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Abstract 

The predictability of manufacturing process simulation is highly dependent on the accuracy of 

the constitutive model to describe the mechanical behavior of the work material. The model 

should consider the most relevant parameters affecting this behavior. In this study, a 

constitutive model for Ti6Al4V titanium alloy is proposed that considers both material 

plasticity and damage. It includes the effects of strain hardening, strain-rate and the state of 

stress to represent the mechanical behavior of Ti6Al4V titanium alloy in metal cutting 

simulation. To generate states of stress and strain rates representative of this process, 

mechanical tests were performed using a specific experimental setup. This included a specimen 

geometry designed to generate different states of stress, as well as a digital image correlation 

technique to obtain the strains during the mechanical tests. For the determination of the 

coefficients of the constitutive model, the yield stress and fracture locus obtained from these 

tests were used in an optimization-based procedure. To verify the accuracy of the proposed 

constitutive model to represent the mechanical behavior of the Ti6Al4V alloy under different 

states of stress, force-displacement curves obtained using this model and the Johnson-Cook 

model are compared with the curves obtained experimentally. 

 

Keywords: Constitutive behavior; Mechanical testing; Fracture mechanisms; Manufacturing 

Processes. 
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1. Introduction 

Ti6Al4V titanium alloy plays a significant role in a broad range of applications, such as those 

related to aerospace, automotive and biomedical industries. This alloy has useful application 

properties, i.e., high strength/weight ratio, acceptable mechanical strength at high temperatures, 

high resistance to creep and corrosion [1]. This alloy is also difficult to cut due to its high 

strength, low thermal conductivity and high chemical reactivity [2]. Therefore, tool wear is 

accelerated and the resulting surface integrity can be very poor [2]. A proper choice of the 

cutting tool and corresponding cutting parameters can solve these issues. An effective and 

economical approach to accomplish this selection is to perform numerical simulations. It is a 

cost-effective approach when compared to the traditional experimental approach. However, the 

precision of  the simulated results is strongly affected by the material constitutive model that 

represents the mechanical properties of the work material [3,4]. 

 

Fig. 1 represents schematically a typical stress-strain curve of a mechanical test, presenting the 

elastic and plastic material response until fracture. The solid line represents the typical 

(experimental) stress-strain curve, while the dashed dot line is a hypothetical undamaged stress-

strain curve. As shown, the two lines begin to separate at point B, which denotes the damage 

initiation. After this point, the yield strength and elastic modulus degrade as the strain increases. 

The difference between these two lines is estimated by the damage parameter D. The occurrence 

of complete fracture is at point E when D equals 1. 

 

 

Fig. 1:  Schematic representation of a typical stress-strain curve [5]. 
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To describe this mechanical behavior starting from elastic-plastic deformation to complete 

fracture, two parts should be included in the constitutive model: plasticity and damage. For the 

plasticity part of the constitutive model, the Johnson-Cook (J-C) model is extensively used in 

commercial finite element analysis (FEA) software [6].  This model can be used in numerous 

situations, including: high velocity impact, metal forming, metal forging and machining. 

However, the model coefficients are very sensitive to any changes in the metallurgical 

conditions of the work material. For such reason, different coefficients can be found in the 

literature for the J-C model of Ti6Al4V alloy [7-9]. Several metal cutting researchers have 

modified this model to improve its ability to reproduce the mechanical behavior. A so-called 

strain-softening term was integrated into the J-C model by Calamaz et al. [10], to better predict 

the segmented chip with small uncut chip thickness and low cutting speed in orthogonal cutting 

simulation of Ti6Al4V alloy. Sima and Ozel [11] did a minor modification of the Calamaz et 

al. [10] model to further control the thermal softening effect. However, some model coefficients 

were determined by fitting between the measured and the predicted results from orthogonal 

cutting tests, without performing any material characterization tests. Moreover, the 

applicability of both modified J-C models to other manufacturing processes still needs to be 

verified. Santos et al. [12] also proposed a modified J-C model that includes what they called 

flow softening, which fits the stress-strain curves of AA1050 aluminum alloy obtained from 

tests at high strain rates better, when compared to the traditional J-C model. 

 

The plasticity models described above are designed as phenomenological since the material 

behavior is described by empirically fitted functions, which contain several macroscopic 

deformation variables, such as temperature, plastic strain and plastic strain rate. Other types of 

plasticity model are those mentioned by Melkote et al. [4] as physical-based models, since they 

integrate microstructural aspects (i.e., grain-size, dislocation density, etc.) in the material 

mechanical behavior. One case is the Mechanical Threshold Stress (MTS) model [13], involving 

both the thermal and athermal stresses related to the dislocation density and grain size. Melkote 

et al. [14] extended the MTS model to simulate chip formation of pure titanium. The effects of 

dynamic recovery, dislocation drag and dynamic recrystallization were considered in their 

model. Although these models intrinsically describe the microstructure evolution and 

mechanical behavior of the work material, their complexity regarding the large number of 

coefficients to be determined through several types of experimental tests limits their application. 

Rotella and Umbrello [15] considered the material grain-size effect in the plasticity model 
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proposed by Calamaz et al. [10], and then applied it in orthogonal cutting simulation of 

Ti6Al4V alloy under cryogenic cooling conditions. 

 

These works do not account for the damage part of the constitutive model, which is fundamental 

for those applications where fracture occurs, as is the case for the metal cutting process [16]. 

Moreover, none of these works considers the state of stress effect on plasticity and damage. As 

far as this effect is concerned, Rice and Tracey [17] described the ductile fracture process as 

the growth and coalescence of microscopic voids under the superposition of hydrostatic stresses. 

Then, a fracture locus was introduced based on the ratio between the hydrostatic and the 

equivalent stresses, often referred to as stress triaxiality. This model has been widely adopted 

by other researchers. For example, Johnson and Cook [6] proposed a damage model accounting 

for several effects on damage initiation: stress triaxiality, strain rate and temperature. Bai and 

Wierzbicki [18,19] also considered the Lode angle effect on the fracture locus apart from the 

stress triaxiality effect. They proposed a constitutive model considering the state of stress, 

described by both stress triaxiality and Lode angle. They have shown that both parameters affect, 

not only the fracture, but also the plasticity behavior of AA2024-T351 aluminum alloy. As 

shown in Fig. 1, damage cannot be represented accurately by considering the fracture locus 

only. Hence, damage evolution should also be considered. Hillerborg et al. [20] proposed a 

fracture energy formulation that is often used to describe damage evolution. 

