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Optimal transient growth in compressible
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The structure of zero-pressure-gradient compressible turbulent boundary layers is 
analysed using the tools of optimal transient growth theory. The approach relies 
on the extension to compressible flows of the theoretical framework originally 
developed by Reynolds & Hussain (J. Fluid Mech., vol. 52, 1972, pp. 263–288) for 
incompressible flows. The model is based on a density-weighted triple decomposition 
of the instantaneous field into the contributions of the mean flow, the organized 
(coherent) motions and the disorganized background turbulent fluctuations. The 
mean field and the eddy viscosity characterizing the incoherent fluctuations are here 
obtained from a direct numerical simulation database. Most temporally amplified 
modes (optimal modes) are found to be consistent with scaling laws of turbulent 
boundary layers for both inner and outer layers, as well as in the logarithmic 
region, where they exhibit a self-similar spreading. Four free-stream Mach numbers
are considered: Ma∞ = 0.2, 2, 3 and 4. Weak effects of compressibility on the 
characteristics length and the orientation angles are observed for both the inner- and
the outer-layer modes. Furthermore, taking into account the effects of mean density 
variations, a universal behaviour is suggested for the optimal modes that populate the 
log layer, regardless of the Mach number. The relevance of the optimal modes in 
describing the near-wall layer dynamics and the eddies that populate the outer region 
is discussed.
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1. Introduction
Since the pioneering study of Theodorsen (1952) on horseshoe vortices, it has been

known that coherent motions play a major role in the dynamics of wall turbulence.
According to the mechanism proposed by Hamilton, Kim & Waleffe (1995) and
later confirmed by the numerical experiment of Jiménez & Pinelli (1999), near-wall
turbulence is characterized by a self-sustaining process, which relies on the formation
and the subsequent breakdown of streamwise velocity streaks. The streaks, having
a characteristic spanwise spacing of approximately 100 wall units (Kline et al.
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1967), are induced by the advection of the mean velocity field by quasi-streamwise
vortices, which are in turn generated by streak instability. While the dynamics and
the typical structures of the near-wall layer are sufficiently well understood, much
less is known about the structure of the outer layer, which has been the focus of
substantial research in the past years. Recent experiments and numerical studies
have revealed the existence of very long, meandering features consisting of regions
of low-streamwise-momentum fluid flanked by higher-momentum fluid, commonly
referred to as large- and very-large-scale motions (LSM, VLSM) in internal flows,
and as superstructures in external flows (Smits, McKeon & Marusic 2011). According
to Kim & Adrian (1999), these motions are created by the organization of vortices
into packets, formed by multiple hairpin vortices travelling at the same velocity.

The study of the spatial and temporal scales of coherent structures, and of their
mutual interactions, is fundamental for developing low-order models of wall turbulence
(Panton 2001). In this context, although turbulence requires the nonlinearity of the
Navier–Stokes equations, there is strong evidence that the emergence of coherent
structures and energy production mechanisms can be described through linear models
(Jiménez 2013). For laminar shear flows, Schmid & Henningson (2001) have shown
that linear stability theory based on transient growth provides some understanding of
the early stages of amplification of the streaks. In the case of wall-bounded turbulent
shear flows, Butler & Farrel (1992) carried out an optimal transient growth analysis
by linearizing the Navier–Stokes equations about the mean flow, and modelling the
effect of the small-scale turbulence on the coherent part of motion by constraining the
optimization time with the eddy turnover time. They showed that the most amplified
modes have a characteristic spanwise wavelength of O(100) wall units, thus matching
the spacing of streaks observed in experiments (Kim, Kline & Reynolds 1971).

The importance of linear processes in the sustainment of near-wall turbulence in
channel flow has been numerically investigated by Kim & Lim (2000). By setting
to zero the linear coupling term representing the transfer from wall-normal velocity
to wall-normal vorticity, those authors showed suppression of linear transient growth,
with subsequent strong reduction of turbulence, and disappearance of the streamwise
vortices. They then concluded that, although near-wall turbulence features nonlinear
processes (bursting events being an example), its maintenance relies on linear
processes of transient growth. Other evidence for the importance of linear processes
has been recently given by Alizard, Robinet & Filliard (2015), who developed a
linear theory for the control of incompressible near-wall turbulence.

The temporal stability of the Orr–Sommerfeld and Squire equations in channels
with turbulent mean velocity profiles and turbulent eddy viscosities was studied
by del Alamo & Jiménez (2006), who, using a linear transient growth analysis,
identified two maxima, one corresponding to the sublayer streaks and the other to
large-scale global structures spanning the full channel. In the intermediate region,
the authors also remark that the maximum gain reaches an almost constant value
and the corresponding modes exhibit self-similarities, in agreement with the observed
structures in the logarithmic layer. Similar results were obtained by Pujals et al.
(2009), who also found that the optimal growth rate in the outer region varies
linearly with a turbulent Reynolds number based on the maximum velocity, the
channel half-width and the maximum eddy viscosity. Optimal transient growth in
incompressible turbulent boundary layers was studied by Cossu, Pujals & Depardon
(2009). Using an analytical mean flow and the eddy viscosity model of Monkewitz,
Chauhan & Nagib (2007), they showed that a double-peak structure of the optimal
energy gain characterizes the organized turbulence dynamics.



In particular, in the near-wall region, streaky structures scale in wall units and are
independent of the Reynolds number, while away from the wall they scale in outer
units, and the optimal gain varies with the Reynolds number. They also found close
similarity of the flow topology with data from direct numerical simulation (DNS) and
experiments, thus confirming the effectiveness of optimal transient growth analysis
in describing the initial stages of nonlinear processes of turbulence self-sustainment.
However, as Cossu et al. (2009) pointed out, transient growth analysis may fail to
yield quantitatively correct spanwise and streamwise wavelengths of the outer-layer
structures.

The focus of the present study is on compressible wall-bounded turbulence. Early
studies of compressible wall-bounded flows have led to the widely accepted notion
that the main effect of flow compressibility resides in the incurred mean density
variations, which can be compensated through suitable transformations to recover the
incompressible statistics (Morkovin 1961). In general terms, the essential topology of
the coherent structures is also believed to be very similar, and streaks and hairpins
have been observed in experiments and DNS of supersonic boundary layers (Spina,
Smits & Robinson 1994; Smith & Smits 1995; Ringuette, Wu & Martín 2008;
Pirozzoli, Bernardini & Grasso 2008, 2010; Elsinga et al. 2010). Sufficiently high
Reynolds numbers to observe the emergence of superstructures and the formation
of a genuine logarithmic layer have recently been attained in DNS (Pirozzoli &
Bernardini 2011, 2013). These studies have shown that the interaction mechanisms
occurring between the large-scale motions of the outer layer and the near-wall streaks
are similar to those of the incompressible regime and are characterized by phenomena
of imprinting and amplitude modulation (Bernardini & Pirozzoli 2011a). The results
of Lagha et al. (2011) further confirmed that supersonic and hypersonic turbulent
boundary layers have close similarities with incompressible boundary layers, when
accounting for the effect of mean density variations. In particular, consistent with
the results of Kim & Lim (2000), they showed that if the linear coupling term is
removed, near-wall turbulence cannot be sustained, thus indicating that linear transient
growth plays an important role also in the compressible flow regime.

The experimental and theoretical evidence for the similarity between incompressible
and compressible coherent structures, and their role in the wall-turbulence dynamics,
have led us to develop a theoretical analysis of optimal transient growth, by extending
to compressible flows the triple decomposition approach originally developed by
Reynolds & Hussain (1972) for low-speed flows, whereby the instantaneous flow
field is separated into the contributions of mean flow, organized and background
disorganized turbulent motions.

The main goal of this work is to highlight the physical mechanisms associated with
the formation of coherent structures in compressible boundary layers, thus addressing
fundamental questions such as the following: (i) Do compressible turbulent boundary
layers exhibit a double peak in the optimal energy growth? (ii) Does the spatial and
temporal scale selection mechanism obey inner and outer scaling? (iii) What are the
effects associated with flow compressibility on the energy budget of optimal modes
and on the vorticity transfer mechanism in the inner and outer regions? (iv) How does
the compressibility affect modes that populate the logarithmic region?

