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Abstract. A number of parts and components involved in the automotive industry are made of thin bent sheets. 

Unfortunately, the classical predictions based on traditional Forming Limit Diagrams are not relevant when the strain 

distribution is heterogonous over the thickness, as is the case for bent sheet metals. The aim of the present 

contribution is to propose an extension of the well-known Marciniak‒Kuczynski approach to account for the effect of 

bending on formability prediction. The new developed tool allows predicting the limit strains for the whole range of 

strain paths. The mechanical behavior of the studied sheets follows the rigid–plastic flow theory. Through numerical 

results, it is shown that bending tends to decrease the formability limit of the sheet metal. 

1 Introduction  

The study of ductility of metallic components and parts is 

an ambitious challenge in academic and industrial 

applications. This ductility is often characterized by a 

Forming Limit Diagram (FLD). The FLD concept has 

been initially introduced by Keeler and Backofen [1], for 

representing the limit strains in the range of positive 

strain paths, and has been extended by Goodwin [2] to 

the whole range of strain paths. Due to the complexity of 

the experimental characterization of FLDs and its 

relatively high cost, a number of theoretical and / or 

numerical models have been developed in the literature. 

These models generally require the use of an instability 

criterion along with a constitutive law to describe the 

evolution of the mechanical state of the studied sheet. In 

the literature, a large amount of models have been 

developed to numerically determine FLDs. From these 

theoretical / numerical approaches, we can quote the 

work of Marciniak and Kuczynski [4], who coupled the 

initial imperfection approach with a rigid–plastic flow 

theory in order to predict the limit strains in the range of 

positive strain paths. Later, Hutchinson and Neale [5] 

extended the initial imperfection approach, initially 

developed in [4], to the range of negative strain paths. In 

the latter work, both the rigid–plastic flow theory and the 

deformation theory of plasticity were used to model the 

mechanical behavior of the studied sheet. In most of the 

approaches proposed in the past, the effect of bending 

deformation on formability is not taken into account, 

since homogeneous deformation through the sheet 

thickness is assumed. However, it is not uncommon that 

metallic sheets used in industrial applications 

(automotive, aeronautic…) undergo combination of 

bending and stretching deformations. Such modes of 

deformation may have a substantial impact on the 

formability of the studied parts. Several experimental 

studies revealed that bending tends to increase the 

formability of metal sheets. Nowadays, there are many 

attempts to develop FLD prediction models that take into 

account bending effects. In this field, Shi and Gerdeen 

[6] integrated the effect of strain gradient and curvature 

in the prediction of FLDs for anisotropic materials. 

Sriram et al. [7] developed an empirical model to 

characterize fracture behavior during forming of 

advanced high strength steels under bending dominated 

conditions. He et al. [8] extended the initial imperfection 

approach developed in [4] to the case of combined 

stretching-bending loading. Nonetheless, their work was 

restricted to the right-hand side of the FLD, where 

bending is along the major stretch direction. Two 

different constitutive laws were used in [8] to model the 

mechanical behavior of the sheet: the flow theory and the 

deformation theory of plasticity. The obtained numerical 

results show that the bending process decreases sheet 

metal formability when the flow theory is used, whereas 

the opposite trend is observed with the deformation 

theory. Furthermore, the model developed in [8] was 

combined with finite element analysis in order to predict 

the forming limits of a sheet metal undergoing continuous 

bending-under-tension loading [8]. More recently, 

Safdarian [10] developed a new model for predicting 

FLDs of tailor welded blanks. In this model, the M–K 

approach developed in [5] has been enriched by taking 

into account the effect of bending strain on sheet metal 

formability. The flow theory of plasticity was used to 
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describe the mechanical behavior of the studied sheet. 

Contrary to the approach developed in [8], the modified 

M–K model developed in [10] allows predicting the limit 

strains for the whole range of strain paths. However, this 

model presents some drawbacks and limitations. Indeed, 

in this model, the strain paths, both within the band and 

outside it, are assumed to remain linear during 

deformation. Consequently, the increment of strain 

components is replaced by total strain components in the 

constructive equations governing the associated modified 

M–K model. This assumption is not relevant in the band 

zone, where it is known that the strain path is constantly 

changing along deformation. Besides, the shear stresses 

have been withdrawn in the formulation of the 

equilibrium equations. This point represents the second 

limitation of the model. Indeed, the shear stresses cannot 

be neglected, especially when the band is not 

perpendicular to the major strain direction. In the present 

paper, a new modified M–K model is developed to 

address the above-mentioned issues. The main result of 

this paper is that the addition of bending effects tends to 

decrease sheet metal formability for the whole range of 

strain paths. This result confirms the numerical 

predictions reported in [8]. 