 

Several researchers have used constitutive models integrating the damage part for metal cutting 

simulation. For instance, Buchkremer et al. [21] extended both the plasticity and the damage 

models proposed by Bai and Wierzbicki [18,19] by including the temperature and strain-rate 

effects. They predicted the forces, temperatures, chip formation and flow with high accuracy in 

simulation of turning AISI 1045 steel. Denguir et al. [22] proposed a constitutive model 

(plasticity and damage) incorporating, not only the strain-hardening, strain-rate and temperature 

effects, but also the microstructural and state of stress effects to describe the mechanical 

behavior of Oxygen Free High Conductivity (OFHC) copper in metal cutting. They showed 

better surface integrity prediction when the proposed constitutive model was compared with 

the J-C model. Abushawashi et al. [23] found that the material plastic strain limit in the first 

deformation zone is controlled by the value of stress triaxiality in orthogonal cutting of AISI 

1045 steel. Wang and Liu [24] investigated the stress triaxiality effect on the generation of 

segmented chips during machining of Ti6Al4V alloy. It was found that its value in the first 

deformation zone ranges from -0.6 to 0.6. Liu et al. [25] have shown that the chip formation in 
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orthogonal cutting of AA2024-T351 aluminum alloy is simulated better when damage 

evolution is considered instead of damage initiation only. 

 

This paper proposes a constitutive model for Ti6Al4V titanium alloy. This model includes the 

most relevant parameters affecting the mechanical behavior (plasticity and damage) of this 

alloy in the first deformation zone in metal cutting, such as: strain hardening, strain rate and 

state of stress. The latter is represented by the stress triaxiality and the Lode angle, normally 

ignored in the existing constitutive models used in metal cutting simulations. Moreover, this 

paper also presents a complete methodology to conduct the mechanical tests for accurate 

determination of the constitutive model coefficients. Mechanical tests are performed using a 

specially designed experimental setup (including tailored specimen geometries) to generate the 

wide range of state of stress (i.e. triaxiality and Lode angle) found in various machining 

operations. An optimization-based procedure was developed to determine the coefficients of 

the constitutive model, using experimental data from the mechanical tests and finite element 

simulations of those tests. Finally, the accuracy of proposed model is demonstrated by 

comparing the force-displacement curves obtained using this model, the J-C model and the 

experimental results. 

2. Proposed constitutive model 

2.1 State of stress definition 

Because this paper involves the relationship between the mechanical behavior of Ti6Al4V alloy 

and the state of stress, the notion of state of stress should be clarified. It is represented by the 

stress triaxiality and Lode angle parameter, as shown in Fig.2. An arbitrary stress tensor [σij] 

can be represented by three principal stresses: σ1, σ2, σ3. The stress triaxiality  is defined as 

the ratio of the mean stress m to the equivalent von Mises stress 𝜎. 

 

 1 2 3m 1

3 3

I  


  

+ +
= = =  (1) 

 

The Lode angle parameter 𝜃̅ proposed by Bai and Wierzbick [18] is used to describe the effect 

of the Lode angle in this paper. Fig. 2 illustrates the definition of the Lode angle on the 

deviatoric plane (or π plane). It is the angle between the stress tensor which goes through the 
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deviatoric plane and the directions of the principal stresses. The Lode angle 𝜃 is defined as 

follows: 

 
3

3

1 27
arccos

3 2

J




 
=  

 
 (2) 

 

where J3 is the third deviatoric stress invariant. The following equation shows the Lode angle 

parameter: 

 
6

1
π

 = −  (3) 

 

where 𝜃̅ is the Lode angle parameter. The range of 𝜃̅ is [-1, 1], as the range of Lode angle 𝜃 is 

[0, 𝜋/3]. These equations show that the stress triaxiality depends on the first stress invariant I1, 

while the Lode angle is a function of the third deviatoric stress invariant J3 and the von Mises 

equivalent stress, 𝜎. 

 

 

(a)       (b)               

Fig. 2:  a) The space of principal stresses; b) Lode angle definition on the  plane [18]. 

2.2 Constitutive model formulation 

Two parts are included in the proposed constitutive model: plasticity and damage. The proposed 

plasticity model is shown in Equation (4), incorporating the strain hardening, strain rate and 

state of stress effects. The first two terms are based on the Johnson - Cook [6] and Santos et al. 

[12] models, respectively.  Furthermore, the last two terms of Equation (4) are related to the 

state of stress effect, which are characterized by the stress triaxiality and the Lode angle 

parameter obtained from the Bai and Wierzbicki [18] model. 
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In the previous equations: i) the coefficients A, m and n are used in the strain hardening term; 

ii) the coefficients 𝐵 , 𝐶  and 𝐸  are used in the strain rate term; iii) the coefficient 𝑐η is used in 

the stress triaxiality term; iv) the coefficients 𝑐θ
t , 𝑐θ

c, 𝑐𝜃
𝑠  and a are used in the Lode angle term; 

v) 𝜂0 is the reference stress triaxiality and 𝜀0̇ is the reference strain rate; vi) γ describes the 

difference between Tresca and von-Mises equivalent stresses on the deviatoric stress plane, as 

represented in Equation (5); and vii) the coefficients 𝑐θ
t , 𝑐θ

c, 𝑐θ
s are interdependent and at least 

one of them equals 1. Considering the compression test of cylindrical specimen at quasi-static 

conditions as a reference, 𝜂0 equals -1/3, 𝜀0̇ equals 0.05 s-1 and 𝑐θ
c equals 1. 

