and tibia without the ankle. Absence of trauma was checked and integ-
rity of cartilage, meniscus and ligaments was inspected at the end of the
experimentation during specimen dissection. Limbs were thawed at
room temperature for 24 h. Skin and muscles, except eight centimetres
of quadriceps tendon and popliteus muscle, were removed before
the study. Nine tantalum balls were placed into the metaphysis of
each bone, three into the tibia, three into the femur and three into the
patella.

2.2. Kinematic data acquisition

The specimens were set in motion using a device described and val-
idated in previous literature [3] (Figure 1). The femur was rigidly fixed
to a rig and the tibia was free to move (Figure 1). As no constraints
have to be applied to coupled movements between the femur and the
tibia, the device was slightly modified to allow free varus/valgus move-
ments and a flexion–extension range of movement of 0°–120°. A motor
was connected to the tibial pilon by a rope andwas used to pull the rope
thus allowing the flexion–extension movement. A 10 N force was ap-
plied to the quadriceps tendon via a pulley hung in order to guide the
patella. The direction of this force was as parallel as possible to the ten-
don itself. Clusters made of three retro-reflective markers each were
screwed in the femur, the tibia and the patella (Figure 1). As different
alignments between the femur and tibia could affect both the knee
axial rotation and varus–valgus kinematics, special attention was paid

to the correct alignment of the bones when mounting the specimens
on the rig. The position and orientation of each cluster of markers
were registered with an optoelectronic system previously used in
motion analysis (Polaris, Northern Digital Inc., Canada, sampling
frequency = 60 samples/s) [7].

To obtain the three-dimensional (3D) tibio-femoral and patello-
femoral kinematics, anatomical frames associated with each bone
were defined. To this aim, two orthogonal digital radiographs of
each knee specimen were simultaneously acquired using a low dosage
X-ray system (EOS, EOS-imaging, France) and 3D digital models of the
femur and tibia, with fibula and patella, were obtained through a recon-
struction algorithmdescribed in a previous study [5]. Femoral, tibial and
patellar anatomical frames were defined following the indications re-
ported by Schlatterer et al. [37]. The tantalum balls pierced in each
bone, as well as the markers of each cluster, were also identified and
the 3D coordinates of the centroid of each ball and marker with respect
to the EOS system of reference were obtained. Technical frames associat-
ed with themarker clusters were defined allowing acquisition of a math-
ematical relation between anatomical and technical frames expected to
be invariant due to the rigid body assumption. The bone models and the
relevant anatomical axes were then registered with respect to the
movement data obtained in the optoelectronic system of reference. The
3D kinematics of the tibio-femoral joint was estimated from the instanta-
neous position of the clusters of markers and flexion/extension, adduc-
tion/abduction and internal/external rotation angles were obtained
using the Cardan convention and the sequence “ZXY”. For each specimen
and each angle, a similarity analysiswas performed to investigate if signif-
icant differences existed in the kinematics obtained during the different
cycles. To this aim, the Spearman correlation coefficient was calculated
using IBM SPSS Statistics (IBM Corp., Armonk, NY, USA).

The kinematic variability during the six flexion–extension cycles
was less than one degree and onemillimetrewith a high Spearman cor-
relation (r = 0.98, p b 0.001 for each knee). Therefore, as no significant
hysteresis was present among the cycles, the average curvewas consid-
ered as representative of the individual kinematics of each specimen.
This confirmed the good reliability of the tested rig, which was previ-
ously reported by Azmy et al. for the patello-femoral joint [3], as well
as the proper alignment of the bony segment during the kinematic
acquisitions.

2.3. Ligament attachment site identification and registration

After kinematic data acquisition, knee specimens were fully
dissected, according to anatomical references previously published
[12,13,22,38] in order to identify and mark ligaments/tendon origins
and insertions using radio opaque paint composed of barium sulphate
(Figure 2). The following structures were taken into account: ACL, PCL,

Figure 1. View of the device used to set in motion the knee specimens. The clusters of
markers fixed to the femur, tibia and patella bones are also depicted.

http://dx.doi.org/10.1016/j.knee.2016.02.003


MCL (deep and superficial bundles, i.e. the two tibial insertions), LCL,
and popliteal complex (going from the femoral insertion of the
popliteus tendon to the fibular insertion of the popliteo-fibular liga-
ment). For the sake of readability, the word “ligaments” will be used
throughout the manuscript when referring to both the knee ligaments
and the popliteal complex.

