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The present work aims at performing a molecular dynamics modeling of suspensions
composed of flexible linear molecules. Molecules are represented by a series of connected
beads, whose dynamics is governed by three potentials: the extension potential affecting
the elongation of segments connecting consecutive beads, the one governing the molecule
bending and finally the Lennard-Jones describing the interaction of non-consecutive beads.
A population of non-interacting molecules is simulated in elongation and shear flows for
different flow and molecule parameters. The flow-induced conformation is analyzed in
the different considered situations. Finally a model for predicting the evolution of the
population conformation will be obtained by using deep-learning.

1. Introduction

Polymers and viscoelastic fluids can be described at different scales, deeply discussed in many books, among them [1]
[2]. The molecular scale (see [3] [4] and the references therein) precedes the one of kinetic theory where the molecules 
individuality is replaced by a scalar distribution function – DF – involving a series of conformational coordinates [2]. Most 
of kinetic theory models represent molecules as multi-bead-rod or multi-bead-springs idealizations, usually coarsened by 
using the end-to-end vector to reduce the dimensionality of the conformational space [5]. The resulting models were in 
general solved numerically by using Brownian and stochastic numerical techniques for circumventing the so-called curse of 
dimensionality that the high-dimensionality of the conformation space entails [6] [7].

In [8] and [9] authors consider Gaussian chains combined with the Langevin equation for better account for the molecular 
conformation. Works attaining the atomic scale are quite scare, being the resulting models difficult to extend to larger scales 
[10–14].

The present work aims at performing a molecular dynamics modeling of suspensions composed of flexible molecules. 
Such a description scale has as main advantage the fine representation of the molecular configurations, finer than the ones 
attainable when using coarser descriptions (e.g. kinetic theory descriptions). The main drawback when using these extremely 
fine descriptions concerns the computational cost. However, to have access to the real behavior and evaluate the validity 
of coarser descriptions, high fidelity simulations at the finest scale seems compulsory. Moreover, as soon as an accurate 
approximation of the microscopic physics is attained and available, it could be then introduced into coarser descriptions.
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Fig. 1. Molecule schema.

When describing finely molecules as a series of connected beads, the whole molecular conformation strongly depends 
on the choice of the potentials used for deriving the forces to be introduced into the motion equation at the beads level. 
Different potentials are in general considered: (i) the one describing the extension of the inter-beads segment; (ii) the 
one describing the molecule bending mechanism, that is expressed at each bead from its two neighbors; and finally (iii) 
the weak interaction (Lennard-Jones) between non-neighbor beads. The evaluation of the population conformation with 
respect to the different available choice of potentials and in particular their intensity is of major interest to better describe 
rheological features. In the present work and without loss of generality of the proposed methodology we consider dilute 
suspensions, that allows neglecting the interaction of beads belonging to different molecules.

Our model assumes linear molecules composed of beads at which, other than the potentials just discussed, also acts 
Brownian events representing the action of the molecules of solvent in which the molecule is assumed be immersed. A 
population of non-interacting molecules is simulated in elongation and shear flows for different flow and molecule pa-
rameters. The flow-induced conformation is analyzed in the different considered situations and some statistical outputs 
extracted.

Finally a model for predicting the evolution of the population conformation will be obtained by using deep-learning, 
deeply used in a variety of applications, as system control [15,16] and dynamical systems [17] for citing few.

2. Fine-scale discrete simulation

The fine scale simulation is performed by representing the molecule as a series of connected beads where forces apply,
the last derived from different potentials as well as the bombardment of solvent molecules.

As previously discussed we are considering three different potentials responsible of three different deformation mecha-
nisms: the Lennard-Jones potential V LJ is used to describe the inter-beads interactions (of non-neighbor beads), and other 
two potentials, V E and V B, are used to describe the molecule segments elongations and chain bending respectively, see 
Fig. 1.

Thus, the total potential reads
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where M is the number of molecules in the population, j refers to the molecule chain in that population, and i refers to the 
considered bead composing it, i = 1, . . . , N (with N the number of beads composing the molecular chain). Finally we define 
a characteristic function for describing the bead direct neighborhood: χik = 1 if |i − k| > 1 and χik = 0 if |i − k| ≤ 1

The Lennard-Jones potential reads
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with dik = ||xk − xi || the distance between beads Bi and Bk , located at positions xi and xk respectively, and ε and σ the 
two usual parameters involved in the Lennard-Jones potential.