The remainder of the paper is organized as follows: 

- The equations governing the new modified M–K model 

will be detailed in the second section. 

- In the third section, the numerical and algorithmic 

aspects related to the model will be presented. 

- Various numerical results obtained by application of the 

developed model will be presented and discussed in the 

fourth section. 

Notations 

The following notations and abbreviations are adopted in 

this paper: 

- 
T
: transpose of tensor . 

- 
B
: quantity  associated with the band. 

- 
H
: quantity  associated with the zone located outside 

the band. 

- ST: the stretching part of quantity . 

- BE: the bending part of quantity . 

- (t): value of quantity  at time t. 

- i: quantity  associated with the integration point i. 

These notations can be combined. For instance, the 

stretching part of the strain tensor in the band is denoted 

by B

ST
ε . 

2 Constitutive equations  

2.1 Mechanical behavior 

Elasticity is neglected in the subsequent constitutive 

equations. This assumption is justified, because strain 

localization occurs at relatively large strains. Moreover, 

the plastic flow is assumed to be isotropic and 

incompressible. The rigid–plastic flow theory is then used 

to model the mechanical behavior of the studied sheet 

metal. Hence, the strain rate tensor ε  is derived by using 

the normality flow rule 

 
eq





ε

σ

σ
λ , (1) 

where λ  is the plastic multiplier (equal here to the von 

Mises equivalent strain rate 
eq
ε ), σ  is the Cauchy stress 

tensor, and 
eq

σ  is the von Mises equivalent stress. By 

using the definition of 
eq

σ , the rigid–plastic constitutive 

law can be derived from Eq. (1) 

 
eq eq

eq eq

 
  
 

ε S S ε
ε σ

σ ε
, (2) 

where S  is the deviatoric part of σ . The two latter 

tensors are linked by the following relation: 

 
2

 σ S Ip , (3) 

where p  is the hydrostatic pressure equal to 1 / 3 tr( )σ  

and 
2

I  is the second-order identity tensor. 

The equivalent stress 
eq

σ  is related to the equivalent 

strain 
eq
ε  by the Hollomon isotropic hardening law 

 
eq eq
 nσ Κ ε , (4) 

where K et n are two material hardening parameters. 

By combining Eqs. (2) and (4) one obtains 

 
eq

eq





S ε

nΚ ε

ε
. (5) 

2.2 Modified M–K approach 

2.2.1 Assumptions related to the Bending-Stretching 
process 

The sheet is assumed to be initially flat, with X and Y the 

two in-plane principal directions and Z the through-

thickness direction, as illustrated in Figure 1. It should be 

understood that the X-Y-Z coordinate system represents a 

material coordinate frame, which will rotate as material 

deforms. The following assumptions and choices are 

made in the development of this modified M–K 

approach: 

- The sheet is first subjected to a bending moment M 

applied in Y-direction, resulting in the sheet being curved 

along X-direction, with a uniform curvature R . Hence, 

there is a single curvature along X-direction, while the 

sheet remains flat along the Y-direction (see, Figure 1). 

- The neutral axis is assumed to remain at the middle 

layer of the sheet metal during deformation. 

- The studied sheet is assumed to be wide enough (along 

the Y-direction) relative to its thickness. Consequently, 
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the strain component 
yy
ε  can be neglected during the 

bending process. 

- After the bending stage, an axial major strain along X 

and a minor strain along Y are then applied to the sheet 

under a constant strain path , while the bending radius is 

kept constant equal to R . 

- The studied sheet is assumed to be thin. Therefore, the 

plane-stress assumption is adopted, in accordance with 

several literature works [7]. This assumption can be 

expressed in the following index form: 

 
xz yz zz

0  σ σ σ . (6) 

This plane-stress condition allows us to determine the 

hydrostatic pressure p  introduced in Eq. (3) 

 
xx yy

 p S S . (7) 

Combining the plane-stress and the incompressibility 

conditions, one can easily obtain 

 
xz yz zz xx yy

0 ;     ε ε ε ε ε . (8) 

Equations (6)-(8) are valid for any material point of 

the sheet. 