 

The temperature effect on the work material behavior is not considered in this plasticity model 

for two main reasons. First, the temperature effect has been included in the high strain rate 

mechanical tests since the work of plastic deformation is converted into heat. Second, the 

temperature in the first deformation zone of the workpiece rarely exceeds 200°C in the metal 

cutting process, because of the heat advection (i.e. mass transportation) through the chip 

movement [26,27]. Indeed, a very significant amount of the heat generated due to plastic 

deformation in the first deformation zone will be transported by the chip due to advection, while 

a smaller portion of this generated heat will flow into the workpiece by conduction. The ratio 

between these two parts can be determined by the Péclet number [26], as shown by Equation 

(7), 

 

 
Heat of advection

Heat of conduction

VL
Pe

w
= =  (7) 

 

where V is the velocity scale, L is the length scale, and 𝑤 is the thermal diffusivity.  
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When the Péclet number is applied to metal cutting, V represents the chip velocity relative to 

the tool rake face (m/s), L represents the uncut chip thickness (mm) and 𝑤  represents the 

thermal diffusivity (m2/s). For example, in orthogonal cutting of Ti6Al4V alloy using typical 

cutting conditions (cutting speed Vc = 0.917 m/s (55 m/min) and L = 0.15 mm) the chip 

compression ratio ζ is equal to 1.5, and considering the thermal diffusivity 𝑤 of Ti6Al4V alloy 

as equal to 7.15 x 10-6 m2/s, the Péclet number is equal to 12. Therefore, 92% of the heat 

produced in the first deformation zone flows into the chip due to the plastic deformation, while 

only 8% of this heat flows into the workpiece. 

 

The damage model includes damage initiation and damage evolution, as shown from Equation 

(8) to (10), based on Bai and Wierzbicki [18] and Abushawashi [28] models. Equation (8) 

represents the damage initiation, while Equations (9) and (10) represent the damage evolution. 

Fracture surface depends on both the stress triaxiality and Lode angle parameter. The work 

material strength decreases as the strain increases after damage initiation, and the fracture 

energy is used to estimate this material stiffness degradation. 
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In these equations, D1-D7, n, and Gf are the material coefficients,  𝜆  controls the material 

degradation rate and Gf is the material fracture energy density; 𝜀i̅
p
 is the plastic strain at damage 

initiation; 𝜀f̅
p
 is the plastic strain when all the stiffness and the fracture energy of the material 

have been lost and dissipated, respectively; 𝜎̃ is the hypothetical undamaged stress evaluated 

by Equation (4); 𝑙  is the characteristic length of the finite element; 𝜇̅  = 0 relates to the 

equivalent plastic displacement before damage initiates; and 𝜇̅f  is the equivalent plastic 

displacement at complete fracture. 
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As shown in Equation (10), the characteristic length is introduced to describe the fracture 

energy. Therefore, the energy dissipated in the damage evolution is defined as per unit area, 

rather than per unit volume. In this case, a stress-displacement response instead of the stress-

strain response is used to describe the material softening after damage initiation. 

3. Mechanical tests 

3.1 Specimen’s material and geometry 

The chemical composition of Ti6Al4V alloy used in this research work is presented in Table 1. 

This material has a two-phase structure (𝛼+𝛽), and the good balance between 𝛼 and 𝛽 phases 

makes it achieve a high strength level without losing ductility [1]. 

 

Table 1: Chemical composition of Ti6Al4V alloy (data provided by the material supplier). 

Element Al V Fe O C N H Ti 

Composition 

(wt. %) 
5.50-6.75 3.50-4.50 0.30 0.20 0.08 0.05 0.01 Base 

 

As far as the specimen geometry is concerned, when combined with the loading conditions, it 

should be able to reproduce several states of stress and strain rates usually found in metal cutting. 

There are two solutions to generate different states of stress in the specimens during the 

mechanical tests. One is to use advanced machines allowing complex multi-axial loadings to 

be performed with simple designed specimens [29]. The other solution is to use (complex) 

specially designed specimens to get the desired state of stress by applying simple loadings 

(tensile, compressive, torsion). The latter solution is relatively simple because the loading 

conditions are easier to control and the gauge areas are fixed. The aim of specimen design is to 

achieve the capability to generate a broad range of states of stress. Figure 3 shows the possible 

states of stress generated by combining several specimen geometries and loading types 

(tensile/compression) used in this work. The cylindrical specimen, double notch (DN), notched 

round bar (NRB), smooth round bar (SRB) and notched flat plate (NFP) specimens permitted 

several states of stress levels to be generated by varying their geometries. The values of state 

of stress were determined by the simulation of mechanical tests using all the specimens. The 

details of the simulations are discussed in the following text. 
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Fig. 3: States of stress and corresponding specimen geometries (cylindrical specimen; DN – double notched; 

NRB – notched round bar; SRB – smooth round bar; NFP – notched flat plate). 

 

Figure 4 shows the axisymmetric specimen (cylindrical, SRB and NRB) geometries. The 

cylindrical specimen (Figure 4a) was used in the compression tests at different strain rates, with 

a constant state of stress (stress triaxiality equals -1/3 and Lode angle parameter equals -1 for 

quasi-static conditions) [18]. Before designing other specimen geometries, quasi-static 

compression tests of cylindrical specimens were performed to obtain the flow stress.  Then, this 

flow stress was applied in the simulations of the mechanical tests of other specimen geometries 

to determine their states of stress. 

           

(a)            (b) 

Fig. 4: Nominal geometry of the axisymmetric specimens: a) cylindrical specimen used in compression tests at 

several strain-rates; b) smooth and notched round bars used in quasi-static tensile tests. 
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In contrast, the SRB (Figure 4b) was used in the tensile tests under quasi-static conditions to 

obtain a stress triaxiality of 1/3 and a Lode angle parameter of 1[18]. The NRB (Figure 4b) was 

introduced to generate values of stress triaxiality between 0.33 and 0.90, keeping the Lode angle 

parameter constant and equal to 1 [18]. The stress triaxiality values of these specimens in the 

center of the neck region can be estimated by Equation (11) [18]. 

 

 center

1
ln 1

3 2

a

R


 
= + + 

 
 (11) 

 

a represents the minimum radius of the neck cross section and R represents the local radius of 

the neck, as shown in Figure 4b. To vary the stress triaxiality from 0.33 to 0.90, three values of 

R were used (6, 12 and 30), keeping the diameter of the neck cross-section constant at 6 mm. 