The elongation potential is given by

V E
i,i+1 = KE

2

(
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deq

)2

(3)

where deq is the equilibrium distance between two successive beads, distance at which the potential reaches its minimum 
(and consequently the associated force vanishes). In the previous expression KE reflects the potential intensity.

The bending potential between three successive beads

V B
i−1,i,i+1 = KB

2

(
θi−1,i,i+1 − θeq

)2 (4)



where θi−1,i,i+1 is the angle defined by vectors joining beads i − 1, i and i, i + 1 with θeq the angle at equilibrium. In our 
study we consider θeq = 70.5◦ (that corresponds to the angle between two consecutive carbone-carbone bonds). Again, the 
potential intensity is described from KB.

The force applying at each bead related to these three molecule deformation mechanisms results from the potential 
derivative according to

FI
i = −∂V

∂xi
(5)

There are two other forces acting on the bead. First, the one related to the fluid drag FD
i . Let v(x) be the fluid velocity at 

position x, assumed unperturbed by the rods presence, the drag force reads

FD
i = ξ(v(xi) − ẋi) (6)

where ẋi denotes the velocity of bead Bi .
Finally a Brownian force is also considered emulating the solvent bombardment, and is expressed from

FBrow
i = √

2D dt W i (7)

where D denotes the diffusion coefficient, dt the calculation time step and W i a random variable with zero mean and unit 
standard deviation.

The linear momentum balance involving bead Bi reads

Fi = FD
i + FI

i + FBrow
i = m ai (8)

with the particle acceleration ai = dẋi
dt = d2xi

dt2 .
A second-order time integration scheme is considered, consisting of⎧⎪⎪⎪⎨⎪⎪⎪⎩
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i + 1
2

(
an

i + an+1
i

)
	t

(9)

where the superscript n refers to the time step, tn = n	t .
Prior to proceed with the time integration, equations are rewritten in dimensionless form, by considering as characteristic 

variables

– length: σ
– energy: ε
– mass: m
– velocity:

√
ε/m

– acceleration: ε/(mσ)

– time: σ
√
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– diffusion: σ−3
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m

which allows writing the dimensionless model in which, for the sake of clarity, we do not change the notation for designat-
ing the dimensionless variables.
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Fig. 2. Initial conformation and its evolution when subjected to elongation.

3. Results

In the numerical results reported in the present section we assumed as equilibrium distance between two consecutive
beads the one associated with the Lennard-Jones (dimensionless) potential, i.e. deq = 21/6. In order to avoid large fluctuations 
of the molecule length we assume a quite large elongation stiffness K̂E = 10000 and a bending potential K̂B = 1000.

In order to derive rheological properties (based on the molecular conformation), a large enough population of molecules 
must be considered, allowing one to compute accurate statistics. In the cases reported in the present paper M = 1000
chains involving N beads, N = 100, and consequently 99 inter-bead segments are considered. In all cases the dimensionless 
diffusion and drag coefficients were assumed taking unit values.

Two simple rheological flows were addressed, elongational and simple shear flows, both expressed from the dimension-
less effective strain rate ε̇ , leading to the following dimensionless velocity fields:

– elongational flow,

v =
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v y
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– simple shear flow,

v =
⎛⎝ vx

v y

vz

⎞⎠ =
⎛⎝ ε̇z

0
0
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where three values of ε̇ will be evaluated: (i) ε̇ = 5; (ii) ε̇ = 1, and (iii) ε̇ = 0.2.
The initial state consists of the M =1000 molecules generated randomly. For that purpose the first bead of each chain is 

place at point x1. Then the second bead is randomly placed at point x2 by ensuring ‖x2 − x1‖ = deq. The third bead is place 
at point x3 ensuring now the two conditions: (i) ‖x3 − x2‖ = deq and (ii) ̂L12L23 = θeq, with Li,i+1 = xi+1 − xi . The procedure 
continues until placing the final bead.

By proceeding like this, there is the risk that beads in the same molecule approach too much. Thus, before applying the 
flow, the molecules population is subjected to the Lennard-Jones potential to ensure the fulfillment of the excluded volume. 
Fig. 2 depicts the initial molecule conformation and then, the one that results from its elongation.