The paper is organized as follows. In § 2 we formulate the governing equations
based on triple decomposition adapted to compressible turbulent flows, and discuss the
closure for turbulent transport of momentum and energy associated with the coherent
motions in boundary layers. In § 3 we develop the optimal energy growth analysis
for the inner and the outer part of the boundary layer, including the energy budget
and the vorticity transfer mechanism, and analyse the influence of the Mach number.
Section 4 is devoted to drawing conclusions and perspectives.



2. Analysis of coherent motions
2.1. Governing equations

The Navier–Stokes equations for a compressible perfect gas are
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where ρ, p, ui and e are, respectively, density, pressure, the ith velocity component
and internal energy. The viscous stress tensor (σij) and the heat flux vector (ψj)
components are defined as
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where δij, Pr and µ(T) are Kronecker’s delta, the Prandtl number and the molecular
viscosity (the latter is defined by assuming Sutherland’s law). The temperature is
defined as T = e/cv, and cp and cv are the specific heat at constant pressure and
constant volume, respectively.

To study coherent motions in incompressible turbulent shear flows, Reynolds &
Hussain (1972) introduced a triple decomposition of the instantaneous fields into
mean flow, organized motions and small-scale random motions. Hence, any variable
φ is decomposed as

φ = φ + φ′,` + φ′,t, (2.5)

where (·), (·)′,` and (·)′,t represent, respectively, the long-time average, the contribution
associated with organized motions and the random contribution due to the small scales.
The coherent part is extracted from the instantaneous flow by phase averaging (〈·〉),
and by assuming that the coherent and the random contributions are decorrelated with
respect to time and phase, thus having

φ′,` = 〈φ〉 − φ, φ′,t = φ − 〈φ〉. (2.6a,b)

Here we apply the incompressible triple decomposition to the density and the pressure
fields, and introduce a mass-weighted triple decomposition for the velocity and the
temperature fields

φ = φ̃ + φ′′,` + φ′′,t, (2.7)

where φ stands for either velocity or temperature. Here φ̃, φ′′,` and φ′′,t represent,
respectively, the mass-weighted time average, and the contributions of the coherent and
incoherent motions evolving about the density-weighted mean flow. In the framework
of mass averaging, in order to be decorrelated with respect to both time and phase,
the organized and the random parts are defined as

φ′′,` = 〈ρφ〉〈ρ〉 − φ̃, φ′′,t = φ − 〈ρφ〉〈ρ〉 . (2.8a,b)



The equations governing the coherent dynamics are then obtained by applying the
above triple decompositions to (2.1)–(2.3), after phase averaging and subtracting the
time average:
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(〈ρ〉ũke′′,`)+J `

k
∂ ẽ
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and Hui and He account for higher-order forcing terms.

2.2. Closure
Given our interest in the linear growth of coherent structures, the contribution of the
nonlinear terms is neglected. In order to close (2.9)–(2.11) we use a Newtonian eddy
model (Reynolds & Hussain 1972) to relate the Reynolds stress oscillation to the
strain-rate oscillation via an isotropic eddy viscosity,
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We also assume that, at the coherent level, the diffusion of internal energy is
proportional to the coherent part of the Reynolds stress (i.e. we assume that the
Reynolds analogy holds for the organized disturbances), thus obtaining
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Dataset Ma∞ Reτ Reθ Cf (×103) Maτ Line style

B1 0.2 2213 7 381 2.68 0.0072
B2 0.2 3951 13 318 2.42 0.0069
B3 0.2 6636 22 923 2.20 0.0061

P1 2 1116 6 046 2.11 0.0649
P2 3 502 3 878 1.85 0.0914
P3 4 507 5 824 1.32 0.1032

TABLE 1. Main properties of the investigated turbulent boundary layers: Cf =2τw/(ρ∞U2
∞),

Maτ =uτ/(γRT̃w)
1/2, Reτ =ρwuτδ/µw= δ/δv , δ is the 99 % boundary layer thickness, Reθ =

ρ∞U∞θ/µ∞ and θ is the momentum thickness.

The turbulent Prandtl number (Prt) has been assumed to be constant and equal to
0.9, also based on DNS results (Duan, Beekman & Martin 2011). Under the parallel
flow assumption, and in the framework of the Newtonian eddy model, the turbulent
viscosity is estimated as the ratio of the Reynolds stress (−ρu′′v′′ = −ρu′′,`v′′,` −
ρu′′,tv′′,t) to the mean velocity gradient (µt =−ρu′′v′′/(∂u/∂y)).

Table 1 reports the main properties of the turbulent boundary layers that we
have investigated. Flow cases B1–B3 (mainly carried out for validation purposes)
correspond to subsonic flow conditions, at various friction Reynolds numbers (Reτ ),
whereas flow cases P1–P3 correspond to supersonic flow conditions at relatively low
Reτ , at various friction Mach numbers (Maτ ). The free-stream values are denoted
with an ∞ subscript. The mean velocity profiles and the associated eddy viscosity
for flow cases B1–B3 have been obtained using the model proposed by Monkewitz
et al. (2007), whereas for flow cases P1–P3 we have used the DNS database of
Pirozzoli & Bernardini (2011).

In figure 1 we show the mean streamwise velocity and temperature for the various
flow cases, and in figure 2 we show the corresponding turbulent shear stress and
turbulent viscosity profiles. It should be noted that the Van Driest transformation
(Van Driest 1951) is applied to the mean velocity, uvd =

∫ u
0 (ρ/ρw)

1/2 du, and the
turbulent shear stress is scaled with the density ratio, as customary in the compressible
formalism. The data are given in wall units (denoted with a + superscript) based on
the friction velocity uτ = (τw/ρw)

1/2, and the wall viscous length scale δv = νw/uτ .

2.3. Analysis of transient growth
Significant experimental effort has been devoted to determining the organized motion
driven by a harmonic forcing. For instance, to extract the organized structure of
the flow in the near wake of a circular cylinder, Cantwell & Coles (1983) used an
ensemble averaging process carried out on subpopulations, each one being associated
with a particular phase interval (i.e. a phase average). In our approach, the organized
motion is assumed to be driven by an initial condition. The coherent part of the
motion can thus be investigated with an optimal transient growth analysis.

Let q= (ρ ′,`, u′′,`, v′′,`, w′′,`, T ′′,`) be the unknown vector representing the coherent
part of the motion. Next, (i) we assume that the mean flow is homogeneous in the
streamwise and spanwise directions (ρ(y), ũ(y), 0, 0, T̃(y)), and (ii) we introduce a
Fourier decomposition for q:

q(x, y, z, t)= q′(y, t)ei(αx+βz) + c.c. (2.15)
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FIGURE 1. (a) The Van Driest-transformed mean velocity and (b) the Favre-averaged
mean temperature. For the subsonic cases the mean velocity profiles proposed by
Monkewitz et al. (2007) are shown. Refer to table 1 for nomenclature.
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FIGURE 2. (a) Turbulent shear stress and (b) eddy viscosity. The asterisk denotes
density-scaled quantities, reported in wall units. For the subsonic cases the fits given by
Monkewitz et al. (2007) are shown. Refer to table 1 for nomenclature.

Here q′ is the mode amplitude (in the following, referred to as the Fourier mode
or simply as the mode), and α and β are, respectively, the wavenumbers in the x
and z directions (α = 2π/λx, β = 2π/λz), and c.c. denotes the complex conjugate.
Substituting (2.15) into the linearized equations (2.9)–(2.11), the resulting dynamical
system for q′ is

∂q′

∂t
=L q′, (2.16)

whose derivation is fully reported in appendix A.
Introducing the ratio of the total energy associated with q′ (including the kinetic

energy as well as the internal energy) to the total energy at the initial time, the optimal
temporal energy growth over all possible q′(t=0) is defined as

G(α, β, t)= supq′
(t=0)

‖q′‖
‖q′(t=0)‖

. (2.17)



Here the norm ‖(·)‖ is based on the inner product defined by Chu (1965) and Hanifi,
Schmid & Henningson (1996),

(q′k, q′l)=
∫ Ly

0
q′hk D q′l dy, (2.18)

where (·)h denotes the transconjugate, Ly is the upper boundary location and D is the
diagonal matrix (T/[ργM2

∞], ρ, ρ, ρ, ρ/[γ (γ − 1)TM2
∞]).