 

The value of stress triaxiality was evaluated by simulations of the mechanical tests. Fig. 5 shows 

an example of simulating a tensile test of notched round bar with R equal to 12 mm. Fig. 5a 

illustrates the model and the corresponding boundary conditions. To describe the material 

plasticity in this simulation, the stress-strain curves (before damage initiation) acquired from 

the quasi-static compression test of cylindrical specimens were used. The two extremities of 

the bar were fixed to a rigid body representing the machine clamping system. The bottom 

extremity of the bar was fixed, while the upper one moved at a constant loading speed of 1 

mm/s. The 4-node axisymmetric elements (CAX4R) were applied in Abaqus/Explicit, and the 

minimum element size was 0.2 mm x 0.3 mm. Fig. 5b and Fig. 5c show the distributions of the 

equivalent plastic strain and the stress triaxiality, respectively, when the value of maximum 

equivalent plastic strain in the bar reaches 0.4. This strain limit was chosen since, according to 

Allahverdizadeh [30], the strain at damage initiation for Ti6Al4V alloy under different states 

of stress is in the range between 0.3 and 0.5. Fig. 5d shows the evolution of the equivalent 

plastic strain and the stress triaxiality from the center to the border of the specimen (in the 

direction of x axis). Since their values are largest in the center, this location is considered as the 

damage initiation point. Then, the stress triaxiality was plotted as a function of the equivalent 

plastic strain in this location (Fig. 5e). Analyzing this figure, the value of stress triaxiality varies 

between 0.72 and 0.89 when the strain at damage initiation is between 0.3 and 0.5 [30]. The 

stress triaxiality for the other specimen geometries was evaluated using similar methodology. 
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(a)       (d)    (e) 

Fig. 5: Simulation of the tensile tests of NRB_R12: a) FE model with boundary conditions; b) distribution of the 

equivalent plastic strain; c) distribution of the stress triaxiality; d) distribution of the equivalent plastic strain and 

stress triaxiality in the direction of x axis; e) Relation between the stress triaxiality and the equivalent plastic 

strain in the center of the bar. 

The notched flat plate (NFP) geometry was used to obtain the state of stress values under plane 

stress condition, as shown in Fig. 6. In this case, by varying the neck radius (R), different values 

of stress triaxiality and Lode angle parameter are generated. There were three types of notched 

flat plate: NFP_R10 (R = 10 mm), NFP_R20 (R = 20 mm) and NFP_R40 (R = 40 mm). The 

thickness of all these specimens was 2.35 mm to ensure plane stress conditions.  

 

The same methodology as applied for the notched round bars was also applied to evaluate the 

values of two states of stress parameters for the notched flat plate. An example of notched flat 

plate with R equal to 10 mm is presented in Fig. 7. Half of the specimen geometry and the 

corresponding boundary conditions used in the model are shown in Fig. 7a. To describe the 

material plasticity in this simulation, the stress-strain curves (before damage initiation) acquired 

from the quasi-static compression test of cylindrical specimens were used. 3D elements 

(C3D8R) were used, with a minimum element size of 0.3 mm x 0.6 mm x 0.78 mm.  Fig. 7b 

    

                 (b)         (c) 
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and Fig. 7c show the distributions of the equivalent plastic strain and the stress triaxiality, 

respectively. These distributions were obtained when the value of maximum equivalent plastic 

strain in the plate was equal to 0.4. Fig. 7d shows the evolution of the stress triaxiality and the 

equivalent plastic strain from the center to the border (in the direction of x axis). It is found that 

the largest value of stress triaxiality is located at the center of this specimen. Thererfore, the 

stress triaxiality was plotted as a function of the equivalent plastic strain in this location, where 

the largest stress triaxiality is obtained. The range of stress triaxiality varies between 0.59 and 

0.74 when the strain at damage initiation is between 0.3 and 0.5 [30]. As far as the Lode angle 

parameter is concerned, the corresponding values are between -0.08 and -1 (yellow region in 

Fig. 3). 

  

Fig. 6: Nominal geometry of the notched flat plates applied in quasi-static tensile tests. a is the half width of the 

necking cross section and R is the local radius of a neck in the notched flat plate. 

 

Finally, to generate different stress triaxiality values keeping the Lode angle parameter zero 

(plane strain conditions), the double notched specimen introduced by Abushawashi et al. [28] 

was used in the compression tests. This specimen has the advantage of generating both negative 

and positive stress triaxiality values, whereas the flat grooved specimen used by Bai and 

Wierzbicki [18] in tensile tests can only generate positive stress triaxiality values. 

 

Different stress triaxiality values generated by the double notched specimen (DN) in 

compression tests are generated by varying the pressure angle. This angle is between the line 

passing through the centers of the two arcs and the (horizontal) line normal to the loading force, 

as shown in Fig. 8. Three double notched specimens with different pressure angles are 

presented in this figure. However, five pressure angles were selected for this study: 30o, 45o, 

60o, 90o and 120o (references DN_30, DN_45, DN_60, DN_90 and DN_120, respectively). A 

pressure angle less than 90° generates negative stress triaxiality, while positive stress triaxiality 



 14 

is generated by a pressure angle greater than 90°. These pressure angles generate stress 

triaxialities values between –0.7 and +0.6. Additionally, the thickness of all these specimens 

was 25 mm to ensure plane strain conditions, so that the Lode angle parameter was zero. 

  

                    (a)      (d)    (e) 

Fig. 7: Simulation of tensile tests of NFP_10: a) FE model with boundary conditions; b) distribution of the 

equivalent plastic strain; c) distribution of the stress triaxiality; d) distribution of the equivalent plastic strain and 

stress triaxiality in the direction of x axis; e) Relation between the stress triaxiality and the equivalent plastic 

strain in the center of the plate. 

