
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/18435

To cite this version :

Domenico BORZACCHIELLO, José Vicente AGUADO, Francisco CHINESTA - Non-intrusive
Sparse Subspace Learning for Parametrized Problems - Archives of Computational Methods in
Engineering - Vol. 26, n°2, p.303-326 - 2019

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/18435
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

Non-intrusive sparse subspace learning for parametrized
problems

Domenico Borzacchiello · José V. Aguado ·
Francisco Chinesta

Abstract We discuss the use of hierarchical collocation to approximate the numer-
ical solution of parametric models. With respect to traditional projection-based re-
duced order modeling, the use of a collocation enables non-intrusive approach based
on sparse adaptive sampling of the parametric space. This allows to recover the low-
dimensional structure of the parametric solution subspace while also learning the
functional dependency from the parameters in explicit form. A sparse low-rank ap-
proximate tensor representation of the parametric solution can be built through an
incremental strategy that only needs to have access to the output of a deterministic
solver. Non-intrusiveness makes this approach straightforwardly applicable to chal-
lenging problems characterized by nonlinearity or non affine weak forms. As we
show in the various examples presented in the paper, the method can be interfaced
with no particular effort to existing third party simulation software making the pro-
posed approach particularly appealing and adapted to practical engineering problems
of industrial interest.

Keywords Reduced order modeling ·Non-intrusiveness · Low rank approximations ·
Sparse identification · Sparse subspace learning · Hierarchical collocation

This work has been supported by ESI GROUP through the ECN-ESI Chair on advanced modeling and
simulation of materials, structures and processes.

D. Borzacchiello, J.V. Aguado & F. Chinesta
High Performance Computing Institute &
ESI GROUP Chair @ Ecole Centrale de Nantes
1 rue de la Noe, F-44300 Nantes, France
E-mail: {domenico.borzacchiello;jose.aguado-lopez;francisco.chinesta}@ec-nantes.fr
∗Corresponding author: D. Borzacchiello

1 Introduction

1.1 Motivation

Models are often defined in terms of one or several parameters regardless of the na-
ture of the phenomenon they describe. Parameters allow to adaptively adjust a general
model to a wide range of different scenarios governed by the same physical laws. In
continuum mechanics, for instance, models are expressed mathematically as partial
differential equations (PDE) representing the balance or the conservation laws gov-
erning the evolution of the fundamental variables that describe the state of a system.
Numerical methods for the solution of such differential models have reached in many
cases a remarkable degree of maturity, enabling the development of a variety of sim-
ulation software. This technological advancement has resulted in a massive usage of
the simulation tools at the industrial scale, mainly as a means of solving practical
problems such as design, optimization or inverse identification [?]. In this context,
the user is usually interested in assessing the adequacy of a particular configuration
with regard to a given design or performance criterion. This means in practice that
the user decides, based on simulation results, whether a particular design fulfills or
not the product specifications, or, in an optimization context, whether the process per-
formance is improved or worsened by a specific setup. The decision-making process
based on simulation commonly referred to as simulation-based engineering [?,?].

In spite of the simplicity of this concept, simulation-based engineering may be
somehow limited by the need of evaluating multiple configurations before converg-
ing to a satisfactory result, that is, a design that fulfills the product specifications or
a setup that optimizes the process performance. This practice, in which simulations
have to be carried out for several changing configurations is the foundation of multi-
query simulation. Each query (i.e. configuration evaluation) requires allocating some
time to prepare a new simulation, execute it and analyze the results. Delays due to
communication and information exchange in collaborative work projects should also
be taken into account. This may render the design, or optimization, process very time
consuming, thus only allowing for the evaluation of few configurations. Even though
simulation-based engineering can be to some extent automated, the amount of con-
figurations that can be evaluated within reasonable time remains very low when com-
pared to the amount of potential configurations, which is potentially disproportionate
[?].

In this paper, we shall assume that the ensemble of potential configurations of the
system under study can be explicitly defined in terms of a set of parameters varying
in a given interval. These parameters may be related to the material’s behavior, the
geometry or boundary conditions definition, for instance. In addition, parameters are
assumed to be uncorrelated, which provides the parametric domain with a cartesian
structure. We shall note by µ ∈ M ⊂ RD a D-tuple parameter array in the parametric
domainM. Since real applications are usually defined in terms of several parameters,
parametrized problems can be seen in fact as high-dimensional problems, due to the
need of large-scale exploration a high-dimensional parametric domain. This explains
why brute-force approaches based on extensive “grid search” are generally precluded.

1.2 Computational methods for parametrized problems

Many methods have been developed in order to address the problem of dimensionality
by proposing strategies for parsimonious exploration of the parametric domain. De-
sign of Experiments (DoE), widely used in the industry, is a very practical approach
that can help reducing the number of simulations based on a series of statistical in-
dicators [?]. In the context of optimization, the parametric domain exploration may
be guided by some optimization algorithm, such as gradient-based methods or any of
their numerous variants [?]. The optimization algorithm has to be chosen carefully,
according to the properties and structure of the cost function at hand.

An alternative approach for addressing parametrized problems is based on re-
duced order modeling methods (ROM). Since most of the time is consumed in multi-
query simulation, ROM methods are designed so as to reduce the computational
complexity of evaluating a given configuration. This is usually achieved by splitting
the computational cost by means of an “offline-online” strategy. The key idea be-
hind ROM is to build a problem-specific, low-dimensional subspace, that may either
be learnt from available simulation data or computed by setting up an optimization
problem. In the next subsections we briefly review both approaches as well as the
bottlenecks in their practical implementation.

1.2.1 A posteriori reduced order modeling

Approaches based on learning from available simulation results are also known as a
posteriori ROM methods. They typically require inspection of the parametric domain
in the offline stage. This consists in carrying out simulations for different parameter
samples using a full-order solver (based on finite elements for instance). Data col-
lected in the learning stage is used to extract a reduced basis which is assumed to
span the entire solution subspace for any parameter choice [?,?,?]:

∀µ ∈ M : u(x;µ) ≈ uN(x;µ) ∈ VN := span{φi(x)}Ni=1, (1)

where u(x;µ) and uN(x;µ) stand for the solution of some parametrized model and
its approximation onto the low-dimensional subspace, namely VN . In the adopted
notation, the semicolon symbol is used to differentiate physical coordinates, x, from
parameters µ.

Note that in practice VN is contained in WM , an approximation space of dimen-
sion M used by the full-order solver. Provided that N � M, a reduced-order model
can be built by projecting the residual of eq. (1) in the sense of Galerkin, onto the
reduced subspace VN . In this way the parametric solution is implicitly expressed by
the set of reduced equations in terms of the coordinates of the solution onto the low-
dimensional subspace.

Therefore in the online stage, if the solution is required for a new parameter con-
figuration, a small algebraic system needs to be solved. Although this strategy results
in a remarkable computational time save, a number of questions remain open:

– Sampling. Offline sampling of the parametric space is of critical importance.
On one hand, sampling has to be fine enough to ensure that the structure of the

underlying subspace is captured within the level of desired accuracy. On the other
hand, extensive sampling is usually unachievable in high-dimensional problems.
In the context of the reduced basis method, an error estimator is used so as to
guide the sampling process [?]. Error estimation evaluation in nonlinear problems
is still object of ongoing studies [?].

– Affinity. Parameters must define an affine transformation. If that is not the case,
the advantages of the offline-online strategy are compromised. Interpolation tech-
niques have been proposed so as to overcome this issue [?], although a careful
treatment is needed in order to preserve the spectral properties of the full-order
operators [?].

– Nonlinearity. Nonlinear problems are a particular example of loss of affinity. In-
deed, the evaluation of the non-linear terms entails a computational complexity
which is in the order of that of the original non-reduced model [?]. Several ap-
proaches exist including empirical interpolation techniques [?,?], hyper-reduction
[?,?], empirical quadrature rules [?] and collocation approaches [?].

– Intrusiveness. ROM methods implementation in third-party simulation software
is quite intrusive since it requires access to the discrete operators arising from the
discretization of the partial differential equations, which is not always possible
[?].

1.2.2 A priori reduced order modeling

A priori ROM methods propose an alternative approach for parametrized problems.
They are designed so as to compute the solution of the parametrized problem as an
explicit function of the parameters. Therefore, a priori ROM methods do not produce
a reduced system of equations but the parametric solution itself. Note that in this re-
gard, parameters are treated exactly the same as if they were coordinates. Hence, we
shall drop the semicolon indicating the parametric dependence and note: u(x,µ). As
a consequence, the computational domain becomes of higher dimension, as it must
cover not only the physical and/or time coordinates, but also the parametric domain
[?]. Since grid-based discretization is precluded in higher dimensional problems, ten-
sor subspaces must be introduced to represent parametric solutions efficiently [?,?,?].
Several tensor subspaces have been proposed, see [?] for details. For the sake of
brevity, we shall only present here the canonical tensor subspace, which lies at the
basis of the Proper Generalized Decomposition (PGD) method [?,?,?]. Hence, the
parametric solution is sought as:

u(x,µ) ≈ uN(x,µ) ∈ TN := span{ φi
0(x) φi

1(µ1) · · · φi
D(µD) }Ni=1, (2)

where TN is the subspace of tensors with canonical rank equal to N. Note that in
practice TN ⊂ WM0 ⊗WM1 ⊗ · · · ⊗WMD , where WMd is a generic approximation space
(finite element like) of dimension Md, with 0 ≤ d ≤ D. In addition, φi

d are sepa-
rated functions of each coordinate, usually called modes. Recall that this particular
structure is possible thanks to the cartesian structure that has been assumed for the
parametric domain. Note that the complexity of the tensor subspace defined in Eq. (2)
grows linearly with the number of dimensions, while the complexity of a grid-based
discretization grows exponentially.

