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Abstract: Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting
their effective modeling and simulation. This work uses experimental atomic force nanoindentation
of thick hydrogels to identify the indentation forces are a function of the indentation depth. Later on,
the atomic force microscopy results are used in a GENERIC general equation for non-equilibrium
reversible–irreversible coupling (GENERIC) formalism to identify the best model conserving basic
thermodynamic laws. The data-driven GENERIC analysis identifies the material behavior with high
fidelity for both data fitting and prediction.
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1. Introduction

Thanks to the recent progress in simulation technology and computing power, the mechanical
behavior of biological tissues is nowadays one of the most active research topics. However,
many biological tissues are biphasic by nature, which renders their effective modeling and simulation a
challenging issue, even with the impressive progress achieved recently [1]. Human cartilage, for example,
is a biphasic material, where the fluid pressurization is believed to be the main load-carrying
phenomenon [2]. Moreover, the microstructure and the fluid-solid interactions in such materials is
complex and not fully understood [3,4]. The modeling of biphasic materials is, however, mandatory to
design effective replacements of human soft tissues as well as understanding their behavior [5].

Different efforts are undertaken to model soft materials. In [5], the authors attempt to define
a viscoelastic model based on only three parameters identified experimentally, using a pure solid
mechanics approach. Other works aim to model the contact and lubrication phenomenon when
using soft materials in contact mechanics, similarly to human body lubricated contact [6]. In [6],
an interface element is developed and identified to transmit contact efforts from contact bodies into the
lubrication fluid, soft material film. A study of cutting behavior of soft material films is performed in [7]
using energy methods, however, assuming a non-linear hyperelastic neoprene rubber-like material.
In [1], the authors model the soft material indentation using a biphasic approach, combining an
elastic solid behavior and a fluid pressurization one. Indentation of soft materials is also studied
in [8], where the authors performed a theoretical and finite element study using Hertzian contact and
generalizing for large hyperelastic deformation including material non-linearities. Suitable nonlinear
compressible material model for soft materials is also derived in [9], with its parameters identified for
lung parenchyma using experimental results and inverse analysis.
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All the aforementioned studies use experimental results to tune previously defined models,
either using finite element simulation or analytical derivations. However, the derived models will
always lack the exact truth due to the missing knowledge or information, and the errors involved in
experimental measurements. Moreover, models derived to reproduce a given test situation may work
pretty well in that specific test. However, their predictive ability in different loading cases, boundary
conditions, or other basic variations in the problem, may not be as accurate as desired. This fact has
lead to the development of data-driven models to overcome the need to predefine a “model”, as well as
hybrid-twins models aiming to correct established models with experimental results [10]. Data-driven
models aim to create models straight out of abundant data, either through regressions/optimized
regressions [11], or through the use of artificial neural networks [12]. While hybrid-twin models aim
to perform an error correction on well-established models, aiming to preserve the known physics
in the model, while accounting for the ignorance or lack of information [10,13]. Such a trend is now
colonizing more research fields and soft materials are not an exception [14,15]. For example, Ref. [14]
trained a neural network to simulate later in real-time the response of human soft tissues in a surgical
context. In [15], the authors leverage machine learning techniques along with classical mechanics of
materials models to create a hybrid modeling of soft materials.

Despite being popular nowadays, data-driven models and hybrid ones sometimes can violate the
basic established principles of physics, like mass and energy conservation, entropy production, etc.,
especially when the data sample size is not large enough and/or contains multiple outliers. In fact,
no physical constraint is currently integrated in machine learning techniques to alleviate the possibility
of violating the basic principles of thermodynamics. Recent efforts aim to create a physically informed
neural network for supervised learning, through integrating the physical differential equation error
in the neural network optimization [16,17]. An alternative approach to design models from data
while conserving physical constraints is the GENERIC formalism [18]. In fact, GENERIC stands for
«general equation for non-equilibrium reversible–irreversible coupling». The GENERIC formalism
originally came from modeling rheological behavior of complex fluids, and emerged gradually from
the treatment of different cases [19,20] as stated in [21,22]. Later on, a detailed publication of the
approach was given in [23].