In order to determine the pressure angles that generate a broad range of stress triaxiality in the 

region between two arcs, simulations of the compression tests using specimens with different 

pressure angles were performed. For instance, Fig. 9 presents the simulation of the compression 

test of the DN_60. Fig. 9a shows the model of half of a specimen geometry and the 

corresponding boundary conditions. To describe the material plasticity in this simulation, the 

stress-strain curves (before damage initiation) acquired from the quasi-static compression test 

of cylindrical specimens were used. A 4-node axisymmetric element (CAP4R) was used, and 

the minimum element size was 0.07 mm x 0.1 mm. Fig. 9b and Fig. 9c show the distributions 

    

              (b)         (c) 
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of the equivalent plastic strain and the stress triaxiality, respectively, when the value of 

maximum equivalent plastic strain in the specimen reaches 0.4. To find the exact location of 

maximum stress triaxiality, a line connecting the maximum equivalent plastic strain values 

between both arcs was drawn. Then, the distribution of stress triaxiality and the equivalent 

plastic strain were plotted along this line (Fig. 9d). As can be seen, the largest value of stress 

triaxiality is located in the middle of the two arcs. Therefore, the stress triaxiality was plotted 

as a function of the equivalent plastic strain in this location, and represented in Fig. 9e. This 

figure reveals that the value of stress triaxiality for this specimen is between -0.31 and -0.29. 

 

  

(a)    (b)    (c) 

Fig. 8: Nominal geometry of the double notched specimen used in quasi-static compression tests: a) 

pressure angle less than 90o; b) pressure angle 90o; c) pressure angle greater than 90o. 

The procedure described above permitted determination of the range of states of stress 

generated by each specimen geometry. This information is important to select suitable specimen 

geometries to cover the broad range of state of stress represented in Fig. 3. The exact state of 

stress value for each specimen will be calculated in section 4.5 after the coefficients of the 

proposed plasticity model have been determined. All the specimens came from the same 

Ti6Al4V block. Since even small variations in the specimen geometry may have a non-

negligible influence on the results, the dimensions of all the specimens were measured before 

conducting the mechanical tests, and specimens outside tolerance were re-fabricated or rejected. 

 

Pressure angle = 30o

∅
4

∅4

6 m
m

Pressure angle = 90o Pressure angle = 120o
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                    (a)      (d)    (e) 

Fig. 9: Simulation of compression tests of DN_60: a) FE model with boundary conditions; b) distribution of the 

equivalent plastic strain; c) distribution of the stress triaxiality; d) distribution of the equivalent plastic strain and 

stress triaxiality along the line connecting the maximum equivalent plastic strain values between both arcs; e) 

relation between stress triaxiality and equivalent plastic strain in the center of the path. 

3.2 Experimental setup 

Table 2 displays four configurations of mechanical tests used in this study. Each test was 

conducted twice to indicate the repeatability of the experimental data.  Quasi-static 

(compression and tensile) tests of all specimen geometries were performed on a servohydraulic 

machine, while the compression tests of cylindrical specimens at different strain rates were 

performed using a Split Hopkinson Pressure Bar (SHPB) apparatus. To obtain the displacement 

or strain distribution on the specimen surface [31], a Digital Image Correlation (DIC) technique 

was applied in the quasi-static mechanical tests. Compared to strain gauges and extensometers, 

this is not affected by necking, which often complicates the determination of the strain at 

damage initiation. A 2D DIC system composed of a single CMOS camera and GOM software 

was applied for the planar specimens, such as double notched specimen and notched flat plates, 

while a commercial 3D DIC system from GOM composed of two CCD cameras and software 

was applied to the round bars due to the curved surface (Fig. 10b). Additionally, an 

extensometer was used in the tensile tests of round bars to measure the local displacement 

  

 (b)     (c) 
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between two gauge points (Fig. 10a). Thus, the displacement was acquired by both 3D DIC 

and extensometer.  

Table 2: Configurations of the mechanical tests. 

Config. Test type Specimen Strain rate Setup 

1 Compression Cylindrical 
0.05 s-1 (quasi-static), 

429 s-1, 950 s-1, 5115 s-1 

Servohydraulic machine & 

SHPB apparatus 

2 Compression Double notched Quasi-static 
Servohydraulic machine & 

2D DIC system 

3 Tensile Round bars Quasi-static 
Servohydraulic machine & 

3D DIC system 

4 Tensile Notched flat plate Quasi-static 
Servohydraulic machine & 

2D DIC system 

 

           

 (a)    (b) 

Fig. 10: Tensile and compression test setup of (a) NRB specimen and (b) DN specimen. 

4. Determination of the constitutive model coefficients 

4.1 Procedure for determination of the plasticity model coefficients 

Fig. 11 shows the procedure to determine the plasticity model coefficients. The procedure 

started with the first configuration shown in Table 2, used to determine the coefficients, A, B, 

C, m, n and E, related to the strain hardening and strain rate effects. The quasi-static 

compression test of a cylindrical specimen was defined as the reference test. Therefore, the 

reference coefficients used in the plasticity model were defined as: 𝜂0 = −1/3, 𝜀0̇ = 0.05 s-1 

and 𝑐θ
c = 1 . Finally, the second and third configurations shown in Table 2 were used to 

determine the coefficients of the state of stress effect. The second configuration was used to 
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determine the coefficients c and 𝑐θ
s , while 𝑐θ

t  and a were determined using the third 

configuration. 

 

Fig. 11: Flowchart of the procedure to determine the plasticity model coefficients. 
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Fig. 12 shows the flowchart of the implementation of the optimization-based procedure in Ls-

Opt software, an optimization software module from LS-Dyna. First, a sort of initial model 

coefficients values were determined using a direct method, based on nonlinear least squares.  

These initial coefficients values were used to initialize the optimization-based procedure. D-

optimal design was utilized to select the best set of coefficients. Then, these coefficients were 

used in the proposed constitutive model, which were imported into Abaqus/Explicit through a 

VUMAT subroutine to simulate the mechanical tests. A metamodel was created based on the 

simulated and experimental force-displacement curves. The difference between these two 

curves was evaluated by a curve mapping segment method [32].  In the next step, the difference 

was minimized by a hybrid algorithm, which used an adaptive simulated annealing (ASA) 

algorithm to find an approximate global solution, followed by Leapfrog Optimizer for 

Constrained Minimization (LFOP) algorithm to sharpen this solution [33]. Finally, a 

termination criterion including the force-displacement error and maximum number of iterations 

was checked. If it was not satisfied, a new response surface was built in the next iteration by 

the sequential response surface method (SRSM). The optimization-based process stopped when 

the termination criterion was satisfied, and the final coefficient values were obtained. 

 

 

Fig. 12: Flowchart of the optimization-based procedure for the model coefficients determination. 
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4.2 Young's modulus determination 

The Young’s modulus needs to be known before determining the plasticity model coefficients. 