In the analysis that follows, we consider the supremum of G over all possible t for
a given wavenumber pair (α, β),

Gmax(α, β)= supt G(α, β, t), (2.19)

and the supremum of Gmax over all possible (α, β),

Gopt = supα,β Gmax(α, β). (2.20)

Modes attaining maximum transient amplification Gmax for a given (α, β) pair will
hereafter be referred to as optimal modes, and modes attaining Gopt will be referred
to as absolute optimal modes. We also define tmax and topt as the times at which a
given mode attains Gmax and Gopt, respectively.

In the laminar regime, these quantities are usually computed through singular-value
decomposition (SVD) of the operator eL t (Schmid & Henningson 2001). This
approach is here extended to the turbulent case to solve the dynamical system (2.16).
The initial optimal coherent mode is taken as the right singular vector associated
with the largest singular value of eL t. The dynamical system (2.16) is discretized by
using a spectral collocation method along the normal direction. In order not to impose
boundary conditions on the density at the wall and at the far field, we use a staggered
mesh (as usually done in the incompressible case), whereby a Gauss–Lobatto grid is
employed for the velocity and the temperature components of the modes, whereas
a Gauss grid is used for the density component (Malik 1990). The velocity and
the temperature are set to zero at the wall, and assumed to vanish at the upper
boundary. Similar boundary conditions are used for laminar adiabatic supersonic
boundary layers by Hanifi et al. (1996) and Malik (1990) for both a transient and an
asymptotic stability analysis. The SVD of the discrete exponential operator is based
on a discrete adjoint operator obtained with a weighted matrix derived from spectral
integration (Hanifi et al. 1996). Finally, the matrix exponentials are computed using
the EXPOKIT library (Sidje 1998). A grid sensitivity analysis has been carried out,
but for the sake of conciseness we only present the results obtained with the finest
grid having 500 collocation points in the wall-normal direction.

The mean flow and the turbulent viscosity are obtained by interpolation of DNS
statistics (Bernardini & Pirozzoli 2011b; Pirozzoli & Bernardini 2011), using a cubic
spline. The optimal energy growth associated with the dynamical system (2.16) has
been computed for a wide range of streamwise and spanwise wavenumbers. The code
has been validated for the linear transient growth of a laminar supersonic adiabatic
boundary layer, obtaining favourable comparison with the results of Hanifi et al.
(1996) (see appendix C). The code has also been validated for a turbulent subsonic
boundary layer against the incompressible results of Cossu et al. (2009) (the results
will be shown later on).
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FIGURE 3. Maximum total energy amplification (Gmax) as a function of the spanwise
wavelength in (a) inner and (b) outer units, for infinitely elongated structures (α = 0).
Refer to table 1 for nomenclature.

3. Optimal transient growth
3.1. Optimal energy gain

The main goal here is to understand the influence of compressibility and mode
orientation on the optimal energy growth, by considering several wavevectors (α, β).
In figure 3 we show the maximum total energy amplification (attained at the optimal
time) of infinitely long structures (α = 0) as a function of the spanwise wavelength,
in inner (figure 3a) and outer (figure 3b) units. We find that Gmax exhibits two peaks,
associated with maximum amplification in the inner and the outer layer, as also
observed in turbulent incompressible boundary layers (Cossu et al. 2009) and in
channels (del Alamo & Jiménez 2006; Pujals et al. 2009). The inner peak of Gmax
scales in inner units, and corresponds to a spanwise wavelength λ+z ≈ 81 (λ+z = λz/δv).
The outer peak scales in outer units, and corresponds to a spanwise wavelength
λz ≈ 8.5δ, where δ is the 99 % boundary layer thickness. These values are consistent
with those obtained by Cossu et al. (2009) for incompressible boundary layers. The
distance from the wall (ymax) at which the maximum gain in total energy occurs
also confirms the occurrence of the double scaling, as shown in figure 4, where it
is reported as a function of the spanwise wavelength. In particular, the inner peak
occurs at y+max ≈ 10, whereas the outer peak is found at ymax/δ ≈ 0.8δ. Overall, it
appears that scale separation is driven by variation of Reτ , rather than by variation
of the Mach number. In the intermediate range of spanwise wavenumbers, we also
observe a region where the maximum growth is nearly constant. This property has
also been observed in optimal transient growth calculations of channel flows and
boundary layers (del Alamo & Jiménez 2006; Cossu et al. 2009; Pujals et al. 2009).
Recently, Hwang & Cossu (2010a) have shown that this region is associated with the
amplification of log-layer structures.

3.2. Inner-layer optimal modes
We now focus on the near-wall peak of Gmax, which is shown in figure 5 as a function
of the spanwise wavelength for several values of the streamwise wavelength. As noted
above, the absolute optimal growth is found to be associated with infinitely elongated
coherent structures having a spanwise size of approximately 80 wall units. Figure 5
further suggests that the most amplified inner-layer modes have proportional values of
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FIGURE 4. Wall-normal position (ymax) of the peak of Gmax as a function of the spanwise
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denote the value of supβ Gmax(α, β).

λx and λz, and hence the longer optimal modes are also wider. In figure 6 we show
the velocity and temperature maps corresponding to the absolute optimal mode in the
cross-stream plane. The arrows in the figure represent the velocity vectors at the initial
time. As in the incompressible regime, a peculiar lift-up effect (Landahl 1980) is
observed, which is seen to be responsible for the optimal growth. Figure 6 also shows
that the temperature pattern is strictly related to the velocity pattern, and positive
(respectively, negative) temperature fluctuations strongly correlate with low-speed
(respectively, high-speed) streaks. This is in agreement with the well-known tendency
of velocity and temperature fluctuations to be negatively correlated in turbulent
supersonic boundary layers Pirozzoli & Bernardini (2011). The temperature here
seems to have a relatively passive role, while the streamwise vortices at the initial
time act to redistribute momentum and temperature through sweeps and ejections.

The maps of Gmax and tmax for two-dimensional optimal modes are shown in figure 7
for all the flow cases. The maximum transient amplification (figure 7a) is found to be
more affected by Mach number variation rather than by Reynolds number variation,
and Gopt is found to vary from 2.8 at Ma∞ = 0.2 to 3.2 at Ma∞ = 4. However, the
spanwise length scale of the optimal mode is weakly affected by compressibility, and
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FIGURE 7. Inner-layer modes: (a) maximum energy gain and (b) corresponding time tmax
as functions of the spanwise wavelength for α = 0. Refer to table 1 for nomenclature.

λ+z ≈ 81.5 in all cases, as also found in the incompressible case (Cossu et al. 2009).
It is worth pointing out that the length scale recovered with the present linear model
is also consistent with the size of the streaks found in DNS of supersonic turbulent
boundary layers (Pirozzoli & Bernardini 2013). Figure 7(b) shows that the typical time
scale of the structures attaining the maximum amplification is nearly independent of
the Mach number, and it varies linearly with the spanwise wavelength.

Figure 8(a) shows iso-lines of the wall distance at which Gmax is attained in the P1
flow case, and figure 8(b) shows the corresponding optimal times tmax as a function
of the streamwise and spanwise wavenumbers. It is found that both ymax and tmax

increase as α and β decrease. We recall that in wall-bounded turbulent shear flows
coherent structures are disrupted on a time scale of the order of the eddy turnover time
τ = k/ε, where k=ρũ′′k u′′k/2 is the turbulent kinetic energy and ε=µ(∂u′i/∂xj)(∂u′i/∂xj)

is its dissipation rate (Lee, Kim & Moin 1990; Butler & Farrel 1992). Hence, only
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FIGURE 9. Inner-layer modes: eddy turnover time as a function of wall distance for
flow case P1. The dashed line denotes the optimal time of infinitely elongated modes
(tmax(0, β)) at the corresponding distances (ymax(0, β)), for λ+z from 40 to 200. The asterisk
denotes the absolute optimal mode.

coherent modes having temporal scale less than the eddy turnover time are physically
acceptable solutions. In figure 9 we then report the distribution of τ as a function
of the wall distance, together with the optimal time of infinitely elongated modes
(tmax(0, β)), which, based on the previous considerations, have the longer lifetimes,
at the corresponding distances (ymax(0, β)). The eddy turnover time is estimated from
the DNS database of Pirozzoli & Bernardini (2011). Figure 9 shows that tmax does
not exceed the eddy turnover time for the most amplified optimal modes that we have
analysed. This leads to the conclusion that the coherent modes retrieved through the
transient growth analysis are physically relevant.