Recently, the GENERIC formalism is used to derive data-driven modeling, while preserving basic
thermodynamics laws [18]. Such an approach is successfully applied to derive hyperelastic materials
behavior from data measurements [18]. GENERIC is also used to identify the best suitable model of
the experimental results using only data values [18]. The GENERIC formalism establishes a complete
and general equation of motion of the system under reversible and/or irreversible conditions of the
system [23]. Such an approach is leveraged to identify thermodynamically consistent data-driven
models out of experimental results, without setting any a priori assumptions, except the basic laws
of thermodynamics.

This work consists of a first attempt to model soft materials, hydrogels, for instance, using the
GENERIC formalism and experimental data. This work aims to formulate a new constitutive model
using experimental data and the conservation of thermodynamic quantities. The experimental setup
consists of a unidirectional nanoindentation test with atomic force microscopy, using a spherical rigid
indenter. The experimental device measures the displacement and the spring back force at the indenter.
The indented specimen is a highly porous hydrogel medium, which is a material of high interest
currently [24]. In fact, hydrogels are biphasic composite soft materials used, among others, for drug
cell encapsulation controlling drug release, contact lenses, cartilage. Ongoing efforts are made to
simulate and characterize these materials [24–26]. However, the ongoing works all starts by assuming
a physical model for the material in question.

The work starts with a review of the experimental indentation process at hand, giving the reaction
forces in a thick hydrogel poroviscoelastic material, as a function of the process input parameters:
the indentation depth and velocity of the indenter. Later on, a modeling of the process is performed



and then the GENERIC formalism used in this work is detailed along with the identified model. Finally,
the numerical results are illustrated and discussed.

2. Numerical Modeling of the Indentation Process

2.1. The Experimental Procedure

In this section, we review the experimental setup used to identify the mechanical behavior of a
thick hydrogel. The experiment uses atomic force microscopy nanoindentation (AFM nanoindentation)
to identify the mechanical response of a hydrogel. AFM is usually modeled as a cantilever beam
supporting a semi-spherical indenter of radius ρ = 36 µm. In turn, the cantilever beam is modeled as a
spring of stiffness k = 2.88 N/m, as illustrated in Figure 1.

z=0 z(t)

Specimen

Indenter

w(t)

Figure 1. The reference for z = 0 is taken at the point of contact of the indenter with the specimen,
w(t) is the penetration depth of the probe into the specimen.

The specimen indentation depth is w(t), while the displacement at the base is z(t).
The experimental setup identifies z(t) using optical sensors and the reaction force F at the base
of the spring, which corresponds to the force in the spring. Therefore one may easily write:

w = z− F
k

. (1)

The experiment is repeated for five different indentation rates, ż, equal to 0.5 µm/s, 2 µm/s,
8 µm/s, 40 µm/s and 80 µm/s. The experimental results are illustrated in Figure 2, which provides real
experimental data obtained using atomic force microscopy (AFM) non-indentation. The experiments
were performed at room temperature or 22 ◦C ± 1 ◦C. The normal spring constant of the cantilever
was measured using the thermal noise method before attaching the colloidal microsphere indenter.
The indenter is a silica microsphere glued with UV-curable glue (Norland optical adhesive 63) to the
end of the tipless cantilever by means of a home-built micromanipulator. The exact approach rates
ż(t) were measured using a Z-piezo sensor to control the approach of the probe as much as possible.
The experimental setup measures z and F at every time step ∆t = 0.5 ms. One may note that the
indentation depth does not exceed 1.8 µm as shown in Figure 2, and therefore we can approximate the
spherical indenter by a flat one considering the radius of curvature of the indenter ρ as very large with
respect to the indentation depth. Thus the indentation area can be approximated as A = πR2 with R
the indentation radius defined as:

R =
√

ρ2 − (ρ− w)2. (2)
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Figure 2. The experimental atomic force microscopy nanoindentation (AFM) nanoindentation reaction
force in the spring F(t) as a function of the indentation depth w(t).