According to the Ti6Al4V alloy supplier, the Young’s modulus is between 107 and 122 GPa, 

and the Poisson’s ratio is 0.31. Then, quasi-static tensile tests of smooth round bars were 

performed to determine its exact value. The slope of stress-strain curve in the elastic region was 

measured, and the Young’s modulus found to equal 114 GPa. 

4.3 Determination of the coefficients of the plasticity model 

To determine the coefficients corresponding to the strain hardening and strain rate effects, 

compression tests of cylindrical specimens were performed at different strain rates of 0.05 s-1, 

429 s-1, 950 s-1 and 5115 s-1. The force - displacement curves were obtained for each test, then 

the corresponding true stress-true strain curves were determined. Only the stress-strain curve 

before damage initiation was applied in the determination procedure.  A compression test was 

also simulated by Abaqus/Explicit. Fig. 13 shows the model of half of the cylindrical specimen 

geometry and the corresponding boundary conditions. A mesh composed of 0.3 mm 4-node 

axisymmetric elements (CAX4R) was used. The friction coefficient between upper and bottom 

dies and specimen was 0.12, obtained using the ring compression test method. The loading 

speed (V) for different strain rates was determined by Equation (12) and applied to the upper 

die, while the bottom die was static.  

 

 *V h=  (12) 

 

In this equation, 𝜀̇ is the strain rate and h is the specimen height. 

 

 

Fig. 13: FE model of the compression test of the cylindrical specimen. 
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Since the quasi-static compression test of a cylindrical specimen is the reference test, Equation 

(4) is reduced to the first two terms (Equation (A) in Fig.11), i.e., the strain hardening and strain 

rate effects. Applying the optimization procedure represented in Fig. 11, the values of the 

coefficients were modified iteratively to minimize the difference between the experimental and 

the simulated force-displacement curves for all the strain rates. Fig. 14a shows both simulated 

and experimental force-displacement curves after applying the optimization procedure. Fig. 

14b shows both experimental true stress-true strain curves and the stress surface, the latter 

calculated considering only the first two terms of Equation (4) and using the determined 

coefficients. It is seen that the stress surface matches quite well with the experimental data 

represented by the red dots. The determined coefficient values are summarized in Table 3.   

 

 

      (a)                                    (b) 

Fig. 14: a) Simulated and experimental force–displacement curves of the compression tests over cylindrical 

specimens after applying the optimization procedure; b) Experimental true stress – true strain curves and the 

stress surface calculated considering the first two terms of Equation (4) and using the determined coefficients. 

As shown in Fig. 10, the next step consisted of determining the coefficients 𝑐η and 𝑐θ
s, related 

to the state of stress effect, using the double notched specimens. Five pressure angles of 30o, 

45o, 60o, 90o and 120o were submitted to compression tests under the same quasi-static loading 

conditions, and the corresponding force-displacement curves were obtained. Applying the same 

optimization procedure described above and represented in Fig. 11, 𝑐η and 𝑐θ
s coefficients were 

determined, and are shown in Table 3. Fig. 15a shows both simulated and experimental force-

displacement curves after applying the optimization procedure.  
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Finally, to determine the remaining coefficients related to the state of stress effect, 𝑐θ
t  and a, 

different notched round bars were used in the quasi-static tensile tests. The same minimum 

diameter of 6 mm was used with three different local neck radii R of 6 mm, 12 mm and 30 mm. 

Applying the same optimization procedure as described above and represented in Fig. 11, 𝑐θ
t  

and a coefficients were determined, and are shown in Table 3. Fig. 15b shows both the 

simulated and experimental force-displacement curves after applying the optimization 

procedure. 

 

Table 3: Determined coefficients of the plasticity model. 

 Strain hardening Strain rate Reference 

Coefficient A m n B C E 𝜀0̇ 𝜂0 

Value 812.1 625.7 0.176 0.400 0.073 3949 0.05 -1/3 

 

 Stress triaxiality Lode angle 

Coefficient 𝑐η 𝑐θ
s 𝑐θ

t  𝑐θ
c a 

Value 0.212 0.795 1.061 1 4 

 

 

  

 (a)       (b) 

Fig. 15: Simulated and experimental force-displacement curves of: a) compression tests of double notched 

specimens; b) tensile tests of notched round bars. 

4.4 Verification of plasticity model 

After the determination of the plasticity model coefficients, simulations of the tensile tests of 

notched flat plates (fourth configuration in Table 2) were conducted to verify the accuracy of 

the plasticity model. It is worth pointing out that these specimens were not used in the 
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coefficient determination process. The model of the tensile test is almost the same as that in 

section 3.1, except for the plasticity model, which is replaced by the model given by Equation 

(4) with the corresponding coefficients shown in Table 3. To estimate the contribution of each 

effect on the flow stress, three simulations were performed corresponding to three plasticity 

models: 1) Equation (4) with the strain hardening (SH) and strain rate (SR) effects only; b) 

Equation (4) with the SH, SR and stress triaxiality (Triax) effects; c) Equation (4) with all the 

effects, including the Lode angle effect (Lode). Fig. 16 compares the simulated force-

displacement curves with those measured for the NFP_R10 specimen.   

 

 

Fig. 16: A comparison between simulated and experimental force–displacement curves for NFP_R10. 

A large difference is observed (23%) between the simulated and experimental force-

displacement curves when the plasticity model includes the strain and strain rate effects only. 

This difference is reduced to 4.1% when the stress triaxiality effect is also included in the 

plasticity model. Finally, the simulated force-displacement curve matches quite well with the 

experimental ones after also considering the Lode angle effect. The same influences of the strain 

hardening, strain rate, triaxiality and Lode angle on the force-displacement curves are observed 

for the other two notched flat specimens (NFP_R20 and NFP_R40). Therefore, it can be 

concluded that the state of stress effect, characterized by the stress triaxiality and the Lode angle, 

has a significant effect on the plasticity of Ti6Al4V titanium alloy. 

 

The accuracy of the constitutive model to reproduce the mechanical behavior of the Ti6Al4V 

alloy was also verified by comparing the simulated and measured plastic strain distributions at 
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the same time as the deformation process (before damage initiation), for both DN and NRB 

specimens. Fig.17 shows experimentally determined (by DIC) and simulated (FEM) strain 

distributions of these two types of specimen (DN with a pressure angle of 90º and NRB with a 

notch radius of 6 mm). 