2.2.2 Modified M–K equations 

The M–K approach is based on the assumption of the 

preexistence of an initial geometric imperfection in the 

form of a band across the thickness of the sheet, as 

illustrated in Figure 1. This band is defined by its normal 

unit vector n . The angle between vector n  and the 

major strain direction X is denoted  . The initial 

thickness of the band (resp. zone outside the band) is 

equal to B

0
h  (resp. H

0
h ). 

 
Figure 1. Initial imperfection approach for the sheet metal 

As a consequence of the assumptions made in Section 

2.2.1, it can be shown that the different mechanical 

variables (strain, stress…) are independent of the x and y 

coordinates, both inside and outside the band. They 

depend only on the z coordinate. Under the 

incompressibility and plane-stress conditions, it is more 

convenient to rewrite in what follows the governing 

equations in the form of an in-plane formulation (in the 

plane (X Y)). The out-of-plane components can be easily 

derived from Eqs. (6)-(8). 

The total strain ε  is additively decomposed into a 

bending part 
BE

ε  and a stretching part 
ST
ε  

 
BE ST

 ε ε ε . (9) 

The above decomposition is valid both inside and 

outside the band.  

However, the bending part 
BE

ε  of the deformation 

tensor has the same expression in both zones 

 
BE

Ln(1 ) 0

0 0

 
   
 

z / R
ε , (10) 

where z  is the third coordinate of the material point 

considered. 

The stretching part H

ST
ε  is assumed to be uniform over 

the thickness of the sheet and is given by the following 

expression:  

 

H

ST xxH

ST H

ST xx

0

0

 
  
 
 

ε
ε

ρ ε
, (11) 

where the strain-path ratio ρ  is varied in the range 

1 / 2 1    to span the complete FLD. 

The stretching part of the strain rate in the band B

ST
ε  is 

related to that outside the band H

ST
ε  by the following 

kinematic compatibility condition: 

 B H T

ST ST
(1 / 2) (( ) ( ) )    ε ε c cn n , (12) 

where c  is the jump vector. Vectors c  and n  are 

assumed to be uniform over the thickness of the sheet. 

The evolution of the band orientation   is given by the 

following relation: 

 H

0 ST xx
arctan tan( ) exp(1 )  

 
θ θ ε , (13) 

where 
0

θ  is the initial value of the band orientation. 

The global equilibrium equation across the band can 

be expressed as follows: 

 
H B

H B

/ 2 / 2
H B

/ 2 / 2
d . d .

 

      
    σ σ

h h

h h
z zn n , (14) 

where Hh  and Bh  are the current thicknesses of the sheet 

outside and in the band zone, respectively. They are 

expressed as functions of the initial thicknesses H

0
h  and 

B

0
h  and of the components of H

ST
ε  and B

ST
ε  

 
H H B B
ST xx ST yy ST xx ST yy( + ) ( + )H H B B

0 0
e ; e
 

 
ε ε ε ε

h h h h . (15) 

It is difficult to determine an exact value for the two 

integrals introduced in Eq. (14). Therefore, they are rather 

numerically approximated by the trapezoidal method, 

after a geometric discretization of the sheet thickness is 

performed 
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pH

H

p

H H H H
/ 2 +1 i 1 iH

/ 2
1

B B B B
/ 2 +1 i 1 iB

/ 2
1

( ) ( )
d

2

( ) ( )
d

2

h

 





 





  
  

 
 

  
  

 
 





σ σ
σ

σ σ
σ

B

B

i Ν
h i i

h
i

i Ν
i i

h
i

z z
z

z z
z

, (16) 

where Np is the number of integration points used in the 

numerical quadrature, which is assumed, for 

convenience, to be the same for both zones. H

i
z  (resp. B

i
z

 ) is the current position of the i
th

 integration point over 

the thickness in the zone outside the band (resp. in the 

band). Hence, H

1
z , 

p

H

N
z , B

1
z , and 

p

B

N
z  are equal to 

H / 2 h , H / 2h , B / 2 h , and B / 2h , respectively. 

Furthermore, H

i
z  (resp. B

i
z ) is related to its initial value 

H

0i
z  (resp. B

0i
z ) by 

 
H H B B
ST xx ST yy ST xx ST yy( + ) ( + )H H B B

0 0e ; e
ε ε ε ε

i i i iz z z z
 

  . (17) 

3 Algorithmic aspects 

3.1 Bending process 

Before the stretching loading is applied, the sheet metal is 

first bent by applying a bending moment M. During this 

bending stage, the curvature radius decreases from + 

(which corresponds to a flat sheet) to a finite value R. 