Moreover, we note that the initial hydrogel specimen height H0 is large enough to avoid any
substrate effect during the indentation. For instance, in the tested specimen, H0 = 6 mm, more than
1000 times the maximum reached indentation depth.

2.2. GENERIC Formalism

Under the framework of non-equilibrium thermodynamics, the GENERIC formalism establishes a
completely general equation of the dynamics of a system under reversible and irreversible conditions,
as dictated by the evolution of energy and entropy, respectively [22,23,27]. Models constructed using the
GENERIC formalism preserve the symmetries of the system and therefore guarantee the conservation
of energy and the increase of entropy.

The GENERIC structure of the evolution equations for an arbitrary problem is

żt = L(zt)∇zE(zt) + M(zt)∇zS(zt), z(0) = z0, (3)

where:

1. [zt] is the vector of state variables of the problem at time t. The choice of zt is irrelevant in the sense
that different sets of zt lead to different GENERIC formalisms, all of them thermodynamically
consistent. However, zt should contain variables—such as position, momentum, stress, energy, or
entropy, for instance—able enough to evaluate the energy conservation and the dissipation therms.

L is the so-called Poisson matrix and will be responsible for the reversible (Hamiltonian) part of the
evolution of the system.

E represents the energy of the system, as a function of its particular state at time t, zt.
M represents the friction matrix, responsible for the irreversible part of the evolution of the system.
S represents the entropy of the system for the particular choice of variables z.

Equation (3) is supplemented with the complementary degeneracy conditions, i.e.,

L(z) · ∇zS(z) = 0,
M(z) · ∇zE(z) = 0.

(4)



In what follows, if there is no risk of confusion, and for the sake of readability, we will omit the
subscript z in ∇z.

By choosing L skew-symmetric and M symmetric, positive semi-definite, one ensures the
conservation of energy:

Ė(z) = ∇E(z) · ż = ∇E(z) · L(z)∇E(z) +∇E(z) ·M(z)∇S(z) = 0, (5)

and the fulfillment of the second principle of thermodynamics:

Ṡ(z) = ∇s(z) · ż = ∇S(z) · L(z)∇E(z) +∇S(z) ·M(z)∇S(z) ≥ 0. (6)

2.3. Data-Driven Characterization of the GENERIC Description of a Hydrogel

The objective is to model the biphasic hydrogels using GENERIC formalisms, thus to obtain the
GENERIC Equation (3) for the experimental data. In [18,28] an approach has been developed by the
authors so as to obtain a numerical description—by means of manifold learning techniques—of the
different constituents of the GENERIC equation.

Since data zi are obtained at discrete time increments, Equation (3) is first discretized in time,

zn+1 − zn

∆t
= L(zn)DE(zn) +M(zn)DS(zn), (7)

where, for simplicity, we denote zn+1 = zt+∆t and where L and M are the discrete version of the Poisson
and friction operators, respectively. Also, DE and DS represent the discrete gradients. In general,
matrix L is constant over the process, while matrix M is frequently a function of z.

The set of variables chosen for each zi are the specimen indentation depth w(t), the specimen
indentation velocity v(t) = ẇ(t) and the average normal stress at the indentation point σ(t) at time
ti = i× ∆t . Also, in this paper, we assume L known, being:

L =

 0 1 0
−1 0 0
0 0 0

 . (8)

As can be seen in [28] , different definitions of z, L and M can be done, and also the particular
structure of L can be considered itself as an unknown. The ones selected here have shown the best
convergence for this particular problem. Furthermore, the discrete gradients are discretized in a
piecewise linear, finite element, manner:

DE(zn) = A · zn, DS(zn) = B · zn, (9)

where A and B can be time dependent operators or constant with respect to the time. For the selected
problem, operators were shown to be almost constant. Therefore, we decided to perform the regression
procedure within a single step. The proposed algorithm will thus consist in solving the following
minimization problem:

µ∗ = {A,M,B} = arg min
µ
||z(µ)− zexp||, (10)

subjected to:
L · B · z(µ) = 0,
M · A · z(µ) = 0,

(11)

with z(µ) given by Equation (7) and zexp all the experimental results of each experiment.