3.1. Case studies

In what follows different analyses are performed by varying the flow and its intensity (elongation and simple shear, with 
ε̇ = 5 and ε̇ = 0.2). Each simulation leads to a figure composed of 8 subfigures, each one representing (top to bottom, left 
to right):

– representation of the molecules population where the molecule barycentre is placed at the origin of the coordinate
system;

– average of the different molecule segments joining consecutive beads (from 1 to N − 1);
– the orientation tensor calculated by defining

u j
i,i+1 = L j

i,i+1

‖L j
i,i+1‖

(13)

where j refers the considered molecule in the population, j = 1, . . . , M, and i the considered bead, i = 1, . . . , N − 1, from 
which the orientation tensor writes

S = 1

M
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– the conformation tensor C computed from the end-to-end vector L j
1,N according to

C = 1

M

M∑
j=1

L j
1,N ⊗ L j

1,N (15)

– the distribution of u j
i,i+1 on the unit sphere (noted as DF in the figure), each vector being associated with a Gaussian

distribution for smoothing the representation;
– a similar representation but now concerning only the end-to-end vectors u j

1,N;

– average of the segments of all molecules with the associated standard deviation;
– average of segments located at the molecule ends and at the center with their associated standard deviations.

3.2. Discussion

Figs. 3 and 4 concern elongation. It can be noticed that central segments are very elongated, with a final length that at 
high elongation doubles the one of segments located at the molecules extremities. When decreasing the elongation intensity 
central segments become less extended, and the end-to-end conformation remains aligned with the elongation, however 
the segments orientation distribution exhibits a particular annular distribution whose radius depends on the elongation 
intensity.

Figs. 5 and 6 concern shear flow. Segments have approximately the same length at the almost steady state. An overshoot 
is noticed at the central segments during the transient regime. At high shear rates the distribution concentrate at two 
regions (4 by symmetry) that attenuates when decreasing the shear rate.

3.3. Deriving a model of the conformation evolution

As discussed in the introduction section direct numerical simulations are very expensive from the computational point 
of view, and in that case equations describing the conformation evolution depending on the conformation and the applied 
flow kinematics seems preferable.

As this kind of model is quite difficult to obtain, here we propose using deep-learning techniques for that purpose. The 
conformation evolution is assumed evolving according to

dC

dt
= f(C,∇v) (16)

with the velocity gradient given by
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⎛⎜⎝ ∇v11 ∇v12 0

0 −∇v11
2 0
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2
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Fig. 3. Elongation at ε̇ = 5.

We elaborated a neural network – NN – involving two hidden layers of 20 neurons, being the inputs the 6 components 
of the (symmetric) conformation tensor and the two components of the velocity gradient ∇v11 and ∇v12, being the outputs 
the six components of time derivative of the conformation tensor.

We restrict to molecules composed of 20 beads, i.e. N = 20, with the lower bending stiffness K̂R = 100. 600 flow induced 
conformations are simulated by choosing randomly both gradient of velocity components, according with the 101.4(ω−0.5) , 
where ω is a random variable uniformly distributed in the interval [0, 1]. This choice allows ensuring values of the effective 
strain rate in the interval (0.2, 5), covered almost uniformly in the logarithmic scale.



Fig. 4. Elongation at ε̇ = 0.2.

When the neural network extract the internal weights, the solution is computed again for different values of velocity 
gradient, randomly chosen, in order to compare the direct numerical solution with the neural-network predictions. Fig. 7
compares both conformation predictions. The conformational predictions are qualitatively in agreement with the ones de-
rived from direct numerical simulations, however quantitatively some gaps are noticed. For reducing them, different routes 
exist: consider alternative networks, increasing the number of hidden layers or the number of nodes (neurons) in those 
layers. However, those choices are detrimental with respect to the training efficiency. A deeper comprehension of NN seems 
necessary for better representing the subjacent physics, to better perform predictions while keeping as reduced as possible 



Fig. 5. Shear at ε̇ = 5.

the training needs (it is important to note that direct numerical simulations that serve for training the NN are extremely 
expensive from the computational viewpoint).

4. Conclusion

In this paper, we proposed a direct numerical simulation of a suspension of non-interacting flexible molecules, and
evaluated the flow induced conformation. Simulations prove that the conformation can exhibit unexpected features, as the 
annular distribution of the molecular segments orientation.



Fig. 6. Shear at ε̇ = 0.2.

The second contribution of the present work concerns the derivation of an evolution equation for the so-called conforma-
tion tensor, that is expected describing the rheological findings, by using artificial intelligence techniques, and in particular 
deep-learning. It has been proved that the learned model allows deriving very accurate predictions for flows differing from 
the ones considered in the learning stage (neural network construction).

The obtention of richer expressions of the conformation evolution in general transient and complex flows, as well as 
the conformation / flow kinematics coupling through an adequate constitutive equation, constitute the main works in 
progress.



Fig. 7. Comparing direct numerical solutions (left) and neural-network based prediction (right).
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