While a posteriori ROM methods extract a subspace from data, a priori methods
are designed so as to build a tensor subspace by setting up an optimization problem,
that is, no sampling of the parametric domain is in principle required. In particular,
PGD allows building a tensor subspace such as the one shown in Eq. (2) progressively
by computing rank-one corrections, i.e. by building a series of nested subspaces:

T1 ⊂ T2 ⊂ · · · ⊂ TN where TN := TN−1 + T1. (3)
In order to compute each rank-one correction, the weak form of the PDE at hand is
regarded as an optimization problem where the set of admissible solutions is con-
strained to T1. This yields a nonlinear optimization problem due to the tensor mul-
tiplicative structure of the subspace, see Eq. (2), which can be efficiently solved by
applying an alternating directions algorithm [?]. In this algorithm, the optimization is
performed alternatively along each dimension until convergence [?,?]. In this way, the
algorithm splits a high-dimensional problem into a series of low-dimensional ones,
achieving linear complexity in the dimensionality of the problem.

A priori ROM allows fast online exploration of several configurations, since eval-
uating a single parameter choice demands no more than reading a look-up table.
Therefore, parametric solutions can be used as a black-box simulation database, to
be easily integrated as a part of complex systems such as real time simulators [?] or
Simulation Apps [?]. Other applications in which parametric solutions fit perfectly
are fast process optimization [?] and real-time inverse identification and control [?].

Aside from the question of the parametric domain sampling, which is completely
encompassed by a priori methods, both a priori and a posteriori approaches share
essentially the same unresolved questions and challenges already discussed above:
intrusiveness, affinity and by extension nonlinearity. The only differences rely on the
technicality intrinsic to a tensor framework. The requirement for affinity translates
in the need of a tensor structure in the problem setting. Without this, the alternated
optimization of the modes cannot be performed in linear complexity. The same issue
is encountered with non-linear problems: the tensor structure of the non-linear terms
is in general not known a priori, and therefore, their evaluation becomes extremely
expensive (comparable to that of a grid-based discretization). This issues make the
integration of a priori ROM methods in third-party simulation software seems im-
practical unless major modifications in the original code are implemented.

1.3 Contributions and paper structure

From the discussion in the previous sections the following conclusion can be drawn:
the main bottleneck of projection-based reduced order modeling can be resumed in
that not only the solution must be reducible but also the problem formulation must
have a proper structure.

In an attempt to encompass this limitation, we propose a sparse subspace learn-
ing (SSL) method for computing parametric solutions, based on the following main
ingredients:
– Collocation approach in the parametric domain to circumvent the need of affinity

or tensor structure in the problem setting, since the method is no longer based on
Galerkin projection.

– Hierarchical basis providing nested collocation points (i.e. greedy sampling) and
built-in error estimation capabilities.

– Incremental subspace learning to extract a low-rank approximation throughout
the greedy collocation refinement process.

– Sparse adaptive sampling to extend hierarchical collocation to higher dimensions.

The SSL method is able to produce parametric solutions based only on the output
of a deterministic solver to which the parameters are fed as an input. SSL can be cou-
pled, in principle, to any third-party simulation software. The affinity of the parameter
transformations is no longer an issue, as well as the treatment of nonlinearity which
is entirely handled by the direct solver. Parametric sampling is intrinsically parallel.
Although this feature is not explored in this paper, it makes this approach compatible
with parallel and high performance computing.

The rest of the paper is organized as follows. In section 2 we illustrate the im-
plementation of SSL and a detailed application example. In section 3 we extend the
discussion to transient and pseudo-transient problems. Multi-parametric problems are
treated in section 4, where a practical application to a three dimensional transient car
crash model with four parameters is also presented. In the given examples we use
both academic and commercial software to point out the ease of integrating the pro-
posed approach using existing simulation software in a black-box fashion. Technical
details on the incremental subspace learning are available in appendix A.

2 Sparse Subspace Learning

In this section we introduce the main contribution of this paper, the sparse subspace
learning (SSL) method.

2.1 Underlying idea

Consider the solution of a parametrized problem is the scalar field u(x,µ), with x ∈ Ω
and µ ∈ M, the physical and parametric domains respectively. Given the approxima-
tion spaces

WNs := span{φi(x)}Ns
i=1 and ZNµ

:= span{ψ j(µ)}Nµ

j=1,

its numerical approximation can be expressed as:

u(x,µ) ≈ uh(x,µ) :=
Ns∑
i=1

Nµ∑
j=1

S i jφ
i(x)ψ j(µ) .

The scalars S i j are representation coefficients computed trough numerical method
after appropriate discretization of the equations governing the problem in consider-
ation. The complexity of this representation is Ns × Nµ, with Ns and Nµ being the
number of degrees of freedom in the physical and parametric space.

In the framework of parametric reduced order modeling, the notion of reducibility
of the solution has a two-fold meaning [?,?]. In particular, it requires that the matrix
of representation coefficients S have two structural properties:

– Sparsity. This roughly translates into asking that most of the coefficients in S
vanish, or in practice that there are a few dominant components whose magnitude
is much greater than the rest. The sparsity, ζ, is defined as the number of vanishing
coefficients of S per row. Hopefully, ζ ∼ Nµ.

– Low-rank. The parametric solution lives in a lower dimensional subspace of WNs ,
that is, r � min (Ns,Nµ). This basically consists in the assumption that only few
columns of S are linearly independent.

Through a collocation strategy it is possible to determine the low rank structure,
by extracting a reduced basis from the solutions at sampled points, while simultane-
ously capturing the functional dependency from the parameters, in order to have nu-
merical parametric solution in explicit form. Parametric collocation approach seeks
to compute representation coefficients S i j as a linear combination of sampling or
measurements of the sought function evaluated at particular points {xi} and

{
µl

}
:

Mil := uh(xi,µl) .

Data can be structured into a matrix M which is a collection of output of a deter-
ministic solver (sometimes called the snapshots matrix), each column containing the
solution computed for a specific value of input parameters µ. In the following we
assume that the solver output is a reliable approximation of the true solution within a
controllable tolerance, that is, the discretization of the physical space Ns is sufficient
to guarantee the desired accuracy.

In practice, the relation between the representation and measurements coefficients
is given by a linear application that writes as:

SR = M ,

where the matrix R is a linear operator mapping the rows of S into the rows of M.
Once the snapshots matrix is available, the representation coefficients are obtained by
applying R−1 to the rows of M. This operation is potentially costly since R is a large
dense matrix that needs updating each time the parametric space is refined (i.e. new
columns are appended to the snapshots matrix). The transformation matrix results
from the choice of the representation basis and the sampling points, since

R jl = ψ j(µl) .

Therefore, an optimal choice of the sampling strategy to select the points
{
µl

}
and the

representation basis ψ j(µ) would lead ideally to the highest possible sparsity s while
giving rise to an operator R that is easily invertible and updatable as the sampling
is refined. This concept is exploited in the next section using hierarchical parametric
collocation.

2.2 Discovering sparsity through hierarchical collocation

The most intuitive way to apply collocation in the parametric space is by using an
interpolative basis. This choice results into

S ≡M

because the linear operator R is the identity matrix in this case. Although the number
of sampling can be adjusted to control the convergence in the parametric sampling{
µl

}
, interpolative basis do not in general yield sparsity of the solution. On the other

hand, spectral basis, such as polynomials or trigonometric functions, guarantee spar-
sity, provided that the solution have the required regularity to be represented in the
chosen basis. When that is the case, spectral coefficients decrease exponentially with
the order of approximation [?]. The price to pay for sparsity is that the operator R is
full, because spectral basis are not interpolative. This implies that the computational
cost needed to compute the representation coefficients becomes impractical for large
systems and high dimensional parametric problems, for which the number of required
sampling is high and each sampling evaluation is costly. Furthermore, if refinement
is needed, R must be updated and a new linear system has to be solved again.

To circumvent this problem there are two possible approaches:

– Subsampling. By choosing the number of representation functions ψ j(µ) to be
higher than the number of sampled solutions (S has more columns than M) one
obtains an over-determined system. Through an appropriate regularization and
choice of the sampling points, which must be incoherent with respect of repre-
sentation basis [?], a unique solution can be determined. This is the approach
followed by Sparsity Promoting techniques [?] Compressed Sampling [?] and
Basis Pursuit [?]. In practice, regularization is ensured by asking the maximum
sparsity in the solution, which is equivalent in minimizing the zero-norm of each
column in S. This problem is NP-hard and therefore a surrogate norm is chosen in-
stead of the norm zero, often the norm-1, leading to a smooth convex functional.
The minimization step can be performed using many of the techniques specifi-
cally developed for this problem [?,?]. Once all the coefficients are computed the
ones with the lowest magnitude are simply purged. Although this approach is ex-
tremely efficient in terms of the number of sampling measurements needed, the
computation of these coefficients becomes exponentially harder as the number of
parameters increases [?].