 

     

(a)       (b) 

Fig. 17. Equivalent plastic strain distribution in the DN (a) and NRB (b) before damage initiation, obtained 

by numerical simulation (left side) and determined by DIC (right side). 

4.5 Determination of the coefficients of the damage model  

Fig. 18 shows the procedure for the determination of the coefficients of Equation (8), 

corresponding to damage initiation. First, experimental mechanical tests using all the specimen 

geometries were conducted and the corresponding force-displacement curves obtained. 

Numerical simulations of these mechanical tests were also performed to obtain the 

corresponding simulated force-displacement curves. Second, simulated and experimental 

curves for each test were compared, and the displacement at damage initiation di was obtained. 

Third, the images taken by the DIC system cameras corresponding to the displacement at 

damage initiation were selected for DIC analysis, in order to calculate the equivalent plastic 

strain at damage initiation, 𝜀i̅
p
. Knowing 𝜀i̅

p
, the stress triaxiality η and Lode angle parameter 𝜃̅ 

can be obtained from the numerical simulations when the damage is initiated [23]. Using both 

equivalent plastic strain at damage initiation and state of stress, the coefficients of Equation (8) 

were determined.  
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To illustrate this procedure, the example of DN_90 is used in the compression tests (Fig. 19a) 

and numerical simulations (Fig. 19b). The displacement at damage initiation was determined 

by comparing the simulated and experimental force-displacement curves, as shown in Fig. 19c. 

This figure shows that the two curves have identical evolution until a displacement of 0.75 mm, 

then they follow different directions. Taking this value as the displacement at damage initiation, 

the corresponding strain at damage initiation 𝜀i̅
p
 can be obtained by analyzing the distribution 

of equivalent plastic strain in the specimens, determined experimentally using the DIC 

technique, as illustrated in Fig. 15a. The value of 𝜀i̅
p
 is the average of the two maximum values 

shown in this figure, and is equal to 0.275. 

 

 

Fig. 18: Flowchart of the procedure for the determination of the damage initiation coefficients. 

To determine the stress triaxiality at damage initiation, the distribution of equivalent plastic 

strain obtained from the simulation was used, as shown in Fig. 19b. In this figure, a path 

corresponding to a straight line crossing the regions of maximum equivalent plastic strain was 

drawn. Plotting both simulated equivalent plastic strain and stress triaxiality along this path 

(Fig. 19d), the stress triaxiality at damage initiation can be determined. It is located in the 

middle of the path and is equal to -0.08, since the damage initiates where the stress triaxiality 

is more positive/less negative. As mentioned above, the Lode angle parameter is equal to 0 for 
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this specimen due to the plane strain conditions. However, the exact value of the Lode angle 

parameter is not known for the notched flat specimen. Therefore, after knowing the location of 

damage initiation, which corresponds to the maximum value of stress triaxiality, the value of 

the Lode angle parameter was determined at the same location.   

 

   

   (a)                        (b) 

   

   (c)        (d) 

Fig. 19: Simulated and experimental results for DN_90: a) experimental strain distribution at damage initiation 

obtained by DIC; b) simulated strain distribution at damage initiation; c) simulated and experimental force-

displacement curves; d) distribution of equivalent plastic strain and stress triaxiality along the selected path in a). 

The same procedure was applied to the other specimens to get the state of stress (η and θ) and 

the equivalent plastic strain (𝜀i̅
p

) at damage initiation. All the values are summarized in Table 

4, and the 3D fracture locus was built in the space of (𝜀i̅
p
, 𝜂, 𝜃̅), as shown in Fig. 20.  

Equivalent strain
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Fig. 20: Fracture surface of the Ti6Al4V alloy. 

Table 4: A summary of the strains at damage initiation for all the specimens 

Type of specimen Strain at damage initiation, 𝜀i̅
p
 Stress triaxiality, 𝜂 Lode angle parameter, 𝜃̅ 

Cylindrical 0.435 -0.333 -1 

DN_30 0.423 -0.709 0 

DN_45 0.457 -0.696 0 

DN_60 0.37 -0.458 0 

DN_90 0.277 -0.08 0 

NRB_R6 0.384 0.976 1 

NRB_R12 0.435 0.763 1 

NRB_R30 0.476 0.623 1 

NFP_R10 0.306 0.427 0.971 

NFP_R20 0.545 0.487 0.922 

NFP_R40 0.489 0.479 0.947 

 

A wide range of state of stress is covered by the designed specimens, where the stress triaxiality 

varies from -0.709 to 0.976 and the Lode angle parameter varies from -1 to 1. According to Bai 

and Wierzbicki [18], boundary limits can be used to construct the fracture surface. Thus, three 

limiting cases are proposed: 𝜃̅ =  −1, corresponding to the compression tests of cylindrical 

specimens; 𝜃̅ =  0, corresponding to the compression tests of double notched specimens; 𝜃̅ =

 1, corresponding to the tensile tests of notched round bars.  For each boundary limit, an 

exponential function was applied to characterize the relation between the strain at damage 

initiation and stress triaxiality based on the theory of Rice [17]. It is extremely difficult to 
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determine the coefficients by fitting all the experimental points into the formulation of the 

damage initiation presented in Equation (8). Thus, three boundary limits were determined 

independently. First, D3, D4 and D5, D6 were determined by fitting the experimental points into 

boundary limits 𝜃̅ =  0 and 𝜃̅ =  1, respectively. Secondly, the remaining experimental points 

were used to determine the coefficients D1, D2 related to the boundary line 𝜃̅ =  −1. Finally, 

the compression tests of the cylindrical specimens at different strain rates were used to 

determine D7 coefficient associated with the strain rate effect. All the determined damage model 

coefficients are shown in Table 5. 

 

Table 5: Determined coefficients of the damage model. 