This bending is moderate compared to stretching 

(typically the ratio H

0
/h R  does not exceed 0.2). 

Therefore, it is legitimate to consider the distance z of 

any integration point to the neutral axis as a constant 

value, which is taken equal to its initial value z0. At the 

end of this bending process, only the equivalent strains 

corresponding to the different points located inside and 

outside the band are computed and stored 

 

H H

eq i

p
B B

eq i

2
Ln(1 / )

3
2

Ln(1 / )
3


 

     
  


i 0

i 0

ε z R

i Ν

ε z R

. (18)  

3.2 Algorithm for the FLD prediction 

The general algorithm used to predict the FLD is based 

on the following three nested loops: 

 For each strain path  ranging from 1/2 to 1 (with 

increments  of 0.1). 

o For each initial band orientation 0, spanning the 

admissible range of inclination angles (i.e., 

between 0° and 90°), at user-defined intervals 

(here, we take intervals of 1 ). 

- For each time interval [t0, t0t], apply the 

implicit incremental algorithm described in 

Section 3.3 to integrate the governing 

equations detailed in Section 2. The 

application of this incremental integration 

scheme is stopped when the following 

criterion is satisfied: 

 B H

ST zz ST zz
10 Δε Δε . (19) 

The strain component H

ST xx
ε , thus obtained once 

the criterion (19) is satisfied, is considered as 

being the critical strain *

xx
ε  corresponding to the 

initial band inclination 0 and strain path .  

The lower critical strain *

xx
ε , over all initial angles 0, 

and the corresponding current angle, define the necking 

limit strain L

xx
ε  and the necking band orientation, 

respectively, for the current strain path . 

3.3 Incremental integration of the governing 
equations 

The main purpose of this incremental algorithm is to 

integrate the equations governing the modified M–K 

approach over a typical time increment [t0, t0t]. In this 

aim, we assume that, at each integration point located in 

both zones, outside and inside the band, the following 

quantities are known at time t0: 

- The coordinate through the thickness direction z. 

- The equivalent strain eq.  

In order to simplify notations, the argument t0t will 

be omitted hereinafter, with the implied understanding 

that the corresponding quantity is evaluated at t0t, 

unless otherwise indicated. 

The increment B

ST zz
Δε  is chosen as loading parameter 

over [t0, t0t]. It is denoted α (and is typically fixed to 

0.001).  

The increments H

ST
Δε  and B

ST
Δε  are derived from the 

integration of Eqs. (11) and (12), respectively 

 

H

ST xxH

ST H

ST xx

Δ
Δ

Δ

0

0

 
  
 
 

ε
ε

ρ ε
. (20) 

H

ST xx 1 1 1 2 2 1B

ST H

1 2 2 1 ST xx 2 2

Δ (1 / 2) ( )
Δ

(1 / 2) ( ) Δ

n n n

n n n

  
  
  
 

ε
ε Δc Δc Δc

Δc Δc ρ ε Δc

 (21) 

It is noteworthy that Eq. (21) has been derived from 

Eq. (12) by implicitly assuming that, all along the time 

increment, the components of vector n  keep their initial 

values at t0. 

Furthermore, Eq. (21) in conjunction with the 

incompressibility condition leads to the following 

relation: 

 H
ST xx 1 1 2 2(1 )ρ Δε Δc Δc α    n n . (22) 

In the band, the position of the different integration 

points at t0t can be obviously expressed in terms of 
B

ST zz
Δε  
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B
ST zzB B B

p
( ) e ( ) e0 0      

Δε α

i i i
i Ν z z t z t . (23) 

By using Eqs. (10) and (23), the increment of B

BE
ε  

over [t0, t0t] for the different integration points within 

the band is derived as 

 

B

B B
p BE i

Ln
1 Δ ( )0

0

0 0

  
  

         
 
 

ε

i

i

R z

i Ν R z t . (24) 

The position at t0t of the integration points located 

outside the band can be determined by the following 

equation: 

 
H
ST zzΔH H

p
( ) e0     

ε

i i
i Ν z z t , (25) 

where H

ST zz
Δε  is determined by applying the 

incompressibility condition 

 H H

ST zz ST xx
(1 )  Δε ρ Δε . (26) 

The increment of H

BE
ε  over [t0, t0t] for the different 

integration points located outside the band is determined 

by a relation very similar to Eq. (24) 