– Hierarchical Collocation. In this approach the representation coefficients are not
computed all at once but through and incremental procedure based on multilevel
sampling. This idea is used in Sparse Grid [?] and Stochastic Collocation [?]
using a hierarchical sampling based on a sequence of nested sets of points. In
this way the operator R is quasi-interpolative because it is block-triangular. This
means that the computation of the sparse coefficients in S does not require the
solution of an algebraic system, or the minimization of a nonlinear functional,
but can be computed relatively easily directly from the solution samplings.

Hierarchical sampling is the approach followed in this paper. This is based on
the definition of a hierarchy of collocation points sets. At level k of the sampling
hierarchy, the corresponding set of points has N(k)

µ elements.

P(k) ≡
{
µl

}N(k)
µ

l=1

In hierarchical collocation the point sets are nested:

· · · ⊂ P(k−1) ⊂ P(k) ⊂ P(k+1) ⊂ · · · ∀k ∈ N ,

This implies that each level contains the N(k−1)
µ points of the previous level plus N(k)

µ −

N(k−1)
µ additional points. The subsets of new points that are progressively added are

called hierarchical refinements:

H (k) ≡ P(k) \ P(k−1) ∀k ∈ N+ .

The nested structure of sampling sets also entails that the subspaces

Z(k) := span{ψ j(µ)}N
(k)
µ

j=1

are also nested:
· · · ⊂ Z(k−1) ⊂ Z(k) ⊂ Z(k+1) ⊂ · · · ∀k ∈ N .

In hierarchical collocation the basis functions are quasi-interpolative in the sense that,
for a given a hierarchical level k and N(k−1)

µ < j ≤ N(k)
µ

ψ j(µl)


= 0 if µl ∈ P

(k−1)

= δ jl if µl ∈ H
(k)

, 0 otherwise
(4)

This is essential in order to ensure the block triangular structure of the matrix R,
which is the key feature in order to have an easy direct solution of the linear system for
the determination of the representation coefficients. Indeed, in reason of the particular
structure of R, back substitution can be used to compute the columns of S:

– For the first level k = 0, 0 < j ≤ N(0)
µ , the representation coefficient are simply

equivalent to the snapshots : Mi j = S i j, ∀i = 1, . . . ,Ns

– For subsequent levels k > 0, N(k−1)
µ < j ≤ N(k)

µ , the following explicit formula is
used

S i j = Mi j −

N(k−1)
µ∑
l=1

S il ψ
l(µ j) ∀i = 1, . . . ,Ns (5)

The previous equation is applied recursively over the hierarchical levels using
few simple algebraic operations and without the need of updating the previously
computed S i j coefficients. Indeed, the second term in the right hand side of (5) cor-
responds to the predicted values from interpolation of the previously computed snap-
shots uh(x,µ j) onto the sampling points of the new hierarchical refinement

M̄i j =

N(k−1)
µ∑
l=1

S il ψ
l(µ j) ∀i = 1, . . . ,Ns , µ j ∈ H

(k) ; k ∈ N+ (6)

Therefore, we conclude that the representation coefficients S i j are simply recovered
as the difference between the actual function values Mi j and the predictions M̄i j:

S i j = Mi j − M̄i j .

For this reason, in the context of hierarchical collocation, the representation co-
efficients S i j are also called the surplus coefficients. The corresponding functions

s(x;µ j) =

Ns∑
i=1

S i jφ
i(x)

are consequently named the surplus functions.
The matrix R is never formed or inverted in practice, which is why the method is

easily implemented in a greedy incremental way. The termination criterion is simply
based on the convergence of the surplus functions in a given norm, like for instance
the euclidean norm

∥∥∥s(x;µ j)
∥∥∥

2
=

√√√ Ns∑
i=1

S 2
i j .

Alternatively the `2 − norm or the infinity norm can be also used. The algorithm is
stopped when the norm of all the surplus functions in a hierarchical level falls below
a given tolerance εh. This constructive approximation is described in algorithm 1.

Algorithm 1 Hierarchical sampling: HS
1: Set S i j ≡ Mi j for k = 0
2: for k = 1 to Lmax do
3: Compute predictions M̄i j using Eq. (6)
4: Run Mi j = uh(xi,µ j) . “True” solution
5: Compute S i j = Mi j − M̄i j . Surplus coefficients
6: Check

∥∥∥s(x;µ j)
∥∥∥ < εh for all µ j in current level

7: end for

To discover the sparsity in the parametric space, algorithm 1 requires the solution
at all sampling points, even though only few relevant surplus coefficients are retained
in the end. Reduction is obtained “a posteriori”, by pruning negligible coefficients
once the snapshots Mi j are already computed. This means that most of snapshots
are not actually used because they lead to small coefficients S i j which are inevitably
pruned. In order to avoid computing useless direct solutions, it is possible to introduce
the of concept adaptive sampling.

In hierarchical multivariate interpolation and quadrature, this concept has been
extensively investigated and rigorous error estimation strategies exist in order to adapt
the sampling procedure while retaining a given accuracy [?,?,?]. In the present study
the functions that we are trying to approximate are the solutions of parametric partial
differential equations. Therefore residual can be computed explicitly at new sampling
points from the prediction M̄i j given by the interpolation of previous hierarchical
levels and used to define a sampling strategy based on a proper error estimator. In
practice the residual based error estimation checks whether the predicted values are
accurate enough. In case of positive outcome a new direct solution is not required
and the corresponding sampling point can be simply skipped. Based on this basic
sampling adaptivity strategy, the adaptive algorithm 2 can be constructed.

The benefits of the adaptive strategy will be further discussed in the examples
presented in section 2.4.3.

Algorithm 2 Adaptive Hierarchical Sampling: AHS
1: Set S i j ≡ Mi j for k = 0
2: for k = 1 to Lmax do
3: Compute predictions M̄i j using Eq. (6)
4: Compute Ei j = e(M̄i j) . Residual error estimation
5: if Ei j > εtol then
6: Run Mi j = uh(xi,µ j) . M̄i j as first guess solution
7: Compute S i j = Mi j − M̄i j . Surplus coefficients
8: else
9: Set S i j = 0

10: end if
11: Check

∥∥∥s(x;µ j)
∥∥∥ < εh for all µ j in current level

12: end for

2.3 Incremental subspace learning

Although the hierarchical collocation approach provides many advantages, the final
parametric solution is not optimal in terms of its compactness. As a matter of fact,
the number surplus functions needed to approximate the parametric solutions is in
principle equal to the number of hierarchical collocation points. In most applica-
tions, it is likely that a low rank approximation of the solution exists. The structure
of the low-dimensional subspace for the hierarchical surpluses can be learned using
approximate low-rank tensor decomposition techniques on the matrix S. This is es-
pecially important when one is interested in solving large problems, which may lead
to thousands of full-order solves, especially when multi-parametric problems are to
be addressed. Indeed, the storage of the matrix S can be limited by memory avail-
ability when solving large-scale problems. In what follows, we shall denote a matrix
A with values in the field Km×n either by A|m×n, the first time it is introduced, or
simply A, in subsequent appearances. Therefore the representation coefficient matrix
at hierarchical level k is S

|Ns×N(k)
µ

. After k hierarchical refinements, we seek a matrix
approximation of rank-r given by

Sk ≈ UkΣkV∗k, (7)

where U|Ns×r and V
|N(k)

µ ×r are orthonormal matrices and Σ|r×r is a diagonal matrix with
nonnegative coefficients. Because of sparsity, the rank of Sk after k refinements is at
most equal to the number of nonzero columns, that is, N(k)

µ − ζ. The decomposition
in equation (7) can be computed in practice by either truncating the singular value
decomposition of S to the r highest singular values [?], or using randomized singu-
lar value decomposition (rsvd) [?], or constructive incremental approximations like
parafac [?] and candecomp [?]. Low rank approximation can be performed as a
post-processing step in “batch mode”, after convergence of the sparse learning sam-
pling. However, this approach is expensive in terms of both memory requirements and
computational cost because it implies storing an manipulating S throughout the whole
process of parametric refinement. On the other hand the size of S grows dynami-
cally thought the adaptive hierarchical sampling procedure as additional columns are
appended each time the parametric space is refined and new surplus functions are
computed. Therefore the tensor decomposition technique should enable incremental

updating after each refinement on order computations from scratch. In this way hier-
archical collocation can be coupled with a subspace extraction step that is performed
on-the-fly as new surpluses are computed. The idea of incremental subspace learning
is presented in several works and it is mostly used to compress continuously stream-
ing data flows with application to computer vision and pattern recognition where on
batch subspace extraction is unfeasible due to the sheer size of the datasets [?,?,?].
Once a matrix update ∆k+1 is appended to the matrix Sk the following factorization is
considered [?]:

Sk+1 =
[
Sk ∆k+1

]
≈

[
Uk Jk+1

] [Σk Lk+1

0 Kk+1

] [
Vk 0
0 I

]∗
(8)

where Lk+1 = U∗k∆k+1, Kk+1 = J∗k+1Hk+1, Hk+1 = (I − UkU∗k)∆k+1, Jk+1 is an orthog-
onal basis for Hk+1 and I is the identity matrix. The middle factor can be further
decomposed as[

Σk Lk+1

0 Kk+1

]
≈ Ũk+1Σ̃k+1Ṽ∗k+1, (9)

and finally the low rank decomposition is updated :

Uk+1 =
[
Uk J

]
Ũk+1 , (10)

Vk+1 =

[
Vk 0
0 I

]
Ṽk+1 , (11)

and

Σk+1 = Σ̄k+1. (12)

The low-rank tensor approximation in equation (9), can be obtained by means of
any of the above mentioned techniques. The computational cost of the update only
depends on the size of ∆ and not on the full dataset size. In this work we employ rsvd
to perform this operation and to allow the rank to change throughout the refinement
levels k. The resulting incremental version of the rsvd is therefore referred to as
irsvd. For the sake of concision, implementation details are reported in appendix A.