The contributions to the growth of the absolute optimal mode are separately shown
in figure 10, at the initial time (panel (b)) and at the optimal time (panels (a), (c) and
(d)), where for the supersonic cases the density-scaled velocity components (3.1) are
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FIGURE 10. Inner-layer modes, amplitude of the components of the absolute optimal
modes, scaled with respect to their initial value: (a) u′∗ at topt; (b) v′∗ at the initial time;
(c) T ′ at topt; and (d) u′∗ at topt, limited to flow case P3 (open symbols indicate that density
scaling is not used).

reported, namely

u′∗ =
√
ρ

ρw
u′, v′∗ =

√
ρ

ρw
v′. (3.1a,b)

In figure 10(d) the unscaled velocity is shown for comparison, limited to flow case
P3. In agreement with Morkovin’s hypothesis, figure 10(d) shows the similarity of the
kinematic components of the optimal mode, and better collapse is achieved through
density scaling. On the other hand, temperature exhibits a peak that increases with the
Mach number. In this respect we recall that, based on the chosen energy norm given
in (2.18), G incorporates the contribution of both the kinetic energy and the internal
energy. Hence, temperature growth is the main cause for the overall increase of the
optimal gain with the Mach number observed in figure 7.

To quantify the kinetic energy contribution to the energy gain, we introduce the
following metric:

Gk
max(α, β)=

∫ Ly

0
ρ u′hu′ dy(t=tmax)∫ Ly

0
ρ u′hu′ dy(t=0)

, (3.2)

where u′ = (u′, v′, w′). The distribution of supβ Gmax(α, β) and its kinetic counterpart
is reported in figure 11 as a function of the streamwise wavenumber. As one would
expect, we note that kinetic energy contributes most to Gmax, and its increase with
respect to the incompressible case is mainly associated with the amplification of the
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internal energy. On the other hand, the kinetic energy contribution is weakly affected
by the Mach number, and the curves nearly collapse for Mach number up to 3.

To further elucidate the mechanisms of energy transfer between the kinetic and the
internal energy, we have analysed the corresponding energy budgets for the absolute
optimal mode. Let E be the integrated total energy in the wall-normal direction

E = E k + E in, (3.3)

where E k and E in are the kinetic energy and the internal energy, respectively. The
evolution of E is described by (Malik, Meheboob & Dey 2006)

dE

dt
=
∫ Ly

0
q′hDL q′ dy+ c.c., (3.4)

where the energy is normalized by the total energy associated with the initial optimal
coherent mode. The budget of the kinetic energy is written in the form

dE k

dt
=Pk −D k

v −D k
t , (3.5)

where Pk, D k
v and D k

t represent, respectively, the production due to mean shear,
the dissipation associated with molecular viscosity and the turbulent dissipation at
the small scales (see appendix B for their definition). The contributions to (3.5) are
shown in figure 12. The evolution of the total energy is found to be mainly driven by
its kinetic part, and in particular by production due to mean shear, Pk. Furthermore,
the time rate of change of the energy of the optimal inner mode attains its maximum
on a time scale corresponding to the peak production. One may note that the optimal
gain (for which dE /dt = 0) corresponds to an equilibrium state where dissipation is
balanced by production, and as previously noted this mechanism is weakly affected
by the Mach number. We also note that the dissipation caused by molecular diffusion
and caused by turbulent coherent motions are of the same order of magnitude. It is
then evident that the latter contribution cannot be neglected when carrying out the
linear stability analysis of a turbulent mean flow, thus corroborating the statements
of del Alamo & Jiménez (2006) and Cossu et al. (2009) for the incompressible
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case. Figure 13 shows the wall-normal profile of the local kinetic energy production
(pk(y) = −ρ u′hv′ du/dy), at the time at which Pk attains its maximum. It is found
that pk attains a peak at y+≈ 10, which well matches the innermost layer distribution
found in DNS (Pirozzoli & Bernardini 2011), upon suitable rescaling, thus supporting
the important role played by coherent motions in the establishment of the turbulence
kinetic energy peak.

Iso-contour lines of the streamwise (ωx), wall-normal (ωy) and spanwise (ωz)
vorticity components of the absolute optimal mode and an oblique optimal mode
supβ Gmax(0.08/δv, β) are shown in figure 14, in a plane orthogonal to the
associated wavevector. Vortical structures associated with the absolute optimal mode
(figure 14a–c) are two-dimensional, and are stretched in the streamwise direction,
undergoing a lift-up mechanism whereby vorticity is transferred from the streamwise
to the wall-normal direction. Vortical structures associated with a three-dimensional
optimal mode are shown in figure 14(d–f ) for λ+x = 78, λ+z = 55, which corresponds
(see figure 5) to supβ Gmax(0.08/δv, β). This particular three-dimensional mode
(similarly to many others, not shown) is dominated by tilting in the shear direction,
according to the Orr mechanism. The linear model thus incorporates the two main
mechanisms associated with the intensification of vortical structures in turbulent shear
flows. Similar observations also hold at higher Mach number (the figures are not
shown for brevity).
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FIGURE 14. Inner-layer modes, flow case P1: vorticity contours in planes normal to the
wavevector for (a–c) the absolute optimal (two-dimensional) mode and (d–f ) the optimal
three-dimensional mode having λ+x = 78, λ+z = 55. Axis label s denotes the wall-parallel
coordinate normal to the wavevector. The streamwise, wall-normal and spanwise vorticity
components are shown in panels (a,d), (b,e) and (c,f ), respectively. Solid lines correspond
to the initial time, and dashed lines to the optimal time.

To characterize the influence of compressibility on the lift-up mechanism, the time
evolution of the integrated enstrophy ratios (Guegan, Huerre & Schmid 2007; Alizard,
Robinet & Guiho 2013), r` = Ω`/

∑
i Ωi, where Ωi =

∫
D
ω2

i (t) dD, are analysed for
the absolute optimal mode. Figure 15 confirms that the initial optimal vorticity field is
mainly oriented in the streamwise direction, whereas the wall-normal and the spanwise
vorticity components are amplified under the action of the mean shear. Figure 15
also shows the collapse of all the curves, thus confirming that the vorticity transfer
mechanism is weakly affected by the Mach number.
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FIGURE 16. Outer-layer modes: optimal gain Gk
max as a function of the spanwise

wavelength for different streamwise wavelengths for (a) flow case B1 and (b) flow case
P1. The asterisks denote the positions of supβ Gk

max(α, β).

3.3. Outer-layer optimal modes
To characterize the properties of the most amplified outer-layer modes, we have
also computed the singular vectors associated with the maximum kinetic energy
amplification Gk

max(α, β), for a wide range of streamwise and spanwise wavelengths.
Note that the kinetic energy contribution is only retained to compare the supersonic
cases with the subsonic ones. In figure 16 we show the kinetic energy contribution
to the maximum energy gain as a function of the spanwise wavelength for different
streamwise wavelengths, and mark with asterisks the values of supβ Gk

max(α, β).
Figure 16 indicates that the most amplified outer-layer structures correspond to a
particular combination of (λx,λz) that weakly depends on the Mach number. As for the
inner-layer modes, it is found that the absolute optimal modes correspond to infinitely
elongated streamwise structures, whose typical spanwise size is approximately 8δ.

In figure 17 we show the velocity and temperature maps corresponding to the outer
optimal mode in the cross-stream plane, for flow case P1. The arrows in the figure
represent the velocity vectors at the initial time. As in the incompressible regime,
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FIGURE 17. Outer-layer modes, P1 flow case: contours of (a) streamwise velocity and
(b) temperature in the cross-stream plane, with superimposed cross-stream velocity vectors,
for the absolute optimal mode (α = 0, λz = 8.5δ).

the optimal initial coherent structures are found to be associated with streamwise
vortices that lead to streamwise streaks. Strong negative correlation of u′′,` and T ′′,`
is found, as in the inner layer. Similar results, not shown, are also obtained for the
P2 and P3 flow cases. The contributions to the growth of the absolute optimal mode
are separately shown in figure 18, at the initial time (figure 18b) and at the optimal
time (figure 18a,c), where density-scaled velocity components are reported for the
supersonic cases. As in the inner layer, and in agreement with Morkovin’s hypothesis,
similarity still holds for the kinematic components of the optimal outer mode, and
good collapse is achieved through density scaling.