 

H

H H
p BE i

Ln
1 Δ ( )0

0

0 0

  
  

         
 
 

ε

i

i

R z

i Ν R z t . (27) 

The increment over [t0, t0t] of the strain tensors Hε  

and Bε  at the different integration points located outside 

and in the band zone, respectively, is finally determined 

as follows: 

 

H H H

i ST BE i

p B B B

i ST BE i

Δ Δ Δ
1

Δ Δ Δ

  
     

 

ε ε ε

ε ε ε
i Ν , (28) 

where the expressions of H

ST
Δε , H

BE i
Δε , B

ST
Δε , and B

BE i
Δε  

are given in Eqs. (20), (27), (21), and (24), respectively. 

Accordingly, for a given strain path , the strain 

increments H

i
Δε  and B

i
Δε  are functions of three scalar 

unknowns: H

ST xx
Δε , 

1
Δc  and 

2
Δc . 

The expression of the deviatoric stress S  at the 

different integration points inside and outside the band is 

derived from the incremental form of Eq. (5) 

 
eq

eq

Δ
Δ





S ε

nΚ ε

ε
. (29) 

Combining Eqs. (3) and (7), one can easily derive the 

expression of the Cauchy stress tensor σ  at the different 

integration points 

 
xx yy 2

   σ S ΙS S= . (30) 

The above expression for σ  is then inserted in the 

approximation (16), which in turn is inserted in the 

equilibrium equation (14). Analyzing the previous 

developments, Eq. (14) may be regarded as a system of 

two equations with three scalar unknowns: H

ST xx
Δε , 

1
Δc  

and 
2

Δc . By considering Eq. (14) along with Eq. (22), a 

system of three scalar equations with the three above 

unknowns is obtained. This system should be solved 

iteratively by using the Newton–Raphson method in 

order to determine the above-mentioned scalar 

unknowns. Ultimately, the determination of these 

unknowns allows computing the different quantities at 

t0t: the distance of the different integration points to 

the neutral axis of the sheet, the distribution of the 

equivalent strain through the thickness in both zones, and 

the band orientation. In particular, the values of the strain 

components H

ST zz
Δε  and H

ST xx
ε  (the latter being equal to 

H H

ST xx ST xx
( ) Δ0 ε t ε ) are of special interest; the former 

being required for the application of the necking criterion 

(19), while the latter is needed in the algorithm of Section 

3.2. 

4 Prediction results 

A DP600 sheet steel with the hardening parameters 

945K  MPa and 0.16n  is used in the following 

simulations. The initial thicknesses H

0
h  and B

0
h  are fixed 

to 1 mm and 0.99 mm, respectively. The number of 

integration points Np is set to 11. To simplify the 

notations used in the following results, the stretching 

strains H

ST xx
ε , H

ST yy
ε , H

ST zz
ε , and B

ST zz
ε  are simply denoted 

H

11
ε , H

22
ε , H

33
ε , and B

33
ε , respectively. In fact, the latter 

simplified notations are more common for the 

presentation of results corresponding to FLD predictions. 

Figure 2 shows the onset of localized necking in the 

case of plane-strain state ( 0)In this figure, three 

bending radii are considered: R 3 mmR 10 mm; R 

100 mm. The results corresponding to a classical flat 

sheet are also included in this figure. The occurrence of 

strain localization is predicted when the ratio B H

33 33
Δ Δε ε  

exceeds 10, as stated by criterion (19). It is clear from 

this figure that the limit strain increases with the bending 

radius R. This means that bending has as effect to 

accelerate the occurrence of localized necking, especially 

when the bending radius is small. For large values of the 

bending radius R (e.g., more than 100 mm), the bending 

effect is very limited. In such conditions, the prediction 

with high bending radius is almost the same as that 

corresponding to a flat sheet, as observed in Figure 2. 
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Figure 2. Illustration of the onset of localized necking in the 

case of plane-strain state ( 

The evolution of the critical strain *

11
ε  as a function of 

the curvature 1 / R  is plotted in Figure 3 for four 

representative strain paths ( 0.5;  ;  0.5; and  

). The initial band orientation is taken equal to 30° for 

the first strain path (which is different from the necking 

band orientation), and 0° for the other strain paths. For 

the different strain paths, the effect of curvature on 

necking acceleration is obvious, especially for the 

uniaxial tensile state ( 0.5). The same trend was 

observed in [8]. Small vertical lines indicate the results 

for the bending radii of 100 mm, 10 mm, and 3 mm. 