After the specimen was dissected and the attachment sites identi-
fied, the femoral and tibial epiphyses were scanned, using a computed
tomography (CT) Scanner (Philips, Best, The Netherlands; thickness =
0.67 mm, distance = 0.33 mm). Digital models of each bone epiphysis,
each ligament/tendon attachment site and each tantalum ball were ob-
tained using Aviso® (Burlington, MA, US). The 3D coordinates of the
tantalum balls with respect to the CT Scanner system of reference
were then used to perform the registration between the CT Scan and
the EOS systems of reference and, thus, to express the ligament attach-
ment site coordinates with respect to the EOS frame. For those liga-
ments commonly separated into two bundles (ACL, PCL and MCL), the
digital footprints obtained on each bonemodel were visually separated,
using an ad hoc developed software, into two regions corresponding to
the two bundles (antero-medial (AM) and postero-lateral (PL) for the
ACL, antero-lateral (AL) and postero-medial (PM) for the PCL, superfi-
cial and deep for the femoral insertion of the MCL). This procedure
was carried out by an expert surgeon as described in the literature
[10,20,27]. The centroid of each ligament attachment site was finally
calculated for the whole insertions as well as for each bundle.
Concerning the ACL and the PCL, the centroids of the whole insertions
were referred to as “intermediate”.

2.4. Calculation of ligament end-to-end distance variations

Knowing theposition of each ligament insertion in the EOS reference
frame, it was possible to obtain the same information in the cluster-
based technical frame of each bone and to track the insertion positions
all along the flexion–extension cycle. For each ligament (and bundle
when considered), the distance between the femoral and tibial/fibular
insertions was then estimated and referred to end-to-end distance. Ac-
cording to the existing literature [14,15,18,23,24,32] and for the sake of
readability, we referred to ligament lengthening when this distance in-
creased and to ligament shortening when this distance decreased. The
variation of the end-to-end distance of each ligament was then repre-
sented as a function of the tibio-femoral flexion–extension.

3. Results

For what concerns the knee kinematics, a tibio-femoral adduction of about 4° ± 4°
(mean ± 1 standard deviation (SD)) and an internal rotation of the tibia with respect to
the femur of about 18° ± 4° at 120° of flexion were observed (Figure 3).

Themean end-to-enddistanceof each ligament for a set of specific kneeflexion angles
is reported in Table 1. Figure 4 shows the ligament end-to-end distances expressed as a
percentage of the maximal distance obtained during the knee movement (left panel)
and the ligament end-to-end distance variations expressed in percentage with respect
to the distance at knee maximal extension (right panel). During the knee flexion, the
ACL (AM, PL and intermediary bundles), MCL (deep and superficial) and LCL shortened.
The PCL lengthened of about 21%. The popliteus complex shortened until 30° of flexion
and then lengthened.

4. Discussion

The present article is based on ex-vivo data and proposes a new
methodology to identify the knee ligament attachment site locations
in order to quantify the end-to-end distance variation patterns of the
popliteal complex and of the main bundles of the four major knee liga-
ments (ACL, PCL,MCL, and LCL) during continuous passive knee flexion.
The proposed method proved to be robust and reliable and allowed
obtaining information about the synergic behaviour of the main knee
ligaments and of the popliteal complex, as well as about the individual
3D tibio-femoral kinematics.

Specifically, for what concerns the tibio-femoral kinematics, an in-
ternal rotation of the tibia of about 18° at 120° of flexion was found.
An internal rotation was also reported by many authors between eight
degrees and 29° at 120° of flexion [25,29,42] and between 10° and 15°
at 90° of flexion [5,30,43]. Similarly, results about varus displacement
are in agreement with previous studies which reported less than five
degrees of adduction [5,43].

The results about the end-to-end distance of the ligaments in ex-
tended position are in general agreement with those reported in the
existing literature. For what concerns the ACL, the end-to-end distances
of the different bundles were found to be 35 mm (AM bundle), 32 mm
(intermediate bundle), and 29mm (PL bundle). Bicer et al. [6] reported

Figure 2.Viewof the proximal epiphysis of a randomly chosen tibia, showing the different
ligament insertions marked with the radiopaque paint (white marks).