The irsvd can be seen as an incremental subspace learning technique as it allows
to update the low rank representation dynamically as new snapshots in the solutions
are computed. It can be combined with hierarchical adaptive sampling into a sparse
subspace learning (ssl) approach, in which the sampling of the parametric space
simultaneously used to build reduced basis and discover the sparse structure of the
subspace. The use of a low rank representation for S is not only beneficial in terms
of memory usage but it also simplifies the hierarchical sampling algorithm. Indeed,
when S is approximated using the canonical tensor decomposition (7), the interpola-
tion of the surplus functions onto the sampling point of a new hierarchical level can be
performed more efficiently. Instead of recombining the columns of S we interpolate
the right (parametric) singular vectors V:

V̄i j =

N(k−1)
µ∑
l=1

Vilψ
l(µ j) (13)

Algorithm 3 Sparse Subspace Learning: SSL
1: For k = 0 S i j ≡ Mi j.
2: Compute S0 ≈ U0Σ0V0

∗ . rsvd
3: for k = 1, 2, . . . do
4: Compute predictions M̄i j using Eqs. (13),(14)
5: Compute Ei j = e(M̄i j) . Residual error estimation
6: if Ei j > εtol then
7: Run Mi j = uh(xi,µ j) . M̄i j as first guess solution
8: Compute S i j = Mi j − M̄i j . Surplus coefficients
9: else

10: Set S i j = 0
11: end if
12: if All

∥∥∥s(x;µ j)
∥∥∥

2 < εh then
13: break
14: else
15: Update Sk ≈ UkΣkVk

∗ . irsvd
16: end if
17: end for

x = 0 x = 1

y = 1

y = 0

y

x

ux , uy = 0 ux , uy = 0

ux , uy = 0

uy = 0
ux = 16x2(1 � x)2

Fig. 1: Schematics for the 2D lid driven cavity flow.

and obtain the predictions at new sampling points as:

M̄ = UΣV̄∗ (14)

The cost of the interpolation step depends on the numerical rank r of the ap-
proximation which is much smaller than the number of surplus functions Ns in many
practical applications. The resulting procedure is detailed in algorithm 3.

2.4 Parametric lid driven cavity flow

We consider a classic benchmark problem in computational fluid dynamics: the lid-
driven cavity flow (fig 1). The choice of the benchmark is motivated by its mathe-

matical features that typically need a careful treatment in the framework of projec-
tion based parametric reduced order modeling, like nonlinearity and non-convexity
[?]. Therefore it can be considered as a minimal working example to showcase the
features of the sparse subspace learning approach. In particular we consider low
Reynolds steady laminar flow governed by the equations :µ u · ∇ u − ∆u + ∇ p = 0

∇ · u = 0
, (15)

with u(x, µ) and p(x, µ) being the velocity and pressure fields and µ =
ρVL
η

being the
Reynolds number. For this problem we seek a numerical approximation for u(x, µ),
(x, µ) ∈ [0, 1]2 × [0, 1000].

2.4.1 Deterministic solver

For a given choice of the Reynolds number the flow is solved with a high order mixed
finite element formulation [?]. A cartesian mesh of 40 elements per direction is used.
The nonlinearity is handled using a pseudo-transient method. Starting from an initial
guess, that can be the corresponding Stokes flow for example, equation are integrated
in time using a stable time-stepping algorithm until the steady state. Convergence is
assessed using by checking the relative residual norm of eq. (15) and the `2 norm of
the difference of the velocity field between two successive iterations.

2.4.2 Choice of the parametric basis

In low Reynolds number regime it can be reasonably assumed that the flow is laminar
and that the solution of the equations (15) varies smoothly with the parameter µ.
In this case we can adopt a high order polynomial basis to represent u(x, µ) in the
parametric space for Reynolds numbersM ≡ [0, 1000].

When using polynomial approximation an optimal choice for the sampling is de-
fined by the set of Gauss-Chebychev-Lobatto (GCL) points

P(k) ≡

{0, 1000} if k = 0{
µ j = 500(cos(2 j−1

2k) + 1)∀ j = 1, . . . , 2k−1
}
∪ P(0) if k > 0

The corresponding parametric basis is constructed using hierarchical Lagrangian in-
terpolation. For a given hierarchical level k and N(k−1)

µ < j ≤ N(k)
µ :

ψ j(µ) ≡ L(k)
j (µ) =

∏
µi∈P

(k)\µ j

µ − µi

µ j − µi
∀µ j ∈ H

(k)

2.4.3 Results

In order to get better insight on the structure of the sparse representation of the so-
lution in the parametric space, algorithm 1 is run first without adaptiveness in the
sampling. Figure 2 shows a heatmap plot of the elements in the representation S and

=

S R M

0 50 100 150 200 250 300 350 400 450 500
nz = 88405

0

50

100

150

200

250

300

350

400

450

500

Fig. 2: Heatmap plot showing the magnitude of both sampling points Mi j and rep-
resentation coefficients S i j, evidencing the sparsity of the solution of the parametric
lid-driven cavity flow in the space spanned by hierarchical polynomial function. The
block triangular structure of the matrix R is also shown.

measurements M matrices to give a qualitative visualization of the sparsity of the of
first with respect to the second. Indeed, more than half of the elements in S can be
pruned without significant effect on the solution, that is with a relative approximation
error less than 10−6. The same figure shows the block diagonal structure of the inter-
polation operator R obtained from the quasi-interpolative feature of the hierarchical
polynomial basis used in this example.

As a second step we solve the same problem with adaptive sampling. This can be
introduced in a straightforward and non-intrusive way. Indeed, most of well designed
iterative solvers (linear and nonlinear) perform a check on the initial guess solution
before actually start running. If the convergence criterion is already met by the first
attempt solution, the solver does not perform any iteration and returns the initial guess
as the correct solution. Following this rationale, the predictions from hierarchical M̄i j

interpolation offers an optimal initial guess to initialize the deterministic solver at
a new sampling point. If this solution is good enough the solver is not run and the
corresponding surplus coefficient is automatically set to zero. This strategy avoids the
delicate task of defining a specific error estimation approach for each new problem
by leaving this issue to the deterministic solver which can be therefore easily plugged
in the SSL algorithm. Running algorithm 2 confirms this idea. In figure 3 we report
the magnitude of the hierarchical surpluses as a function of the simulation number
(simulation are ordered in the sense of hierarchical levels). These decay very fast until
they reach a plateau around the level of 10−8. This phenomenon is explained by the
fact that convergence criterion tolerance was set to this value, therefore the presence
of the plateau indicates that the parametric sampling reached the level of precision of
the direct solver. The points that are set to zero (to the machine precision) correspond
to the cases where the adaptive algorithm skipped the solution and automatically set
the corresponding surplus to zero. In this case, more than half of the solution were
not computed at all.

As the parametric sampling is refined, the sparse surplus coefficients S i j converge
and the prediction M̄i j becomes an increasingly better initial guess for Mi j. This im-
plies that the convergence in the parametric space also accelerates the convergence

0 100 200 300 400 500 600

Simulation

10
-20

10
-15

10
-10

10
-5

10
0

E
rr

o
rE

s
ti
m

a
to

r

j

ks
(µ

j
)k

1

Fig. 3: The norm of the sparse surplus functions s(x, µ j) decreases with the refine-
ment in the parametric space. The stagnation observed is due to the fact that the
convergence tolerance in the direct solver is set to 10−8, while the point with zero (to
the machine precision) surplus coefficients correspond to the simulations that were
skipped by the adaptive algorithm.

on the deterministic iterative solver which require less and less iterations to reach
convergence. To quantify this idea, we represented a measure of the computational
work associated to each direct solution performed by the solver as a function of the
magnitude of the surplus coefficients, figure 4. We assume, as a measure of the com-
putational work, the number of iterations required by the pseudo-transient solver to
converge to the steady state. In this way we make this measure platform independent.
In figure 4 the surplus coefficients are shown to be linearly correlated to the computa-
tional work in the asymptotic convergence regime. Since polynomial approximation
guarantees exponential convergence of the S i j coefficients, the linear decay of the
computational work with the surplus coefficients implies that even though the num-
ber of sampling points increase the overall computational work per hierarchical level
decreases.

The numerical rank obtained in the final approximation using a tolerance of 10−7

in the irsvd algorithm is r = 9. Both space functions and parameters functions are
represented in figure 5. For further details see appendix A.