Regarding the energy budgets (reported in figure 19), we find that, on a short time
scale (t/topt ≈ 0.2–0.4), the coherent dynamics is strongly affected by the internal
energy. When the energy attains its optimal gain (t/topt = 1), an equilibrium state is
reached, and the production of kinetic energy balances its dissipation, as also observed
for the inner peak. When this state is reached, the role played by the internal energy
becomes marginal. Turbulent dissipation is found to be much larger in this case than
the molecular one, as expected in the outer layer.

To verify the physical relevance of the optimal outer coherent modes on the inner-
layer dynamics, in figure 20 we show their amplitude as a function of the inner-scaled
wall distance. As also noted by Pujals et al. (2009) for incompressible channel flows,
we find collapse of the curves up to y+≈ 100 for all the flow cases. Furthermore, the
velocity and the temperature amplitudes vary linearly up to y+≈ 10, and the amplitude
of the mode is found to be proportional of the mean velocity. A similar signature was
observed by Cossu et al. (2009).

Regarding the structural properties of outer-layer eddies, DNS and experiments
(Ganapathisubramani, Clemens & Dolling 2006; Pirozzoli & Bernardini 2011)
show that the organized structures have a rather universal behaviour, in that their
characteristic scales and orientations are weakly affected by compressibility. In
particular, in agreement with low-speed turbulent boundary layers (Tomkins &
Adrian 2003; Marusic & Heuer 2007), DNS data (Pirozzoli & Bernardini 2011)
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FIGURE 18. Outer-layer modes, amplitude of the components of the absolute optimal
mode, scaled with respect to their initial value: (a) u′∗ at topt; (b) v′∗ at the initial time;
and (c) T ′ at topt.

at Ma∞ = 2 show that the typical size of outer-layer eddies is approximately 1δ in
the streamwise direction, and approximately 0.5δ in the spanwise direction, and their
typical streamwise inclination angle is ≈ 12◦–14◦.

To quantitatively characterize the orientation of outer-layer modes educed from
transient growth analysis, we consider their projected angle in the x–y plane, estimated
from the wall-normal position ( ymax) where the streamwise velocity is maximum
at the optimal time, and half the streamwise wavelength, θxy = tan−1(2ymax/λx).
Figure 21 shows θxy as a function of the spanwise wavelength, for various streamwise
wavelengths. In the incompressible case the inclination angle is not affected by the
Reynolds number, and collapse of flow cases B1–B3 is observed in a wide range of
wavenumbers. The results of the P1 flow case are also in excellent agreement with
the subsonic one, whereas deviations are observed for flow cases P2 and P3.

Figure 21(a,b) further shows that the inclination angle is a decreasing functions
of λx and λz. Hence, larger structures have a tendency to lean towards the wall,
whereas smaller structures have a tendency to be tilted with respect to it. As the
Mach number increases, the inclination angle increases, and the location where the
velocity is maximum shifts away from the wall, meaning that organized structures
have greater tendency to be tilted and lifted up from the wall. These results are
consistent with the DNS data of Duan et al. (2011), who explored the effect of the
Mach number on turbulent boundary layers up to Ma∞ = 12. For flow case P1, we
find that the coherent structures associated with Gk

max(2π/λx, 2π/λz), λx = 2.3δ and
λz= 1.5δ, have an inclination angle of θxy≈ 15◦. This particular optimal mode is then
compatible with the DNS findings (Pirozzoli & Bernardini 2011). The streamwise
velocity maps for this mode are shown in figure 22 at various stages of its evolution,
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FIGURE 20. Outer-layer modes: normalized amplitude of (a) streamwise velocity and
(b) temperature for the absolute optimal mode based on the reference subsonic case B1.
The solid line represents the mean streamwise velocity. Refer to table 1 for nomenclature.

from t = 0 to tmax. Notably, the distance at which the velocity is maximum is less
than for infinitely elongated streaks (see figure 18a). This is consistent with the
experiments of Ganapathisubramani et al. (2006), who observed an increasing trend
of the streamwise length scale with the wall distance.
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FIGURE 22. Outer-layer modes, flow case P1: streamwise velocity contours for the mode
associated with λx=2.3δ and λz=1.5δ (having θxy=15◦), at (a) t/tmax=0, (b) t/tmax=0.27
and (c) t/tmax = 1. Solid lines represent positive values and dashed lines negative values.
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FIGURE 23. Outer-layer modes: time evolution of the enstrophy ratios for (a) the absolute
optimal mode and (b) a three-dimensional mode having λx = 2.3δ and λz = 1.5δ (having
θxy = 15◦). The grey area in panel (b) represents the time necessary for the structure to
reach the pattern shown in figure 22(b). Refer to table 1 for nomenclature.

In figure 23 we show the time evolution of the enstrophy ratios for the absolute
optimal outer-layer mode and for the three-dimensional ‘DNS-compatible’ mode,
having λx = 2.3δ and λz = 1.5δ. Figure 23(a) shows that a similar vorticity transfer
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FIGURE 24. Outer-layer modes, flow case P1: (a–c) streamwise velocity contours for
the mode associated with λx = 2.3δ and λz = 2δ (having θxy = 27◦), at (a) t/tmax = 0,
(b) t/tmax = 0.67 and (c) t/tmax = 1 (solid lines represent positive values and dashed lines
negative values); and (d) time evolution of the enstrophy ratios. The grey area in panel (d)
represents the time necessary for the structure to reach the pattern shown in panel (b).

mechanism holds as in the inner layer. For the three-dimensional modes (see
figure 23(b) for the P1 flow case), in a first stage (shaded in grey), the mode
is reoriented along the shear direction under the action of the Orr mechanism.
Then, the mode undergoes a lift-up mechanism, whereby streamwise vorticity is
primarily reoriented to the wall-normal direction. Hence, the most relevant structures
compatible with experiments and DNS appear to combine the effects of the Orr
and of the lift-up mechanisms (Farrell & Ioannou 1993). In figure 24 we show
the streamwise velocity contours at various times in panels (a–c) and the time
evolution of the enstrophy ratios in panel (d) for the optimal three-dimensional mode
reaching supβ Gk

max(2π/λx, 2π/λz) for λx = 2.3δ. Figures 22 and 24 show that the
optimal structure and the most compatible one exhibit a similar pattern. However, the
optimal structure has an inclination angle that is nearly twice the value observed in
experiments and in DNS, and experiences Orr/lift-up mechanisms on a longer time
scale (figure 24d). A similar behaviour is recovered at all Mach numbers.

3.4. Log-layer optimal modes
The amplification curves in figure 3 showed the existence of a log-layer region
between the inner- and outer-layer peaks, where the total energy gain attains a
near plateau, and which is the subject of the present section. In the past a lot
of interest has been devoted to the logarithmic part of the wall layer. According
to the classical scenario (Townsend 1976), this region is populated by a host of
self-similar attached eddies, whose size is proportional to the wall distance. One
of the consequences of this assumption is that the variances of the wall-parallel
velocity fluctuations should scale logarithmically with the wall distance. Townsend’s
attached-eddy hypothesis has received support from the experiments of Tomkins
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& Adrian (2003), who noted that the spanwise length scale of eddies in the log
layer varies linearly with the wall distance, and logarithmic decay of the velocity
variances has been recovered in a number of studies (see Marusic et al. (2013) for
an overview). The turbulence self-sustainment processes in the log layer were studied
through filtered DNS in minimal boxes by Hwang & Cossu (2011). They found that
the characteristic spanwise scales associated with the surviving motions follow a linear
scaling with the wall distance. More recently, Moarref et al. (2013) confirmed the
important role of linear processes in establishing a self-similar hierarchy of coherent
eddies in the log layer. Their results further supported the hypothesis that linear
amplification of optimal modes in the logarithmic layer leads to streaky motions,
which may regenerate after bursting, and which exhibit a universal behaviour, when
scaled by their spanwise extent. Modes belonging to the intermediate region are
hereafter referred to as log-layer optimal modes.

In order to verify if supersonic boundary layers also exhibit geometrical similarity,
we study the dependence of the log-layer optimal modes on the spanwise wavelength,
limiting our analysis to infinitely elongated modes (α= 0) that are the most amplified.