Figure 3. Knee internal/external rotations (left panel) and abd/adduction (right panel) as a function of the flexion/extension range of motion. Mean (solid line) and ± one standard
deviation (dotted line) are reported.
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that the AM bundle is the longest with an end-to-end distance between
22mm and 41mm (mean value of about 32 mm), whereas the PL bun-
dle was shorter measuring 27 mm. Regarding the PCL end-to-end dis-
tance, the results of the present study were 33 mm for the PM bundle,
29 mm for the intermediate bundle, and 27 mm for the AL bundle.
Nakagawa et al. reported a PCL end-to-end distance up to 34 mmwith-
out considering bundle separation [31]. As for the end-to-end distances
of the superficial and deep bundles of theMCL, resultswere respectively
92mmand 36mm. These values are in agreementwith a previous study
of Liu et al. which reported an end-to-end distance of 95mm for the su-
perficial bundle of theMCL and 42mm for theMCL deep bundle [26]. A

very good concordancewas observed for the LCL whichwas found to be
61 mm. The same result was reported indeed by Diamantopoulos et al.
[12]. Finally, the distance between the femoral insertion of the popliteus
tendon and the fibular insertion of the popliteo-fibular ligament was
found to be 43mm, in general agreementwith a previous studypublished
by Diamantopoulos et al. which reported a distance of about 35 mm.

Many articles dealt with the variation of the end-to-end distance of
each individual knee ligament during knee flexion–extension, both in-
vivo and ex-vivo. In the early 90s, Amis and Dawkins found that the
anteromedial bundle of the ACL was lengthening after 30° of flexion,
whereas the intermediary and posterolateral bundles were shortening
[1]. Actually, recent in-vivo studies performed on unloaded knees con-
cluded to a shortening of all bundles, the anteromedial bundle being
the most isometric one [18,44], as confirmed by the results of the pres-
entwork. Forwhat concerns the PCL, Nakagawa et al. and Jeong et al. re-
ported a stretching over flexion for this ligament, especially for the
anterolateral bundle [17,31]. This stretching, which was found to be
about 20% with respect to the PCL end-to-end distance at knee full ex-
tension, is confirmed by the present results. As for theMCL, a shortening
(six percent) of the deep bundle of the MCL was found in the present
study, primarily during the first 40° of flexion. Similarly, a shortening
(six percent) of theMCL superficial bundle was found, occurring during
all the flexion–extension range of motion. These findings are in agree-
mentwith a study of Park et al. concluding to a shortening of themedial
part of theMCL superficial bundle [33]. Concerning the LCL, a shortening
of 15% was found. This result confirms previous findings from Victor
et al. [41] and Sugita and Amis [40]who reported that the LCL shortened
by about 11%.

Table 1
Mean±1 one standard deviation of each ligament/tendon (andbundleswhere indicated)
length (mm) obtained at specific knee flexion angles.

0° 15° 30° 60° 90° 120°

ACL
AM 35 ± 5 35 ± 4 35 ± 4 34 ± 4 34 ± 4 33 ± 4
PL 29 ± 5 28 ± 5 28 ± 5 26 ± 4 25 ± 3 25 ± 3
Intermediate 32 ± 4 32 ± 4 32 ± 4 30 ± 4 29 ± 4 29 ± 3

PCL
AL 27 ± 3 28 ± 2 28 ± 3 32 ± 3 34 ± 3 35 ± 3
PM 34 ± 5 32 ± 4 32 ± 3 34 ± 3 35 ± 3 35 ± 3
Intermediate 29 ± 4 30 ± 3 30 ± 3 33 ± 3 34 ± 3 35 ± 3

MCL
Deep 36 ± 4 34 ± 4 34 ± 4 34 ± 4 34 ± 4 34 ± 3
Superficial 92 ± 9 91 ± 8 91 ± 8 90 ± 8 89 ± 8 86 ± 8

LCL 62 ± 6 60 ± 6 59 ± 6 57 ± 6 55 ± 5 53 ± 5
Popliteus 44 ± 5 42 ± 6 41 ± 6 42 ± 7 44 ± 7 45 ± 6