The just-introduced procedure must not be seen as a model fitting procedure. Indeed, the number
of values to determine is much higher than the usual number of parameters in a suitable model.
What we seek with this procedure is a method of machine learning the GENERIC expression of the
problem. The result is the numerical value of these GENERIC building blocks and not the particular
values of any model parameter. Those are considered constant for each experiment, although a
piece-wise linear variation along time is equally possible, in general.

Once the minimization problem has been solved, and given an initial z0 value of the variable at
the beginning of the experiment, it is possible to reconstruct the solution for each experiment, in order
to check the accuracy of the method: wn+1

ẇn+1

σn+1

 =

 wn

ẇn

σn

+ ∆t(L · A+M · B)

 wn

ẇn

σn

 . (12)

2.4. Equivalence With Traditional Ways of Phenomenological Model Fitting

For practitioners used to employ experimental results for constitutive law fitting purposes,
the procedure outlined above could seem intricate and unclear. Particularly, regression of the terms in
Equation (3) could somehow obscure the true philosophy behind the suggested method.

Note, however, that some terms in Equation (3) should seem familiar to us. Noteworthy, the term
∇E(z) represents the usual form of deriving a constitutive law in a hyperelastic framework. In turn,
the term ∇S(z) introduces a second potential, of dissipative nature, taking care of the viscous terms in
the constitutive law.

From a practical point of view, the development of finite element time integration schemes
deriving directly from GENERIC expressions is something already developed by different authors,
particularly I. Romero and coworkers. Equation (3) could be employed advantageously to derive time
integration schemes directly that conserve energy and dissipate entropy, showing great robustness
from the numerical point of view, even for low orders. The interested reader is referred to [29–31] and
references therein for details.

3. Results

3.1. GENERIC Model

The experimental measurements are taken every ∆t = 0.015 seconds, displacements are measured in
micrometers µm, velocities in micrometers per second µm/s and stresses in nanoNewtons (nN) per square
micrometer nN/(µm)2. A regression for A, M, and B is performed using different sets of measurements
at different indentation rates. The experiment is performed on two different sets of materials.

Figure 3a,b show the indentation depth w as a function of the number of measurements taken
from the beginning of the experiment, which is proportional to the time t since measurements are
taken every 15 ms. We can clearly see an excellent comparison of the derived GENERIC model with
the experimental indentation depth, with an average relative error of 0.4%.
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ż=80

(b)

Figure 3. Indentation depth at different indentation rates for the MICA silicate and polyethylene
hydrogels. Measurements are taken at constant time step ∆t = 15 ms. (a) MICA silicate fibers;
(b) Polyethylene fibers.

Figure 4a,b show for both materials the experimental values of the state variables forming the
stress σ value for different indentation velocities, along with their corresponding identified GENERIC
models, obtained with the GENERIC regression. It is worth mentioning the high accuracy obtained.
The stress results illustrate low relative error with respect to the experimental results.
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ż=40

σ
GEN
ż=40

σ
exp
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ż=2

σ
exp
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Figure 4. Normal stress during the indentation of the MICA silicate and polyethylene hydrogels at
different indentation speed. Measurements are taken at constant time step ∆t = 15 ms. (a) MICA
silicate fibers; (b) Polyethylene fibers.

Using the generic formalism, we can also show the indenter velocity ẇ obtained from the model
and the experimental data through time derivation of the obtained data points w using explicit Euler’s
derivation. Figure 5a,b show, for both materials, the experimental values of the indenter velocity ẇ for
different ż, along with their corresponding identified GENERIC models, obtained with the GENERIC
regressions. In Figure 5, we can clearly see experimental artifacts of the velocity ẇ at high indentation
rates ż and near the end of the experiment, for both materials. This is mainly due to the low machine
precision at high speeds and potentially induced vibration of the cantilever arm.
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ż=8
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ż=40
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ẇGEN
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ẇexp
ż=80
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Figure 5. Indenter velocity ẇ in the MICA silicate and polyethylene hydrogels at different ż. Measurements
are taken at constant time step ∆t = 15 ms. (a) MICA silicate fibers; (b) Polyethylene fibers.