Damage coefficients D1 D2 D3 D4 D5 D6 D7 

 0.694 0.608 0.263 0.734 0.430 0.040 -0.028 

 

In the case of the damage evolution, both the exponent parameter , and the fracture energy 

density Gf, were determined by applying the optimization procedure mentioned above. Only 

the simulated and experimental force-displacement curves of the compression tests of double 

notched specimens were used. Fig. 21 illustrates the comparison between simulated and 

experimental force displacement curves after optimization, corresponding to Gf and  equal to 

18.5 KJ/m2 and 9.4, respectively. After this optimization, the difference of fracture 

displacement between the simulation and the experimental test is 9% in the compression test of 

DN_45, and smaller for the other two specimens. Moreover, the experimentally determined (by 

DIC) and simulated plastic strain distributions in the specimens after damage initiation were 

also compared for specimens DN_90 and NRB_R6. As can be seen in Fig. 22, the simulated 

and experimental distributions are nearly identical. Therefore, the damage evolution process is 

predicted well by the proposed damage model. 
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Fig. 21: FE force–displacement response for double notched specimens compared to the experiments with 

damage evolution model.  

 

      

(a)       (b) 

Fig. 22. Equivalent plastic strain distribution in the DN (a) and NRB (b) after damage initiation, obtained 

by numerical simulation (left side) and determined by DIC (right side). 

5. Comparison of the proposed model and the Johnson-Cook model 

To evaluate the precision of the proposed model to represent the mechanical behavior of the 

Ti6Al4V alloy in metal cutting, true stress-true strain curves obtained by this model were 

compared with the curves generated by the J-C constitutive model, which is extensively applied 
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in the finite element analysis of the metal cutting process. J-C plasticity and damage models 

are given by Equation (13) – (16), without the thermal softening term. 
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Ajc, Bjc, Cjc and njc are the coefficients of the plasticity model, and 𝜀0̇ is the reference strain rate 

which equals 0.05 s-1. D1jc – D4jc are the damage coefficients and Gf is the fracture energy 

density. 𝜀i̅  is the plastic strain at damage initiation and 𝜀f̅  is the plastic strain when all the 

stiffness and fracture energy of the material have been lost and dissipated, respectively. 𝜎̃ is the 

hypothetical undamaged stress evaluated by Equation (13), 𝑙 is the characteristic length of the 

finite element in the simulation. 𝜇̅ = 0 is the equivalent plastic displacement before damage 

initiation while 𝜇̅f is the equivalent plastic displacement at complete fracture. 

 

The coefficients of the J-C model were also determined using the mechanical tests data. 

Compression tests of cylindrical specimens at different strain rates were used to determine the 

coefficients of the plasticity model (Ajc, Bjc, Cjc and njc), and the damage model coefficient 

related to the strain rate effect (D4jc). Compression tests of double notched specimens were used 

to determine the damage model coefficients associated with the stress triaxiality effect (D1jc – 

D3jc). The value of Gf, was already determined in section 4.5. Table 6 shows the determined 

coefficients of the J-C constitutive model for the Ti6Al4V alloy. Then, the numerical 

simulations of the mechanical tests were conducted with the J-C model, and the results obtained 

were compared with those obtained by the proposed constitutive model, as well as the 

experimental data. Fig. 23 shows these results for four different specimen geometries that 

generate different states of stress: cylindrical specimen (C), double notched specimen having a 
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pressure angle of 90° (DN_90), notched flat plate specimen with R equal to 10 mm (NFP_R10) 

and notched round bar with R equal to 12 mm (NRB_R12).  

 

Table 6: Determined coefficients of the J-C model. 

 Plasticity Damage  

Coef. Ajc Bjc njc Cjc D1jc D2jc D3jc D4jc Gf (KJ/m2) 𝜀0̇ (s-1) 

Value 812 844 0.261 0.015 0.245 0.081 -1.276 -0.028 18.5 0.05 

 

 

Fig. 23: A comparison of force-displacement curves from experimental data and simulated results with the 

proposed constitutive model and the J-C model: a) compression test of cylindrical specimens at a strain rate of 

950 s-1; b) quasi-static compression test of DN_90; c) quasi-static tensile test of NFP_R10; d) quasi-static tensile 

test of NRB_R12. 

Both the proposed and J-C constitutive models used in the simulations of the compression tests 

of the cylindrical specimen at a strain rate of 950 s-1 generate force-displacement curves that 

match the experimental ones quite well. However, when the J-C model is applied in the 

numerical simulations of the compression test of double notched specimen, tensile test of 
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notched flat plate and notched round bar, the predicted force-displacement curves are 

considerably overestimated. In particular, higher forces and displacements at fracture were 

obtained using the J-C model, when compared to the proposed constitutive model and the 

experimental results. Therefore, the J-C model is not able to represent the mechanical behavior 

of Ti6Al4V alloy under different states of stress, while the proposed model shows good 

accuracy. 

6. Conclusions 

A constitutive model describing the mechanical behavior of Ti6Al4V titanium alloy that 

includes both the plasticity and damage is proposed. It accounts for the effects of strain 

hardening, strain-rate and the state of stress in both the plasticity and damage regions. This 

model can be used to describe the work material behavior in manufacturing process simulations 

involving crack propagation and neglecting the thermal effects on the mechanical behavior. 

This is the case for work material in the first deformation zone in metal cutting, where its 

separation from the workpiece is caused by crack propagation. Moreover, most of the heat 

produced due to plastic deformation in this zone flows into the chip, and only a small amount 

flows into the workpiece. 

 

Numerical simulations of the tensile and compression tests with several specimen geometries 

permitted the state of stress (stress triaxiality and the Lode angle parameter) representative of 

the metal cutting process to be obtained. Then, experimental mechanical tests were conducted 

and the force–displacement curves obtained were used in a hybrid numerical/experimental 

optimization-based procedure to determine the constitutive model coefficients.  

 

Additional force-displacement curves from mechanical tests of specimen geometries not used 

in the determination of coefficients procedure were obtained. The comparison between these 

experimental curves and the simulated ones (using the proposed constitutive model with the 

determined coefficients) confirmed the accuracy of the proposed constitutive model to describe 

the mechanical behavior of Ti6Al4V alloy under different states of stress. The accuracy was 

also confirmed by a benchmark test considering the proposed constitutive model and the J-C 

model. These simulations show the importance of the stress triaxiality and the Lode angle in 

the improvement of constitutive model accuracy. 
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