 

Figure 3. Evolution of the critical strain *

11
ε  as a function of the 

curvature 1 / R  

The effect of bending radius on the evolution of the 

critical strain *

11
ε , as a function of the initial band 

orientation 
0

θ , is investigated in Figure 4 for the case of 

uniaxial tensile strain path. Note that the necking band 

orientation is not perpendicular to the major strain 

direction, whatever the value of the bending radius R. 

Indeed, the critical strain *

11
ε  decreases with the initial 

band orientation 
0

θ  until reaching its lowest value, which 

corresponds to the limit strain L

11
ε , and increases 

afterwards. This result is common to all negative strain 

paths, as demonstrated in Figure 5. However, for positive 

strain paths, the necking band is perpendicular to the 

major strain direction. These observations are classical 

for flat sheets when bending effects are not considered. 

The effect of bending radius on the band orientation θ  is 

not very significant, as shown in Figure 5. 

 

Figure 4. Effect of the bending radius on the evolution of the 

critical strain *

11
ε  as a function of the initial band orientation 

0
θ  

for uniaxial tensile strain path 

 

Figure 5. Effect of the bending radius on the evolution of the 

necking band orientation θ  as a function of the strain path  

The results presented in Figure 4 are extended in 

Figure 6 to the whole range of strain paths, where the 

effect of bending radius on the location and shape of 

FLDs is analyzed. It appears from this figure that the 

bending effect is more important in the left-hand side of 

the FLD than in its right-hand side. The predictions 

reported in this figure confirm once again that the 

classical FLD results, corresponding to a flat sheet, are 

naturally recovered in the limit of very large curvature 

radius. 
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Figure 6. Effect of the bending radius on the location and the 

shape of FLDs  

5 Concluding remarks  

A numerical tool has been developed in this paper for the 

prediction of localized necking in sheet metals 

undergoing combined bending-stretching loadings. This 

model may be useful for understanding how the bending 

effects involved in forming processes would affect sheet 

metal formability. Contrary to previous models, 

specifically devoted to this type of combined loadings, 

the current model is able to predict the occurrence of 

localized necking for the whole range of strain paths. In 

the current approach, the mechanical behavior of the 

sheet metal is described by the rigid–plastic flow theory, 

while localized necking prediction is based on the 

imperfection approach. From the numerical predictions 

obtained by applying this tool, it is concluded that the 

addition of bending loading to traditional stretching tends 

to accelerate the occurrence of localized necking. 

References  

1. S.P. Keeler, W.A. Backofen, Trans. ASM 56, 25 

(1963) 

2. G.M. Goodwin, Metallurgia Italiana 60, 767 (1968) 

3. S.L. Chiu, J. Leu, P.S. Ho, J. Appl. Phys. 76, 5136 

(1994) 

4. Z. Marciniak, K. Kuczynski, Int. J. Mech. Sci. 9, 609 

(1967) 

5. J.W. Hutchinson, K.W. Neale, Koistinen, D.P., 

Wang, N.M. (Eds.), Mechanics of Sheet Metal 

Forming. Plenum, 127 (1978) 

6. M. Shi, J. Gerdeen, J. Mater. Shaping Technol. 9, 

253 (1991) 

7. S. Sriram, H. Yao, N. Ramisetti, J. Manuf. Sci. Eng. 

134, 031003 (2012) 

8. J. He, Z.C. Xia, S. Li, D. Zeng, J. Manuf. Sci. Eng. 

135, 227 (2013) 

9. J. He, Z.C. Xia, D. Zeng, S. Li, J. Eng. Mat. Tech. 

135, 031009 (2013) 

10. R. Safdarian, Mech. Res. Commun. 67, 47 (2015) 

 

 

 

 

 

 

 

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

22
ε

 R 3 mm

 R 10 mm

 R 100 mm

 Flat sheet

11
ε

http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Ji+He&q=Ji+He
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Z.+Cedric+Xia&q=Z.+Cedric+Xia
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Shuhui+Li&q=Shuhui+Li
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Danielle+Zeng&q=Danielle+Zeng
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Ji+He&q=Ji+He
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Z.+Cedric+Xia&q=Z.+Cedric+Xia
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Danielle+Zeng&q=Danielle+Zeng
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Shuhui+Li&q=Shuhui+Li