The kinetic energy amplification curves are shown in figure 25 as a function of the
spanwise wavenumber, in a linear scale. As previously noticed in § 3.2, the Gk

max data
fall on a nearly universal curve close to the inner peak, and tend to form a plateau as
the Reynolds number increases. Figure 25 also shows a slight shift of the minimum
value for Gk

max when increasing the Mach number from 3 to 4.
To characterize the vertical size of the optimal log-layer modes, we define a typical

length scale (Λy) as the wall distance at which the cumulative modal kinetic energy
is 80 % of the total, i.e. ∫ Λy

0
ρu2 dη= 0.8

∫ ∞
0
ρu2 dη, (3.6)

where all quantities are evaluated at the time at which kinetic energy is maximum.
The relevance of this length scale for describing self-similarity of the log layer is first
established by analysing the subsonic flow cases B1–B3. The results are summarized
in figure 26, which in fact shows linear variation of Λy on λz, regardless of the
Reynolds number. The corresponding optimal modes, shown in figure 26(b) as a
function of the wall distance scaled by the spanwise wavelength, support geometrical
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FIGURE 26. Subsonic log-layer optimal modes (for α= 0). (a) Vertical length scale as a
function of spanwise wavelength for flow case B1–B3. (b) Mode amplitudes as a function
of wall distance scaled by spanwise wavelength: B1 (λ+z = 770), B2 (λ+z = 863) and B3
(λ+z = 893, 1250, 2084), where u′ is taken at t= tmax, and v′ at t= 0. (c) Optimal time as
a function of the spanwise wavelength. The solid lines indicate the linear fit of the data.
Refer to table 1 for nomenclature.

similarity of the log-layer modes, in agreement with Townsend’s attached-eddy model
(Townsend 1976). Finally, figure 26(c) indicates that the optimal time for these
modes also varies linearly with λz. This finding is consistent with the claim of del
Alamo et al. (2006) that the lifetime of the log-layer eddies is proportional to their
size. Finally, figure 26(a,c) shows that, for subsonic Mach numbers, modes larger
than λz ≈ 0.43δ (corresponding to λ+z = 950, 1700 and 2850 for B1, B2 and B3,
respectively) deviate from the universal behaviour and they are mostly affected by
the outer motion.

Similar data are shown in figure 27 for the supersonic flow cases. In fact,
figure 27(a) confirms that the vertical length scale of the optimal modes scales
linearly with the spanwise wavelength also in supersonic boundary layers. The modal
velocity and temperature distributions, shown in figure 27(b), do exhibit geometrical
similarity, thus suggesting that Townsend’s attached-eddy model also applies to
supersonic boundary layers. The rescaled optimal modes also bear strong similarities
with the buffer-layer modes, indicating that kinetic energy grows through a similar
lift-up mechanism. The optimal time scale, shown in figure 27(c), also exhibits a
behaviour similar to the subsonic case, regardless of the Mach number. As found in
subsonic cases, Λy and tmax deviate from the linear behaviour for a spanwise size
λz ≈ 0.45δ (λ+z ≈ 500) for P1 and λz ≈ 0.69δ (λ+z ≈ 350) for P2 and P3.
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The observed increase in the vertical length scale seen in figure 27 can help to
explain the increased growth in figure 25. Indeed, we can define an effective turbulent
Reynolds number as

ReT =
Λ2

y

νT tmax
= Λy

uτ tmax
= Λ

+
y

t+max

, (3.7)

having assumed νT ∼ uτΛy. From the data shown in figure 27(a,c) it follows that ReT

is approximately constant (as expected) in the log layer. In particular, figure 27(d)
shows that the effective turbulent Reynolds number varies from approximately 1 for
subsonic flow cases to ≈1.6 for P3.

From the above discussion, the change in the characteristic spanwise scale
associated with the deviation from a linear behaviour may be attributed mainly to a
Reynolds-number effect, owing to lack of scale separation in P2 and P3. However, the
slight increase of Λy in P3 as compared to P2 (see figure 27a) is probably associated
with a Mach-number effect, since the friction Reynolds number is approximately the
same for the two flow cases. Trying to further unravel Reynolds- and Mach-number
effects, in figure 28 we show optimal log-layer modes for the P1–P3 flow cases, with
energy mainly concentrated in the overlap layer. Figure 28(a) shows a similar shape
of the mode profiles in the inner and the outer layers, with differences concentrated
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100 for P1–P3. Refer to table 1 for line nomenclature.

within the alleged overlap layer. Differences between P2 and P3 are found to be very
nearly compensated through the Howarth–Dorodnitsyn transformation: ỹ= ∫ y

0 (ρ/ρw) dy
(He, Kazakia & Walker 1995). As shown in figure 28(b), the mode shapes in the
transformed vertical coordinate are nearly the same for flow cases P2 and P3. Hence,
for given friction Reynolds number, mean density gradients seem to incorporate well
the (small) effects of Mach-number variations. However, differences with respect to
the P1 flow case are still present, which may be a consequence of lack of scale
separation between the inner and outer layers in P2 and P3.

It is clear that, based on the present data, making definite statements regarding
Reynolds- and Mach-number effects on log-layer modes is quite difficult, mainly given
the limited range of available Reynolds numbers, and the difficulty of changing the
two parameters separately. It is also far from clear which Reynolds number should
be kept constant to isolate ‘compressibility’ from ‘Reynolds-number’ effects. Hence,
a much more complete dataset would be needed to further strengthen or refute our
findings.

4. Conclusions
The evolution of coherent structures in compressible turbulent boundary layers

with free-stream Mach number from 0.2 to 4 has been analysed. The approach relies
on optimal transient growth analysis whereby the linearized evolutionary equations
of the organized structures are obtained by extending to compressible flows the
triple decomposition procedure developed by Reynolds & Hussain (1972) for strictly
incompressible flow. A linear dynamical system results for the organized (coherent)
motions, which is closed by prescribing the mean field, and introducing an isotropic
eddy viscosity model to describe the turbulent transport of momentum and internal
energy by the large scales. For closure purposes the DNS database of Pirozzoli &
Bernardini (2011) has been used for the supersonic flow cases, whereas the explicit
closures of Monkewitz et al. (2007) have been used for the subsonic cases, here
mainly considered for validation purposes. Although closure models based on the
assumption of isotropy may suffer from some shortcomings, they nevertheless can
also serve as a basis to compare our results with previous incompressible analyses
Cossu et al. (2009).



An optimal transient growth analysis has been developed based on the definition of
an energy norm containing the contributions of both kinetic energy and internal energy.
Optimal transient modes have been calculated for a wide range of streamwise and
spanwise wavenumbers, with the main finding that absolute optimal modes are always
two-dimensional. Optimal modes naturally split themselves into two families, scaling
in inner and outer units, respectively, as previously also found in the incompressible
regime (Cossu et al. 2009), and consistent with the two-layer nature of turbulent
wall layers. The scale separation effect is here found to be mainly dependent on
the friction Reynolds number, rather than on the Mach number. In the intermediate
range of spanwise wavenumbers, the maximum growth attains a plateau at all Mach
numbers, as also found in incompressible channel flow (del Alamo & Jiménez 2006).
In this region, the optimal structures are mainly localized in the log layer.

Regarding the inner-layer modes, near collapse of the typical spanwise size of the
most amplified modes is observed across the Mach-number range, with an absolute
peak occurring at λ+z = 81.5, which matches well the value expected from the
near-wall streaks, thus supporting their universality. A similar pattern is observed for
the temperature component of the transient growing modes, which is found to be
negatively correlated with the streamwise velocity component. The lift-up mechanism
underlying the formation of velocity/temperature streaks is explained in terms of
vorticity transfer from the streamwise to the spanwise component. As predicted by the
classical Morkovin hypothesis, we find that amplitude changes with the Mach number
can be effectively compensated through the use of density scaling. Furthermore, the
variation of the optimal growth rate with the Mach number is found to be mainly an
additive effect linked to increased aerodynamic heating. Hence, no major dynamical
effect of compressibility on the mechanisms of transient growth is observed, at least
at the Mach numbers under scrutiny. This behaviour is consistent with observations
based on DNS (Bernardini & Pirozzoli 2011b; Pirozzoli & Bernardini 2011).