3 Time dependent models

Parametric solutions of transient, or pseudo-transient, models can also be computed
in the SSL framework. A first possibility consists in considering a space-time dis-
cretization

uh(x, t,µ) :=
NsNt∑
i=1

Nµ∑
j=1

S i jφ
i(x, t)ψi(µ) , (16)

in which the set of functions φi(x, t) forms a representation basis in the space-time
domain, (x, t) ∈ Ω × [0,T]. This allows applying exactly what has been described

10-10 10-5 100 105100

101

102

103

104

105

106

Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Level 9

W
j

ks(µj)k1

Fig. 4: The surplus norm of surplus functions s(x, µ j) correlates linearly with the
amount of computational work W j required to compute direct solutions Mi j using the
predictions M̄i j as initial guess in the nonlinear solver. The computational work is
measured by the number of nonlinear iterations required by the direct solver to com-
pute a solution. Since the computational work decays linearly with the magnitude of
the surplus functions, and the latter decays exponentially with the order of the spec-
tral approximation, we observe that the overall computational work per hierarchical
level decreases when the hierarchical sampling reaches its asymptotic convergence
regime.

in section 2. In particular, a subspace for the hierarchical surpluses may be found as
shown in section 2.3.

An alternative approach consists in splitting space and time into separated dimen-
sions, which yields:

uh(x, t,µ) :=
Ns∑
i=1

Nt∑
j=1

Nµ∑
k=1

S i jkφ
i(x)ϕ j(t)ψk(µ) , (17)

where the set of functions φi(x), ϕ j(t) and ψk(µ) form a representation basis in the
physical space x ∈ Ω, time interval t ∈ [0,T] and parametric space µ ∈ M, respec-
tively. The scalars S i jk are representation coefficients forming a third-order tensor.

Both Eq. (16) and (17) are in principle equivalent, as they yield a total complexity
of Ns × Nt × Nµ. However, Eq. (17) allows seeking for a tensor subspace, which is
likely to be more compact in terms of representation than its matrix counterpart. We
shall elaborate on the tensor subspace approach in next lines. For the sake of clarity,
we shall denote a tensor � with values in the field Kn1×n2×n3 either by �|n1,n2,n3 (the
first time it is introduced) or simply �, in subsequent appearances.

Suppose that the hierarchical collocation approach allowing for a sampling of
the parameter domain is applied exactly in the same manner as described in section
2. As a result, we get a three-dimensional tensor �|n1,n2,n3 , containing the hierarchical
surpluses, where n1 is typically the number of degrees of freedom related to the space

S
p
a
ce

F
u
n
ct

io
n
s
v

i(
x
)

1

0 200 400 600 800 1000

Re

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
i(R

e
)

1

2

3

4

5

6

7

8

9

P
a
ra

m
et

ri
c

F
u
n
ct

io
n
s

R
i(

µ
)

2 3

4 5 6

987

Fig. 5: Sparse Subspace Learning solution for the parametric lid-driven cavity steady
state laminar flow for Reynolds number between 0 and 1000. The space modes are
given by vi(x) =

∑
n Uniφn(x). The first nine modes are visualized by streamlines and

intensity of the corresponding field. The corresponding parametric functions are also
reported. These are defined as Ri(µ) =

∑
n Vmiψm(µ). In this example the tolerance

criterion used for the direct solver convergence was 10−8, while the truncation crite-
rion adopted for the determination of the numerical rank r in the irsvd algorithm is
10−7.

discretization, n2 is the number of time steps and n3 is the total number of collocation
points at convergence. We seek a tensor decomposition of rank-(r1, r2, r3) given by

� =

r1∑
i=1

r2∑
j=1

r3∑
k=1

σi jkui
1 ⊗ u j

2 ⊗ uk
3 , (18)

which using the tensor multiplication [[?], sec. 2.5], can also be written as follows:

� = � ×1 U1 ×2 U2 ×3 U3 , (19)

where the factor matrices U1|n1×r1 , U2|n2×r2 and U3|n3×r3 are usually orthonormal and
define linear transformations in each direction. They can be regarded as the singular
vectors in each direction. On the other hand, �|r1×r2×r3 is called the core tensor, and
its entries express the level of interaction between the different singular vectors.

A tensor decomposition such as Eq. (19) is usually computed with the hosvd
algorithm [?], based on the application of the svd on successive matricizations of the
original data. Briefly:

S(d) = UdΣdV∗d, d = 1, 2, 3. (20)

The core tensor is computed:

Σ(d) = ΣdV∗d(U1 ⊗ · · · ⊗ Ud−1 ⊗ Ud+1 ⊗ · · · ⊗ UD). (21)

Which in our case means that the core can be computed either as

Σ(1) = Σ1V∗1(U2 ⊗ U3), (22)

Σ(2) = Σ2V∗2(U1 ⊗ U3), or (23)

Σ(3) = Σ3V∗3(U1 ⊗ U2). (24)

Applying the hosvdmay be expensive in terms of both memory requirements and
computational cost, especially if the input data does not fit in fast memory. For this
reason, we propose to replace the standard svd by the the irsvd, already presented
in section A.2. In this manner, the factor matrices can be updated in order to account
for the data stream.

3.1 Application to Sheet Metal Forming Simulation

In this example we apply SSL to transient stamping simulation of a hotformed au-
tomotive b-pillar. The objective is to assess the process sensitivity to the friction be-
tween the metal blank and the stamping tooling (punch and dye). Then numerical
solution is sought in Ω × T × M, where the space domain Ω is shown in figure 6,
the time interval is defined as T ≡ [0, 8][s] and M ≡ [0.05, 0.3] is the paramet-
ric space of friction coefficients. Frictional contacts are modeled using Coulomb’s
friction law. Direct simulations were run on 4 hierarchical levels using the commer-
cial software Pam-Stamp 2G. The metal blank is modeled using quadrilateral shell
elements with 1.5mm initial uniform thickness. The stress-strain relation for steel is
modeled by means of Krupkowsky’s law taking into account the strain hardening dur-
ing the metal forming process. The punch and the dye are assumed as rigid elements.
From each simulation we export displacements, plastic strain, thickness and thinning
fields, each requiring a separate tensor approximation.

For the displacement field, for instance, the final solution numerical rank is (6, 5, 3),
ensuring reasonable accuracy for this application (less than 1% error on the predicted
displacement). Other fields produce similar results. Figure 6 shows space, time and
parametric modes for the displacement field, while three particular solutions for the
thinning are shown in figure 7.

Die
Punch

Frontal

Lateral

(a) Mode 1 (b) Mode 2 (c) Mode 3

�80 �60 �40 �20 0

Punch stroke (mm)

0 2 4 6 8

�0.4

�0.2

0

0.2

0.4

Time (sec)

Mode 1 Mode 2 Mode 3 Mode 4

(a) Time modes

0.1 0.2 0.3

�0.4

�0.2

0

0.2

0.4

Friction coe�cient (-)

(b) Parameter modes

Figure 7: First four normalized time modes of the displacement field.

The D-dimensional hierarchical refinement given by the tensor product rule
would be :

H(k) ⌘ P(k) \ P(k�1) =
D[

h=1

2
64H(k)

h ⌦
DO

d=1
d 6=l

P(k�1)
d

3
75 [

DO

d=1

H(k)
d 8k 2 N+

The tensor product rule implies that hierarchical refinements grow exponen-
tially with the dimension D of the problem. To alleviate this issue we adopt
Smolyak’s rule to construct higher dimensional refinement sets [Smolyak]. This
replaces the traditional tensor product rule by the following expression:

H(k) � H(k)
s =

[

|h|1=k

DO

d=1

H(hd)
d , 8k 2 N+ (17)

with h ⌘ {h1, . . . , hd, . . . , hD}. Smolyak hierarchical refinement grow subex-
ponetially and the problem complexity scales as o(Nlog(N)D�1) instead of ND

while retaining the same accuracy on the approximation of the function, pro-
vided that the high order mixed derivatives are bounded [Sparse Grid]. This
concept has been successfully used in the framework of sparse grid interpolation
and quadrature [], with a variety of di↵erent basis functions including hierarchi-
cal polynomials and wavelet functions [] and extended to dimensionally adaptive
strategies []. Note that changing the `�1 norm for a di↵erent norm in equation
(17) yields di↵erent sampling strategies. Using the infinity norm (maximum

21

�80 �60 �40 �20 0

Punch stroke (mm)

0 2 4 6 8

�0.4

�0.2

0

0.2

0.4

Time (sec)

Mode 1 Mode 2 Mode 3 Mode 4

(a) Time modes

0.1 0.2 0.3

�0.4

�0.2

0

0.2

0.4

Friction coe�cient (-)

(b) Parameter modes

Figure 7: First four normalized time modes of the displacement field.