The relative errors for different GENERIC formalism modeling, for the three quantities of interests,
are illustrated in Figures 6 and 7 for the MICA silicate and polyethylene fibers hydrogels respectively.
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err(σ)ż=80

(c)

Figure 6. Relative error in the polyethylene fibers hydrogel for the three considered quantities of
interest. (a) Indentation depth w; (b) Indeter’s velocity ẇ; (c) Average stress.
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Figure 7. Relative error in the MICA silicate fibers hydrogel for the three considered quantities of
interest. (a) Indentation depth w; (b) Indeter’s velocity ẇ; (c) Average stress.

All experiments have low relative errors in general. We can clearly see negligible relative
error for the indentation depth w for both materials in Figures 6a and 7a. We can also identify
very low relative errors on the indenter’s velocity ẇ in Figures 6b and 7b, except by the end of the
experiments at ż = 40 µm/s and ż = 80 µm/s, which is explained by the experimental artifacts
seen by the end of the experiments. The stresses exhibit the highest values of the relative error while
being in acceptable ranges eventually. The high relative errors at the beginning of the experiments
illustrated in Figures 6c and 7c are explained by the numerical and experimental amplified errors by
the derivation of the results, since computing the velocities requires a numerical derivation of the
experimental measurements.

Tables 1 and 2 illustrate the average relative errors for the MICA silicate and polyethylene
indentations experiments respectively, calculated using:

error =

N
∑

i=1

∥∥∥∥ zexp
i −zGEN

i
zexp

i

∥∥∥∥
N

, (13)

where N is the number of measurements in the experiment using a given indentation rate.



Table 1. Total error (%) during the indentation of the MICA hydrogel.

Variable ż = 0.5 µm/s ż = 2 µm/s ż = 8 µm/s ż = 40 µm/s ż = 80 µm/s Average Error

w 0.06 0.11 0.29 0.07 1.1 0.33
ẇ 0.14 0.24 0.77 0.53 0.85 0.51
σ 0.52 0.55 1.91 1.02 0.57 0.91

Table 2. Total error (%) during the indentation of the polyethylen hydrogel.

Variable ż = 0.5 µm/s ż = 2 µm/s ż = 8 µm/s ż = 40 µm/s ż = 80 µm/s Average Error

w 0.36 0.16 0.39 0.64 0.05 0.34
ẇ 0.8 0.33 0.55 0.91 0.34 0.59
σ 3.88 4.71 3.45 5.46 1.4 3.78

3.2. Predictive Capabilities for New Experimental Results

In this section we use the aforementioned GENERIC regression to predict the experimental results
for an indentation velocity ż = 2 µm/s, while not being present in the training database. For that aim,
we will use the GENERIC formalism matrices A, M and B obtained at ż = 0.5 µm/s and ż = 8 µm/s.
Using these results, we predict the matrices at ż = 2 µm/s using a linear interpolation approach.
For instance:

A@2µm/s =
A@0.5µm/s × 6.5 + A@8µm/s × 1.5

8
. (14)

Using the linear interpolation approach, we predict the GENERIC formalism matrices. Eventually,
using a more accurate interpolation scheme is an option for interested users (Kriging for example).
The prediction results are illustrated in Figures 8–10. The results show good predictions bounded
between the two fitted quantities of interest at ż = 0.5 µm/s and ż = 8 µm/s illustrated in large
dashed lines in Figures 8–10.
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ż=2

wGEN
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Figure 8. Prediction of the indentation depth at ż = 0.2 µm/s for the polyethylene fibers hydrogel.
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ż=2

wGEN
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Figure 9. Prediction of the indenter’s velocity ẇ at ż = 0.2 µm/s for the polyethylene fibers hydrogel.
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Figure 10. Prediction of the average stress at ż = 0.2 µm/s for the polyethylene fibers hydrogel.