Figure 4.Mean ligament/tendon (and bundles where indicated) length expressed as the percentage of themaximal length reached during flexion/extension (left panel) andmean length
variation expressed as the percentage of the length reached at knee maximal extension (right panel). Both variables are depicted as a function of the knee flexion angle.
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According to the existing literature [21,22,40] in the present study
the femoral insertion of the popliteal tendon and the fibular insertion
of the popliteo-fibular ligament were considered. In this respect, the
quantification of the end-to-end distance variation of the popliteal com-
plex is particularly interesting in clinical practice becausemany surgical
procedures reconstruct the popliteus tendon using the above-
mentioned insertions [2,11,45,46]. When observing the end-to-end dis-
tance variation of the popliteal complex, it is worth noting that the in-
version of the curve occurs around 30° of knee flexion. A five percent
shortening of the popliteal complex during the first 30° of knee flexion
was found, followed by a lengthening of about two percent in deep flex-
ion. Sugita and Amis [40] found a lengthening of about 12%. The limited
sample size and large standard deviations (10 mm corresponding to
25% of the global end-to-end distance of the complex) associated with
the latter study could explain the difference in the reported results.

Only two papers described both the kinematics and the end-to-end
distance variation of the knee ligaments considering all ligaments si-
multaneously [4,5]. However, these studies did not take the popliteal
complex into account even if it plays amajor role in controlling rotation-
al stability of the knee. Moreover, minimal dissection together with an
optoelectronic system [4] or virtual palpation procedures [5] were
used to identify and register the ligament attachment sites, and there-
fore neither methodology is able to guarantee the realism required in
clinical applications. Conversely, the original technique to identify the
ligament attachment sites proposed in the present study allowed for a
reliable and robust identification and registration of the insertions of
the popliteal complex and of all the four major knee ligaments. This
allowed for overcoming the main limitations related both to the use of
optoelectronic systems and minimal dissection procedures [4] which
do not allow accurate palpation of all ligament attachment sites, and
to virtual palpation procedures [5] which do not necessarily take into
account the accuracy and the variability of the ligament/tendon attach-
ment site location.

Among the limitations of the present study, there is the fact that lig-
ament lengthwasmodelled as the end-to-enddistance between the lig-
ament femoral and tibial/fibular insertions. Some ligaments, as the ACL
and theMCL, are tightened in extension whereas others such as the PCL
are slackened. Moreover, ligamentwrapping around bone prominences
and periosteal tissues was not accounted for. As ligaments are incom-
pressible structures, their length cannot be less than the tension free
length. This is particularly true for the PCL for which the end-to-end dis-
tance increases during the full range of motion whereas the “true” fibre
lengthening occurs after 50° of flexion [28]. It must be noted, however,
that accurate modelling of the ligament path (and thus the quantifica-
tion of the actual shortening and lengthening) is crucial when ligament
forces/strains need to be assessed, which is not the case for the present
study. Finally, the end-to-end distance approximation can be consid-
ered largely acceptable inmost applications forwhich the data provided
in the present paper could be useful for (i.e. subject-specific knee
modelling for clinical or movement analysis purposes).

In this study, CT-scan was used to reconstruct only the accurate po-
sition of the ligament attachment sites, whereas the femur and tibia/fib-
ula bone models were obtained using biplanar X-ray imaging. This is
because the latter, being characterised by low-dosage irradiation and
thus less risky for the subjects, can be used to obtain subject-specific in-
formation in-vivo even in routine clinical practice. Given the accuracy
with which the bone models were obtained using the EOS system
(on average lower than 1.3 mm as reported in Chaibi et al. [9] and
Quijano et al. [35]),we consider the reconstruction errors to have no im-
pact on the end results.

5. Conclusion

In the present study, an original techniquewas used for a reliable and
robust identification of the insertions of the popliteal complex, and of the
cruciate and collateral ligaments on knee specimens. Detailed

information regarding the 3D tibio-femoral kinematics aswell as regard-
ing the end-to-end distance variation pattern of the considered struc-
tures and of their sub-bundles was provided. This information
represents an important contribution towards the understanding of liga-
ment injurymechanisms, the prediction of the consequences of ligament
disruption, and hopefully the design of effective surgical interventions.
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