The D-dimensional hierarchical refinement given by the tensor product rule
would be :

H(k) ⌘ P(k) \ P(k�1) =
D[

h=1

2
64H(k)

h ⌦
DO

d=1
d 6=l

P(k�1)
d

3
75 [

DO

d=1

H(k)
d 8k 2 N+

The tensor product rule implies that hierarchical refinements grow exponen-
tially with the dimension D of the problem. To alleviate this issue we adopt
Smolyak’s rule to construct higher dimensional refinement sets [Smolyak]. This
replaces the traditional tensor product rule by the following expression:

H(k) � H(k)
s =

[

|h|1=k

DO

d=1

H(hd)
d , 8k 2 N+ (17)

with h ⌘ {h1, . . . , hd, . . . , hD}. Smolyak hierarchical refinement grow subex-
ponetially and the problem complexity scales as o(Nlog(N)D�1) instead of ND

while retaining the same accuracy on the approximation of the function, pro-
vided that the high order mixed derivatives are bounded [Sparse Grid]. This
concept has been successfully used in the framework of sparse grid interpolation
and quadrature [], with a variety of di↵erent basis functions including hierarchi-
cal polynomials and wavelet functions [] and extended to dimensionally adaptive
strategies []. Note that changing the `�1 norm for a di↵erent norm in equation
(17) yields di↵erent sampling strategies. Using the infinity norm (maximum

21

0.1 0.2 0.3

�0.4

�0.2

0

0.2

0.4

Friction coe�cient (-)

Time

F
ri

ct
io

n
co

e
ci

en
t

Figure 7: .

24

Fig. 6: Order reduction of the stamping solution: normalized space, time and param-
eter modes of the displacement field.

4 Extension to high-dimensional parametric problems

In higher dimensional problems the extension of hierarchical sampling is non triv-
ial. Sampling high-dimensional spaces using the strategy described so far is limited
by the curse of dimensionality. Indeed, the sampling points at a hierarchical level
k would be simply given by the tensor product of point samplings P(k)

d along each

Time

F
ri

ct
io

n
co

e�
ci

en
t

Fig. 7: The figures shows the solutions for three different friction coefficients 0.05
(top), 0.175 (middle) and 0.3 (bottom) at times t = 2.32 s (left), t = 5.41 s (center)
and t = 8.50 s (right).

dimension d. Assuming D dimensions, this writes:

P(k) = P
(k)
1 ⊗ P

(k)
2 ⊗ . . .P

(k)
D ≡

D⊗
d=1

P
(k)
d

Given that each point set is the union of all previous hierarchical refinements

P
(k)
d =

k⋃
h=0

H
(h)
d ,

The D-dimensional hierarchical refinement given by the tensor product rule would be
:

H (k) ≡ P(k) \ P(k−1) =

D⋃
h=1

H (k)
h ⊗

D⊗
d=1
d,l

P
(k−1)
d

 ∪
D⊗

d=1

H
(k)
d ∀k ∈ N+

The tensor product rule implies that hierarchical refinements grow exponentially
with the dimension D of the problem. To alleviate this issue we adopt Smolyak’s

rule to construct higher dimensional refinement sets [?]. This replaces the traditional
tensor product rule by the following expression:

H (k) ⊃ H (k)
s =

⋃
|h|1=k

D⊗
d=1

H
(hd)
d ,∀k ∈ N+ (25)

with h ≡ {h1, . . . , hd, . . . , hD}. The complexity Smolyak’s rule grows polynomially
with the dimensionality of the parametric hypercube, instead of exponentially, while
retaining the same accuracy on the approximation of the function, provided that the
high order mixed derivatives are bounded [?]. Therefore the method is not subject
to the curse of dimensionality at least in the space of smooth functions. This con-
cept has been successfully used in the framework of sparse grid interpolation and
quadrature [?], with a variety of different basis functions including hierarchical poly-
nomials and wavelet functions [?] and extended to dimensionally adaptive strate-
gies [?]. Note that changing the `1 norm for a different norm in equation (25) yields
different sampling strategies. Using the infinity norm (maximum norm) the classi-
cal tensor-product sampling is obtained while the Euclidean norm gives rise to the
hyperbolic-cross sampling [?].

4.1 Application to Stokes flow around parametric NACA four digits airfoil

In this section we show an application of the Sparse Subspace Learning method to the
problem of steady state viscous incompressible and inertialess flow around a NACA
four-digits airfoil. The geometry of the airfoil is known in analytical closed form as
a function of four parameters: the chord c, the maximum thickness t, the maximum
camber m and the position of maximum camber as a fraction of the chord p.

In dimensionless form, the problem only depend on three parameters if the chord
is chosen as reference unit length. Therefore the parametric solution of this problem
is sought in the three-dimensional space

{t,m, p} ∈ [0.06, 0.15] × [0, 0.1] × [0.34, 0.5]

The velocity and pressure fields are governed by Stokes equations:∆v − ∇p = 0
∇ · v = 0

(26)

paired with appropriate boundary condition prescribing no-slip at the airfoil boundary
v(x = xb) = 0 and uniform asymptotic velocity v∞ = cos(α)i + sin(α)j; with the
angle of attack α = 10◦ for this case. The airfoil shape variation is taken into account
through the mapping

x(x0) = x0 + u(x0)

where x0 is the coordinate in a reference (undeformed) domain, x is the physical
coordinate in the transformed domain and u is a displacement field. In practice the
mapping is found through the solution of the elliptic problem for the u:

c1u + c2∆x0 u + c3∇x0 [∇x0 · u] = 0 (27)

reference mapping deformed

Fig. 8: Airfoil shape variation with respect to a reference shape (NACA 0012 airfoil)
are take into account by deforming a reference triangular mesh (leftmost panel). The
nodes in the original mesh are moved according to a displacement field u solution of
the elliptic problem (27) with imposed Dirichlet boundary condition prescribing the
right shape on the airfoil boundary (central panel). An exemple of a typical mesh is
shown in the rightmost panel.

with prescribed Dirichlet boundary conditions on the airfoil boundaries in order im-
pose the correct shape to the deformed domain. The subscript x0 indicates that the
derivatives are taken with respect to the coordinates in the reference domain.

The reference shape is chosen as the symmetric profile NACA 0012. The refer-
ence domain is then meshed using triangular elements. Equation (27) is solved on this
domain to find the mapping u corresponding to a given shape of the family NACA
4-digits airfoils and the reference mesh is deformed accordingly, as shown in fig-
ure 8. The coefficients appearing in this equation are chosen on empirical basis as
c1 = 50, c2 = 1, c3 = 24.5. The values are selected in order to avoid severe distor-
sion of the mesh. The Stokes problem is then solved on the deformed mesh using
Crouziex-Raviart mixed finite elements formulation.

There are two bottlenecks associated to this problem in the framework of projec-
tion based parametric reduced order modeling:

– The parametric mapping u(x0, t,m, p) needs to be determined from the solution of
equation (27). The difficulty in this step is associated to the parametrization of the
Dirichlet boundary conditions describing the airfoil shape that are not expressed
in a tensor format and an approximate decomposition must be sought.

– Even if a separated variable approximation of u(x0, t,m, p) can be obtained with
reasonable accuracy, the weak form associated to problem (26) is not necessarily
affine with respect to parameters {t,m, p}.

A strategy to recover affine approximations in terms of geometrical parameters can
be found in [?].

In this case the use of collocation does not require an affine approximation of the
linear operators arising from the problem discretization, since the proposed method
only relies on the output of the deterministic solver. This takes values of {t,m, p} as
input and computes the Stokes flow around the corresponding airfoil using a triangu-
lar mesh generated through equation (27). A sparse and low rank approximation of
both the flow solution and the mapping are constructed simultaneously.

The sampling algorithm is run until all hierarchical surpluses fall below 10−8

and the truncation threshold for the rank was taken as 10−15. In figure 9 we present

0.35

0.1

0.4

p

0.14

0.45

m

0.05 0.12

t

0.5

0.1
0.08

0 0.06

0.35

0.1

0.4

p

0.14

0.45

m

0.05 0.12

t

0.5

0.1
0.08

0 0.06

full sampling sparse sampling sparse adaptive sampling

Fig. 9: Comparison between tensor product sampling strategy (leftmost panel), sparse
grid sampling using Smolyak’s rule (central panel) and sparse adaptive sampling
(rightmost panel). Note how the sampling along p is automatically refined in proxim-
ity of the values m = 0.1. This is because for m = 0 (symmetric profile) the position
of maximum camber p does not affect the shape profile. On the contrary for cambered
airfoils the value of the parameter p has a strong effect on the shape and therefore on
the flow solution, therefore more sampling points are needed in this region.

a comparison between three possible sampling strategies. With respect to classical
tensor product of 1D sampling points, Smolyak’s rule requires only a 0.6% of all
points and adaptive Smolyak’s rule only 0.03%. The final solution approximate rank
(for the prescribed precision) is 16. To assess the validity of the solution we compared
results of the reduced parametric model to the results of the direct solver for some
parameter combinations giving specific airfoils in the NACA 4-digits family. Results
are presented in figure 10 and confirm that the accuracy of the model is around 10−8.
Note that error is sensibly smaller close to the location of the sampling points.

4.2 Application to crash simulations

Parametric modeling is of capital importance in simulation based engineering ap-
plications such as process and product optimization, identification, control and un-
certainty quantification. Reduced order modeling offers a practical way to alleviate
the curse of dimensionality that is inevitably encountered in high-dimensional para-
metric problems. In industrial practice the need of simulation code certification has
somehow slowed down the process of integrating high fidelity simulation software
with reduced order modeling tools. This is partly due to the intrusiveness of most
of reduced order modeling approaches, which inevitably require modification of the
original code to a certain extent.