Amplified modes that populate the outer part of the wall layer have also been
identified. Absolute optimal growth is attained by coherent structures that are infinitely
elongated in the streamwise direction, and having spanwise size λz≈ 8.5δ. This mode
is found to be a robust feature, being very weakly dependent on the Reynolds
number and on the Mach number. As for the inner peak, a lift-up mechanism is
responsible for the growth of the absolute optimal mode, with a similar transfer
of vorticity from the streamwise to the spanwise components. All these features
agree well with those observed in the incompressible limit (Cossu et al. 2009).
As in the inner layer, a passive role of temperature is highlighted, and increasing
internal energy contribution to the total energy budget is observed. Besides the
absolute (two-dimensional) optimal modes, we have also characterized the structure
of the three-dimensional modes corresponding to given streamwise and spanwise
spatial scales. The general conclusion is that smaller coherent structures have higher
inclination angles with respect to the wall, as compared to larger eddies.

Regarding the most amplified log-layer optimal modes, we show that they are
streamwise uniform, and exhibit a self-similar behaviour. In particular, both vertical
size and characteristic time scale vary linearly with the spanwise wavelength. This
observation leads to the conclusion that the idea of geometrically similar attached
eddies proposed by Townsend (1976) also applies to supersonic boundary layers.
Furthermore, a universal behaviour of optimal log-layer modes is suggested when
accounting for the effects of mean density variations. However, further investigations
at higher Mach number and higher Reynolds number are needed in order to draw
firm conclusions. The fundamental issue that may be raised regarding the present



study is whether the optimal growing modes educed through the linear analysis have
physical significance. Regarding the inner-layer modes, it is far from questionable that
the absolute optimal modes have strong similarity with coherent structures observed
in experiments and DNS, which are in fact mainly elongated in the streamwise
direction, and have a spanwise size of the order of 100 wall units. Much less clear
is the relevance of the observed outer-layer transient growing modes. In fact, large
discrepancies exist between the absolute optimal outer modes and the superstructures
that populate the outer part of turbulent boundary layers. For instance, the amplitude
of the outer optimal modes is reached at the edge of the boundary layer, whereas
very-large-scale outer eddies are mainly energetic at a distance of approximately 0.3δ
from the wall (Hutchins & Marusic 2007). Furthermore, both the spanwise and the
streamwise size of the absolute optimal outer modes is much larger than for eddies
educed in DNS and experiments. However, a host of transient growing modes exist
other than the absolute optimal ones, which has not been analysed in detail before.
In particular, for boundary layers at Ma∞ = 2 we identify optimal modes having
λx ≈ 2.3δ and λz ≈ 1.5δ (close to the typically quoted eddy integral length scales),
which have a typical inclination angle of approximatively θxy≈ 15◦ with respect to the
streamwise direction, and which also exhibit anticorrelation between the streamwise
and the temperature component.

Our findings seem to support the view that very-large-scale structures in supersonic
turbulent boundary layers are the result of an autonomous self-sustained process
associated with the amplification and regeneration of optimal modes, rather than
the agglomeration of smaller structures (Hwang & Cossu 2010b). However, our
analysis admittedly fails to describe the underlying selection mechanism of the most
representative mode. In fact, even though modes resembling the ‘real’ ones are
recovered among the many suboptimal three-dimensional modes, the most amplified
outer mode is still much different from the typical structures observed in turbulent
wall layers. In our understanding, this is an inherent limitation of linear analysis, as
structures that are selected in physical reality are the eventual result of nonlinear
effects and/or secondary instability processes, which are necessarily disregarded by
modal analysis.

Regarding the effects of the free-stream Mach number, the general conclusion that
can be drawn from the present data is that they are typically small and confined
to increasing the amplitude of the temperature fluctuations, while the kinematic field
is virtually unaffected. In particular, compressibility effects are seen to be mainly a
consequence of changes in the mean density. In this sense, the present results provide
further confirmation of the validity of Morkovin’s hypothesis, at least up to Ma∞= 4,
which is the upper limit investigated here. Notably, this result is at odds with the
classical results of linear stability analysis of laminar boundary layers, which shows
distinctly different nature of supersonic boundary layers with respect to their low-
speed counterpart, also as far as the transition process is concerned (Reshotko 1976).
Studies of transient growth at yet higher Mach number are of course desirable to
establish the possible onset of genuine compressibility effects.

We believe that further verification of the robustness of optimal modes computed
here can be obtained by considering more accurate modelling of the terms requiring
closure, and in this sense full usage of the DNS data may be considered in future
work. Specifically, some effort is currently in progress regarding the analysis of
different terms involved in the evolution equations for the oscillating background
Reynolds stress. We believe that, in perspective, the application of the present
structural approach to more complex flows, such as supersonic inlets and shock



wave–turbulent boundary layer interactions, could be considered to develop low-order
models that accurately describe the organized part of the motion, thus opening
interesting avenues to flow control.
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Appendix A. Linearized equations for parallel flows

The governing linear equations for the mode amplitude vector q′ are

∂ρ ′

∂t
+ iα(ρ ′ũ+ ρu′)+ ∂ρv

′

∂y
+ iβρw′ = 0, (A 1)
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with T ′ = e′/Cv and µtot =µ+µt.



 Appendix B. Production and dissipation terms

The production and dissipation terms associated with the kinetic energy budget are

Pk =−
∫ Ly

0
ρ

du
dy

u′hv′ dy+ c.c., (B 1a)
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A similar expression for D k
t is obtained, by replacing µ with the eddy viscosity.

Appendix C. Validation of the optimal transient growth code
In order to prove the capability of the present approach to reproduce classical results

of stability theory, we have analysed a laminar boundary layer under the same flow
conditions as Hanifi et al. (1996), namely Ma∞ = 2.5, Reδ = 2550, with adiabatic
wall. In figure 29(a), we show the growth rate as a function of time for α = 0 and
β = 0.1, and in figure 29(b) the maximum growth rate as a function of the spanwise
wavelength, assuming either laminar flow or fully turbulent flow, whereby the model
terms are set to zero. The results confirm the validity of our approach and show that
the neglected terms have very limited influence in a laminar regime.
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FIGURE 29. Laminar supersonic adiabatic boundary layer for Ma∞ = 2.5, α = 0 and
Reδ = 2650. (a) Distribution of the amplification associated with the total energy as a
function of the dimensionless time for β = 0.1. (b) Distribution of Gmax as a function of
β. Dashed line, data of Hanifi et al. (1996); full line, a laminar flow is assumed; dotted
line, a turbulent flow is assumed with µt = 0.



REFERENCES

DEL ALAMO, J. & JIMÉNEZ, J. 2006 Linear energy amplification in turbulent channels. J. Fluid
Mech. 559, 205–213.

DEL ALAMO, J., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R. 2006 Self-similar vortex clusters in
the turbulent logarithmic region. J. Fluid Mech. 561, 329–358.

ALIZARD, F., ROBINET, J.-C. & FILLIARD, G. 2015 Sensitivity analysis of optimal transient growth
for turbulent boundary layers. Eur. J. Mech. Fluids 49, 373–386.

ALIZARD, F., ROBINET, J.-C. & GUIHO, F. 2013 Transient growth in a right-angled streamwise
corner. Eur. J. Mech. Fluids 719, 406–430.

BERNARDINI, M. & PIROZZOLI, S. 2011a Inner/outer layer interactions in turbulent boundary layers: a
refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23, 061701.

BERNARDINI, M. & PIROZZOLI, S. 2011b Wall pressure fluctuations beneath supersonic turbulent
boundary layers. Phys. Fluids 23, 052102.

BUTLER, K. & FARREL, B. 1992 Optimal perturbations and streak spacing in wall-bounded turbulent
shear flow. Phys. Fluids 5, 774–777.

CANTWELL, B. & COLES, D. 1983 An experimental study of entrainment and transport in the
turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321–374.

CHU, B. T. 1965 On the energy transfer to small disturbances in fluid flow (Part 1). Acta Mechanica
1, 215–234.

COSSU, C., PUJALS, G. & DEPARDON, S. 2009 Optimal transient growth and very large-scale
structures in turbulent boundary layers. J. Fluid Mech. 619, 79–94.

DUAN, L., BEEKMAN, I. & MARTIN, M. 2011 Direct numerical simulation of hypersonic turbulent
boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245–267.