4. Discussion

This work consists of a first attempt to explore the possibilities of using the GENERIC formalism
with data-driven identification, to model the indentation of thick hydrogels. The results show a good
match with the experimental data. The use of three different matrices to identify in the model gives an
advantage and flexibility of identifying a model with 27 parameters. The 27 parameters (3 matrices
each containing 9 values) are eventually enough to reproduce the best behavior of the material. Indeed,
not all the identified parameters are independent. For instance, the symmetry of the M matrix and the
skew-symmetry of the L matrix reduces the number of independent variables to 18. Other restrictions
may reduce even further the number of independent variables. Classical modeling of the indentation
is possible, either using solid mechanics approach [32], or a combination of solid and fluid phases [1].

Different matrices A, M, and B are identified for different indentation velocities. This fact shows
a highly non-linear behavior of the thick hydrogel in question. To simulate the behavior of the thick
hydrogel at an indentation rate different than the studied ones, an SSL-PGD interpolation, for example,
can be performed, for each one of the 27 identified parameters, among many nonlinear interpolation
techniques [33]. The result of the identified matrices is illustrated in Appendices A and B for the two
selected hydrogels.

The choice of using the GENERIC formalism appears to be a suitable approach for identifying
models with challenging mechanical behavior but without prior exact knowledge of the constitutive



equations. It also shows good predictive abilities for unfitted experimental results, as illustrated
in Section 3.2.

5. Conclusions

In this work, we investigate the possibility of using the GENERIC formalism for modeling
non-trivial material behavior. For instance, the work focuses on modeling thick hydrogels using only
the conservation of thermodynamic laws. The results show a good correlation with the experimental
ones for different experiments. The predictive ability of the model is illustrated in Section 3.2,
where linear interpolation of the model matrices is shown to suffice for predicting new experimental
models. Extrapolation of the results requires further thorough investigation and developments to yield
good results.
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Appendix A. Polyethylene Hydrogels Matrices

In this appendix we illustrate the final identified matrices by the considered algorithm for the
Polyethylene hydrogels:

ż = 0.5 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 0.020 −0.25 −0.010
−0.11 1.3 0.31
−0.090 1.05 0.30



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0
−0.11 0.30 0.33



ż = 2 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 0.92 −0.18 −3.19
−0.4 1.32 0.92
0.52 1.14 −2.27



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0
−0.39 0.32 0.91



ż = 8 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 0.29 0.35 −7.16
−2.36 1.32 6.4
−2.07 1.67 −0.77



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0
−2.36 0.32 6.43





ż = 40 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 −191.54 3.59 267.13
−20.22 1.23 61.42
−211.76 4.82 328.55



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0

−20.31 0.23 61.54



ż = 80 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 −143.65 5.04 −43.91
−3.09 1.31 −0.62
−146.74 6.35 −44.53



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0
−2.99 0.31 −1.23


Appendix B. MICA Silicate Hydrogels Matrices

In this appendix we illustrate the final identified matrices by the considered algorithm for the
MICA silicate hydrogels:

ż = 0.5 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 −0.81 −1.6 1.43
0.73 2.74 −1.41
−0.080 1.13 0.013



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0

0.74 1.74 −1.43



ż = 2 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 −0.53 −1.03 1.57
2.92 2.81 −5.23
2.4 1.79 −3.66



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0

2.95 1.82 −5.25



ż = 8 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 64 2.08 −70.47
−2.07 2.61 −5.73
61.93 4.68 −76.2



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0
−1.78 1.61 −6.03



ż = 40 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 −6222.65 −14.78 5300.72
−61.79 1.94 41.82
−6284.44 −12.84 5342.54



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0

−64.83 0.93 44.38





ż = 80 µm/s L =

 0 1 0
−1 0 0
0 0 0

 A =

 −1786.84 26.39 −806.93
301.32 3.02 −314.1
−1485.52 29.41 −1121.03



M =

 1 1 −1
1 1 −1
−1 −1 1

 B =

 0 0 0
0 0 0

12.17 1.2 −38.69
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