In this last section we show the results of parametric crash simulations performed
using the commercial code Pam Crash. The reason behind the choice of this problem
is very well related with the intrusiveness issue. In crash simulation, parametric mod-
eling is extremely important in order to have a quick assessment of parameter sen-
sitivity and performance/safety estimators before the actual physical model is built
and tested. The “digital twin” approach is a cost-wise efficient way to have a quick

NACA 2412 NACA 6409

NACA 6515 NACA 6406

Fig. 10: Error maps of the reduced order parametric solution with respect to direct
solutions for specific airfoils shapes of the NACA four-digits family. The error is
globally around 10−8 everywhere in the parametric space except in proximity of the
collocation points where the error is remarkably smaller.

sweep of the parameter state space and identify the optimal configurations in the pre-
design step. These will be eventually verified using high performance simulation and
ultimately certified by experimental testing.

Crash simulation code include binary actions that are external to the core PDE
solver, such as plasticity or contact detection. In particular the last is extremely time
consuming and can take up to 90% of the simulation time. In general such “control
actions” are present in most simulation software, which is seldom limited to a simple
core PDE solver.

Traditional reduced order modeling requires a redefinition of the control actions.
For instance the very concept of contact detection changes when the problem is for-
mulated in terms of a reduced basis with global support, due to the intrinsically local
nature of contacts.

A non-intrusive approach allows to leave control actions to a lower level, inside
the deterministic solver, since the reduced parametric model is built only on the solver
output. For the same reason, it is also possible to build reduced models for specific
quantity of interests extracted from simulation results.

In the example reported in this section, crash simulations were run using the com-
mercial software Pam Crash. The tested configuration correspond to the NCAP Offset
Deformable barrier frontal impact, shown in figure 11. The car is driven at 64km/h

Rigid Obstacle

64 Km/h

[mm]

A

B C D

Fig. 11: Parametric simulation of the crash model for the NCAP Offset Deformable
barrier frontal impact test. Final deformation corresponding to different combination
of the parameters : (A) µ1 = 2.34 mm, µ2 = 2.09 mm, µ3 = 2.362.34 mm, µ4 =

1.61 mm; (B) µ1 = 3.74 mm, µ2 = 2.09 mm, µ3 = 3.78 mm, µ4 = 1.61 mm; (C)
µ1 = 3.74 mm, µ2 = 0.84 mm, µ3 = 3.78 mm, µ4 = 0.64 mm; (D) µ1 = 2.34 mm,
µ2 = 0.84 mm, µ3 = 2.34 mm, µ4 = 0.64 mm.

and with 40% overlap into a deformable barrier which represents the oncoming ve-
hicle. The test replicates a crash between two cars of the same weight, both travel-
ling at a speed of 50km/h. In particular safety can be assessed with respect to the
geometrical parameters in the model. In this case we considered four parameters,
µ ≡ {µ1, µ2, µ3, µ4}, corresponding to the thicknesses of different parts (inner rail,
outer rail, lower-outer rail and front frame).

The reduced parametric displacement field is sought in the tensor form

uh(x, t,µ) =

rs∑
i=1

rt∑
j=1

rµ∑
k=1

Ci jkφ
i(x)ϕ j(t)ψk(µ) , (28)

Simulation were scripted using Python and a Matlab generic interface was used
to recover the simulation results and build the reduced model. Globally, 401 simu-
lations were run in parallel, each taking approximately one hour on 32 cores. The
final deformations corresponding to different choices of the parameters are shown in
figure 11.

The model was exported using the pxdmf format for canonical tensor representa-
tions developed in the framework of PGD [?]. This allows the visualization and the
post-processing of the solution in real time using open source software Paraview. This
solution can be easily explored for sensitivity analysis or uncertainty quantification
with respect to the parameters.

5 Concluding remarks

We showed the application of hierarchical adaptive sampling in the parametric space
combined with an incremental tensor approximation technique in order to learn the
low-rank and sparsity features characterizing the solution of parametric models. We
tested the proposed approach through numerical experimentation on different models,
including time dependent and multi-parametric problems. Results show that the col-
location strategy can be easily integrated with existing deterministic solvers in a non-
intrusive way, as the method does not require access and manipulation of the solver
internal operators or routines. This feature enables reduced order modeling for prob-
lems which are not straightforwardly compatible with traditional projection-based
approaches requiring the appropriate format in the problem setting. Approximating a
parametric solution in explicit form not only requires the construction of a reduced
basis but also the determination of the parametric modes. When these have a sparse
representation, the number of coefficients needed to accurately describe the func-
tional dependency of the solution in the parametric space is typically small, although
this is in general higher than the numerical rank of the approximation. Therefore, in
agreement with other studies [?], we observed that if the number of direct runs sam-
pling is fixed, the offline/online approach yields a more accurate solution (when the
structure of the problem makes it possible) than an explicit offline solution. However,
as pointed out in [?], in many applications the hierarchical collocation approach is
sufficient to have reasonable accuracy for an explicit representation of the solution,
or a given quantity of interest, without the need of solving a reduced system each
time a new query is demanded.

In many engineering applications, the proposed approach is particularly suitable
for delivering fast performance estimators, allowing for quick parametric sweeps so
as to assess sensitivity with respect to the parameters, find optimality or evaluate and
quantify uncertainty in the data.

A Incremental Random Singular Value Decomposition

A.1 Randomized singular value decomposition

Suppose we are given the input data matrix S, which in our case contains the hierarchical surpluses, and
assume that a rank-r approximation like in Eq. (7) wants to be computed. There are two main ideas behind
the rsvd:

– The first is to realize that a partial SVD can be readily computed provided that we are able to construct
a low-dimensional subspace that captures most of the range of the input data matrix.

– The second is to observe that such low-dimensional subspace can be computed very efficiently using
a random sensing method.

Let us start with the first of the aforementioned ideas. Suppose that we are given a matrix Q|m×p with
r ≤ p � n orthonormal columns such that the range of S is well captured, i.e.:

‖S −QQ∗S‖ ≤ ε, (29)

for some arbitrarily small given tolerance ε. Then, the input data is restricted to the subspace generated by
its columns, that is: B|p×n = Q∗S. Observe at this point that we implicitly have the factorization A ≈ QB.
Next, we compute an SVD factorization of the matrix B = ŨΣ̃Ṽ∗, where factors are defined as Ũ|p×p,
Σ̃|p×p and Ṽ|n×p. This operation is much less expensive than performing the SVD on the initial data set
because the rank is now restricted to the rows of B. Finally, in order to recover the r dominant components,
we define an extractor matrix P|p×r and set: U = QŨP, Σ = PtΣ̃P and V = ṼP. In summary, given Q, it is
straightforward to compute a SVD decomposition at a relatively low cost O(mnp + (m + n)p2).

Now we address the second question, that is, how to compute the matrix Q. We first draw a random
Gaussian test matrix, Ω|n×p. Then, we generate samples from the data matrix, i.e. Y|m×p = AΩ. Observe
that if the rank of input data matrix was exactly r, the columns of Y would form a linearly independent set
spanning exactly the range of S, provided that we set p = r. Since in general the true rank will be greater
than r, we must consider an oversampling parameter by setting p = r + α. This will produce a matrix Y
whose range has a much better chance of approximating well the range of the input data matrix. Finally,
Q can be obtained from the orthogonalization of Y. In fact, it can be shown that the following error bound
is satisfied

‖S −QQ∗S‖ ≤
[
1 + 9

√
p min{m, n}

]
σr+1, (30)

with a probability in the order of O(1 − α−α). That is, the failure probability decreases superexponentially
with the oversampling parameter [?].

Remark 1 (On the optimal decomposition) Observe that the standard SVD produces Q|m×r such that

‖S −QQ∗S‖ = σr+1,

but at a higher cost O(mn min{m, n}).

A prototype version of the randomized SVD is given in the Algorithm 4.

Algorithm 4 Randomized singular value decomposition: rsvd
Require: S|m×n, r, α . Data matrix, rank and oversampling parameter

Set p = r + α
1: Draw Ω|n×p . Random Gaussian test matrix
2: Generate samples Y|m×p = SΩ
3: Compute Q|m×p = orthogonalize(Y) . Captures range of S
4: Restrict B|p×n = Q∗S
5: Compute [Ũ|p×p,Σ|p×p,V|n×p] = svd(B) . Standard deterministic SVD
6: Set U|m×p = QŨ

return U|m×r ,Σ|r×r ,V|n×r . Retain r first components

Neglecting the cost of generating the Gaussian random matrixΩ, the cost of generating the matrix Q is
in the order of O(mnp + mp2) flops. In consequence, the computational cost of the entire rsvd procedure
remains as O(mnp + (m + n)p2). The algorithmic performance of the rsvd can be further improved by
introducing a number of refinements at the price of worsening slightly the error bounds. In particular, the
most expensive steps in the rsvd algorithm consist in forming matrices Y and B, which require in the
order of O(mnp) flops. The first can be reduced to O(mn log(p)) by giving some structure to the random
matrix Ω, while the second can be reduced to O((m + n)p2) via row extraction techniques, which leaves
the total cost O(mn log(p) + (m + n)p2). The interested reader can find further details on these refinements
as well as on their impact on the assessment in [?].

A.2 Incremental randomized singular value decomposition

In this section we present an incremental variant of the randomized SVD algorithm, discussed in section
A.1. The objective is twofold: (i) to be able to learn a subspace for the hierarchical surpluses as they
are streamed from the sparse sampling procedure; (ii) to perform it at a computational cost that scales
reasonably with the number of samples.