ELSINGA, G., ADRIAN, R., VAN OUDHEUSDEN, B. & SCARANO, F. 2010 Three-dimensional vortex
organization in a high-Reynolds-number supersonic turbulent boundary layer. J. Fluid Mech.
644, 35–50.

FARRELL, B. & IOANNOU, P. 1993 Optimal excitation of three-dimensional perturbations in viscous
constant shear flow. Phys. Fluids A 5, 1390–1400.

GANAPATHISUBRAMANI, B., CLEMENS, N. & DOLLING, D. 2006 Large-scale motions in a supersonic
turbulent boundary layer. J. Fluid Mech. 556, 271–282.

GUEGAN, A., HUERRE, P. & SCHMID, P. 2007 Optimal disturbances in swept Hiemenz flow. J. Fluid
Mech. 578, 223–232.

HAMILTON, J., KIM, J. & WALEFFE, F. 1995 Regeneration mechanisms of near-wall turbulence
structures. J. Fluid Mech. 287, 317–349.

HANIFI, A., SCHMID, P. & HENNINGSON, D. 1996 Transient growth in compressible boundary layer.
Phys. Fluids 8, 826–837.

HE, J., KAZAKIA, T. & WALKER, J. 1995 An asymptotic two-layer model for supersonic turbulent
boundary layers. J. Fluid Mech. 285, 159–198.

HUTCHINS, N. & MARUSIC, I. 2007 Evidence of very long meandering features in the logarithmic
region of turbulent boundary layers. J. Fluid Mech. 579, 1–28.

HWANG, Y. & COSSU, C. 2010a Linear non-normal energy amplification of harmonic and stochastic
forcing in the turbulent channel flow. J. Fluid Mech. 664, 51–73.

HWANG, Y. & COSSU, C. 2010b Self-sustained process at large scales in turbulent channel flow.
Phys. Rev. Lett. 105, 044505.

HWANG, Y. & COSSU, C. 2011 Self-sustained processes in the logarithmic layer of turbulent channel
flows. J. Fluid Mech. 23, 061702.

JIMÉNEZ, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25, 110814.
JIMÉNEZ, J. & PINELLI, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389,

335–359.
KIM, K. C. & ADRIAN, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11,

417–422.
KIM, H., KLINE, S. & REYNOLDS, W. 1971 The production of turbulence near a smooth wall in a

turbulent boundary layer. J. Fluid Mech. 50, 133–160.
KIM, J. & LIM, J. 2000 A linear process in wall-bounded turbulent shear flows. Phys. Fluids 12

(8), 1885–1888.



KLINE, S., REYNOLDS, W., SCHRAUB, F. & RUNSTADLER, P. 1967 The structure of turbulent
boundary layers. J. Fluid Mech. 30, 741–773.

LAGHA, M., KIM, J., ELDREDGE, J. & ZHONG, X. 2011 A numerical study of compressible turbulent
boundary layers. Phys. Fluids 23, 015106.

LANDAHL, M. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid
Mech. 98, 243–251.

LEE, M., KIM, J. & MOIN, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216,
561–583.

MALIK, M. 1990 Numerical methods for hypersonic boundary layer stability. Phys. Fluids 86,
376–413.

MALIK, M., MEHEBOOB, A. & DEY, J. 2006 Nonmodal energy growth and optimal perturbations in
compressible plane Couette flow. Phys. Fluids 18, 034103.

MARUSIC, I. & HEUER, W. 2007 Reynolds number invariance of the structure inclination angle in
wall turbulence. Phys. Rev. Lett. 99, 114504.

MARUSIC, I., MONTY, J., HULTMARK, M. & SMITS, A. J. 2013 On the logarithmic region in wall
turbulence. J. Fluid Mech. 716, R3.

MOARREF, R., SHARMA, A., TROPP, J. & MCKEON, B. 2013 Model-based scaling of the streamwise
energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275–316.

MONKEWITZ, P., CHAUHAN, K. & NAGIB, H. 2007 Self-consistent high-Reynolds-number asymptotics
for zero-pressure-gradient turbulent boundary layers. Phys. Fluids 19, 115101.

MORKOVIN, M. 1961 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence
(ed. A. Favre), pp. 367–380. CNRS.

PANTON, R. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci.
37, 341–383.

PIROZZOLI, S. & BERNARDINI, M. 2011 Turbulence in supersonic boundary layers at moderate
Reynolds number. J. Fluid Mech. 688, 120–168.

PIROZZOLI, S. & BERNARDINI, M. 2013 Probing high-Reynolds-number effectis in numerical boundary
layers. Phys. Fluids 25, 021704.

PIROZZOLI, S., BERNARDINI, M. & GRASSO, F. 2008 Characterization of coherent vortical structures
in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205–231.

PIROZZOLI, S., BERNARDINI, M. & GRASSO, F. 2010 On the dynamical relevance of coherent
vortical structures in turbulent boundary layers. J. Fluid Mech. 648, 325–349.

PUJALS, G., GARCI-VILLALBA, M., COSSU, C. & DEPARDON, S. 2009 A note on optimal transient
growth in turbulent channels flows. Phys. Fluids 21, 01519.

RESHOTKO, E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8, 311–349.
REYNOLDS, W. & HUSSAIN, K. 1972 The mechanics of an organized wave in turbulence shear flow.

Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 52, 263–288.
RINGUETTE, M. J., WU, M. & MARTÍN, M. 2008 Coherent structures in direct numerical simulation

of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69.
SCHMID, P. & HENNINGSON, D. 2001 Stability and Transition in Shear Flows. Springer.
SIDJE, R. 1998 EXPOKIT: a software package for computing matrix exponentials. ACM Trans. Math.

Softw. 24, 130–156.
SMITH, M. & SMITS, A. 1995 Visualization of the structure of supersonic turbulent boundary layers.

Exp. Fluids 18, 288–302.
SMITS, A., MCKEON, B. & MARUSIC, I. 2011 High-Reynolds number wall turbulence. Annu. Rev.

Fluid Mech. 43, 353–375.
SPINA, E., SMITS, A. & ROBINSON, S. 1994 The physics of supersonic turbulent boundary layers.

Annu. Rev. Fluid Mech. 26, 287–319.
THEODORSEN, T. 1952 Mechanism of turbulence. In Proceedings of Second Midwestern Conference

on Fluid Mechanics, Ohio State University, Columbia, OH, USA, pp. 1–19.
TOMKINS, C. & ADRIAN, R. 2003 Spanwise structure and scale growth in turbulent boundary layers.

J. Fluid Mech. 490, 37–74.
TOWNSEND, A. 1976 The Structure of Turbulent Shear Flow, vol. 2. Cambridge University Press.
VAN DRIEST, E. 1951 Turbulent boundary layer in compressible fluids. J. Aero. Sci. 18, 145–160.


	Optimal transient growth in compressible turbulent boundary layers
	Introduction
	Analysis of coherent motions
	Governing equations
	Closure
	Analysis of transient growth

	Optimal transient growth
	Optimal energy gain
	Inner-layer optimal modes
	Outer-layer optimal modes
	Log-layer optimal modes

	Conclusions
	Acknowledgements
	Appendix A. Linearized equations for parallel flows
	Appendix B. Production and dissipation terms
	Appendix C. Validation of the optimal transient growth code
	References


	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 
	41: 
	42: 
	43: 
	44: 
	45: 
	46: 
	47: 
	48: 
	49: 
	50: 
	51: 
	52: 
	53: 
	54: 
	55: 
	56: 
	57: 
	58: 
	59: 
	60: 
	61: 
	62: 
	63: 
	64: 
	65: 
	66: 
	67: 
	68: 
	69: 
	70: 
	71: 
	72: 
	73: 
	74: 
	75: 
	76: 
	77: 
	78: 
	79: 
	80: 
	81: 
	82: 
	83: 
	84: 
	85: 
	86: 
	87: 
	88: 
	89: 

	ikona: 
	124: 
	125: 
	126: 
	127: 
	128: 
	129: 
	130: 
	131: 
	132: 
	133: 
	134: 
	135: 
	136: 
	137: 
	138: 
	139: 
	140: 
	141: 
	142: 
	143: 
	144: 
	145: 
	146: 
	147: 
	148: 
	149: 
	150: 
	151: 
	153: 

	TooltipField: 