Let us assume that we want to compute a rank-r approximation of some streamed data, and that we
have chosen an oversampling parameter α such that p = r+α, as in section A.1. Let us denote by S0|m×n the
old data matrix, whereas S|m×n′ is the new data columns such that the total data is now S1|m×(n+n′) = [S0 |S].
We would like to compute an approximated SVD decomposition S1 ≈ U1Σ1V∗1 at a cost which is roughly
independent on n, the number of columns of the old data. For the sake of completeness, recall that U1|m×p,
Σ1|p×p and V1|(n+n′)×p.

In order to do so, suppose that we are given a non-truncated SVD approximation of the old data, i.e.
S0 ≈ U0Σ0V∗0, with U0|m×p, Σ0|p×p and V0|n×p. Suppose that we also dispose of the matrix of random
samples Y0|m×p. Then, in order to account for the new data we only need to generate a random Gaussian
test matrix Ω|n′×p and perform a small product which only involves the new data:

Y1 = Y0 + SΩ. (31)

The matrix Q1|m×p can be obtained from the orthogonalization of Y1 at a cost that remains stable, as it
does not depend on n nor n′. Next, input data has to be restricted to the range of Q1. Recalling that we
already dispose of a non-truncated SVD approximation of the old data:

B1 ≈ Q∗1
[

U0Σ0V∗0 S
]

=
[

Q∗1U0Σ0 Q∗1S
]

︸ ︷︷ ︸
B̃

[
V∗0 0
0 In′×n′

]
, (32)

where In′×n′ is the identity matrix of size n′. Similarly to section A.1, observe that Eq. (32) yields a
factorization S1 ≈ Q1B̃. Hence, if we compute a SVD decomposition of the factor B̃,

B̃ = ŨΣ1Ṽ∗, with Ũ|p×p, Σ1|p×p and Ṽ|(p+n′)×p, (33)

we can conclude the algorithm by setting:

U1 = Q1Ũ and V1 =

[
V0 0
0 In′×n′

]
Ṽ. (34)

A prototype version of the incremental randomized SVD is given in the Algorithm 5.

Algorithm 5 Incremental randomized singular value decomposition: irsvd
Require: S|m×n′ , U0|m×p, Σ0|p×p, V0|n×p, Y0|m×p . Streamed data, old factors and old samples
1: Draw Ω|n′×p
2: Correct samples Y1|m×p = Y0 + SΩ
3: Compute Q1|m×p = orthogonalize(Y1)
4: Form B̃|p×(p+n′) =

[
Σ0 U∗0S

]
5: Compute [Ũ|p×p,Σ1|p×p, Ṽ|(p+n′)×p] = svd(B̃)
6: Set U1|m×p and V1|(n+n′)×p as indicated in Eq. (4)

return U1,Σ1,V1 and Y1 . Do not truncate: retain all p components

Observe that the cost of the irsvd algorithm is driven by O((m + n)p2) when choosing n′ ∼ p, while
if one chooses n′ � p, the cost matches the standard rSVD, that is O(mn′p). A more detailed analysis
of the flop count indicates that in fact, the only dependence on n of the algorithm is due to the cost of
updating the right singular vectors in Eq. (34). On the other hand, the reader should keep in mind that, for
the applications targeted in this paper, the number of rows of the input dataset (degrees of freedom after
discretization of a PDE) is at least one or two orders of magnitude bigger than the number of columns
(solution snapshots). As a consequence, the cost of the irsvd turns out to be roughly independent on n. A
final consideration that should not be neglected is that, for data sets that do not fit in the core memory, the
cost of transferring data from slow memory dominates the cost of the arithmetics. This can be generally
avoided with the incremental algorithm presented in this section.

A.3 A numerical example: order reduction applied to the lid-driven cavity problem

In this section, we provide numerical evidence on the performance of the irsvd, as described in section
A.2. In particular, we apply irsvd on the set of hierarchical surpluses, Sldc, coming from the solution of
the lid-driven cavity problem, as described in 2.4. The size of the data matrix is m = 14, 082 rows and
n = 513 columns. An overkill value of the oversampling parameter is taken, α = r (i.e. p = 2 r).

Firstly, we show that the low-rank singular value decomposition given by the irsvd tends to both the
standard svd and the rsvd as the number of processed columns approaches the number of columns of the
entire dataset. To that end, we choose a rank r = 20 and a fixed bandwidth n′ = 5. Figure 14 shows the
evolution of the singular values as the number of processed columns increases. It can be noticed that, in
fact, after a relatively low number of columns are processed (say 20), the singular values are already very
close to the reference ones. This is simply because when coupling irsvd with the hierarchical sampling
the surpluses that come from higher hierarchical levels are naturally associated to the first singular vectors.
On the contrary, lower hierarchical levels yield smaller surpluses, as the hierarchical sampling method
converges. When the entire dataset is processed, the irsvd yields a SVD that matches the standard one,
see Figure 12f.

In order to further assess the convergence of the irsvd towards the standard svd decomposition, the
energy error between both decompositions is measured:

εr =

√∑r
i=1 (σirsvd − σsvd)2∑r

i=1 σ
2
svd

, (35)

for a given rank r. Figure 13 shows the evolution of εr for several bandwidth. It can be observed that the
bandwidth hardly influences the convergence results.

Next, the computational cost of the irsvdmust be assessed. Figure 14a shows the runtime (denoted by
τ) of the irsvd, i.e. Algorithm 5, as a function of the bandwidth. The runtime is computed as the average
of three executions. Results confirm that, as discussed in section A.2, the computational cost is independent
on the bandwidth size. Besides, it can be observed that greater ranks yield greater runtimes. In fact, the
computational complexity should depend quadratically on the rank. This quadratic scaling is confirmed
by Figure 14b, which shows the normalized rank r̃ = r/r0 (with r0 = 10) against the normalized runtime
τ̃ = τ/τ0, where τ0 is the runtime associated to r0. It can be seen that for all bandwidth the normalized
runtime scales super-linearly with the normalized rank (linear scaling is depicted for reference).

Finally, it is worth to highlight that in many practical applications the cost of irsvd turns out to be
independent on n, the total number of columns of the data set. This is simply because usually m � n and
then the computational complexity reduces to O(mp2). In other words, the cost only starts being influenced
by n when n ∼ m. Figure 15 shows the runtime of each irsvd call, averaged over three runs. For the sake
of clarity, runtimes have been normalized to their mean value, while the vertical axis scale is chosen so we
can observe ±50% deviations from the mean. Results show that runtime deviates very few from the mean.
Moreover, the cost of each call remains fairly constant as the number of processed columns increases,
which confirms the discussion above.

Acknowledgments

The authors of the paper would like to acknowledge Jean-Louis Duval, Jean-Christophe Allain and Julien
Charbonneaux from the ESI group for the support and data for crash and stamping simulations.

Compliance with Ethical Standards.

– The authors declare that they have no conflict of interest;
– The research does not involve neither human participants nor animals;
– All the authors are informed and provided their consent.

Si
ng

ul
ar

va
lu

es

(a) Columns: 5 of 513

0 5 10 15 2010−6

10−2

102

106

svd rsvd irsvd

(b) Columns: 10 of 513

0 5 10 15 2010−6

10−2

102

106

(c) Columns: 15 of 513

0 5 10 15 2010−6

10−2

102

106

(d) Columns: 20 of 513

0 5 10 15 2010−6

10−2

102

106

(e) Columns: 100 of 513

0 5 10 15 2010−6

10−2

102

106

(f) Columns: 513 of 513

0 5 10 15 2010−6

10−2

102

106

Subspace dimension

Fig. 12: Singular values evolution in terms of the cumulated number of columns pro-
cessed by the irsvd. Comparison is made against reference results given by standard
svd and rsvd, for rank r = 20 and bandwidth n′ = 5.

0 200 400 600
10−6

10−5

10−4

10−3

10−2

10−1

100

Processed columns

E
ne

rg
y

er
ro

r-
ε r

=
20

n′ = 5
n′ = 10
n′ = 15
n′ = 20

Fig. 13: Energy error measuring the convergence of the singular values, for fixed rank
r = 20, as a function of the number of processed columns for different values of the
bandwidth n′.

5 10 15 20
0

0.05

0.1

Bandwidth - n′

A
ve

ra
ge

d
ru

nt
im

e
-τ

[s
]

r = 10 r = 20
r = 30 r = 40
r = 50

(a) Runtime is independent on the bandwidth for all
rank

1 2 3 4 5

2

4

6

8

10

Rank scaling - r̃

R
un

tim
e

sc
al

in
g

-τ̃

n′ = 5 n′ = 10
n′ = 15 n′ = 20
Linear scaling

(b) Runtime scales super-linearly with the rank for
all bandwidth

Fig. 14: Assessment of computational performances of irsvd: bandwidth indepen-
dence and rank scaling.

R
un

tim
e

no
rm

al
iz

ed
to

th
e

m
ea

n
(a) n′ = 5

0 200 400 600

0.6

0.8

1

1.2

1.4

(b) n′ = 10

0 200 400 600

0.6

0.8

1

1.2

1.4

(c) n′ = 15

0 200 400 600

0.6

0.8

1

1.2

1.4

(d) n′ = 20

0 200 400 600

0.6

0.8

1

1.2

1.4

Processed columns

Fig. 15: Assessment of computational performances of irsvd: data size indepen-
dence.

