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Abstract. In this paper, both the bifurcation theory and the initial imperfection approach are used to predict localized 

necking in substrate-supported metal layers. The self-consistent scale-transition scheme is used to derive the 

mechanical behavior of a representative volume element of the metal layer from the behavior of its microscopic 

constituents (the single crystals). The mechanical behavior of the elastomer substrate follows the neo-Hookean 

hyperelastic model. The adherence between the two layers is assumed to be perfect. Through numerical results, it is 

shown that the limit strains predicted by the initial imperfection approach tend towards the bifurcation predictions 

when the size of the geometric imperfection in the metal layer vanishes. Also, it is shown that the addition of an 

elastomer layer to a metal layer enhances ductility. 

1 Introduction  

The ductility of a material is characterized by its ability to 

deform homogeneously under some imposed loading. For 

sheet metals undergoing in-plane biaxial loading, at a 

certain limit strain, the deformation starts concentrating 

in narrow bands. The occurrence of such localization 

bands marks the onset of localized necking in the sheet. 

Predicting the different limit strains that lead to localized 

necking is crucial for designing functional or structural 

components used in industrial devices. To this end, 

several numerical models have been developed to predict 

localized necking, which is represented in the form of 

forming limit diagram (FLD). This FLD concept was 

initially introduced by Keeler and Backofen [1], for 

representing the limit strains in the range of positive 

strain paths, and has been extended by Goodwin [2] to 

the range of negative strain paths. Despite the wide range 

of FLD prediction models available in the literature, very 

few of them have been devoted to metal/elastomer 

bilayers. However, the latter have proven better 

stretchability than traditional freestanding metal layers, 

and are being increasingly used in the industry. For 

instance, in the design of electronic devices that require 

high levels of stretchability, substrate-supported metal 

layers are often used. This is the case of stretchable 

conductors used in biomedical applications, and 

interconnects that are used in large-scale integrated 

circuits [3,4]. The current paper proposes an efficient tool 

for the prediction of localized necking in substrate-

supported metal layers. The mechanical behavior of a 

representative volume element of the metal layer is 

determined from the mechanical behavior of its 

microscopic constituents by using the self-consistent 

scale-transition scheme. Such a micromechanical 

approach allows an accurate description for the 

mechanical behavior of the metal layer. Indeed, the self-

consistent model takes into account essential 

microstructure-related features that are relevant at the 

microscale. These microstructural aspects include key 

physical mechanisms, such as initial and induced 

crystallographic textures, morphological anisotropy, and 

interactions between grains and their surrounding 

medium. The mechanical behavior at the single crystal 

scale is described by a finite strain rate-independent 

constitutive framework, where the Schmid law is used to 

model the plastic flow. This rate-independent formulation 

is more suitable for the modeling and the simulation of 

cold forming processes, where viscous effects are limited. 

The developed model is applied in this paper to metal 

layers with FCC crystallographic structure. On the other 

hand, the mechanical behavior of the elastomer layer is 

assumed to obey the hyperelastic neo-Hookean 

constitutive law. The adherence between the two layers is 

assumed to be perfect. In order to predict localized 

necking in the bilayer, the overall mechanical behavior is 

coupled with two different localization criteria: the 

bifurcation theory, initially developed by Rice [5], and 

the imperfection approach initiated by Marciniak and 

Kuczynski [6]. The use of the Schmid law at the single 

crystal scale allows predicting limit strains at realistic 

levels when the bifurcation theory is used as localization 

criterion. One of the main conclusions of this paper is 

that the addition of an elastomer layer can significantly 

retard the occurrence of localized necking in the whole 

bilayer. It is also demonstrated that the FLDs of the 

bilayer predicted by the Marciniak–Kuczynski (MK) 
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analysis tend towards those predicted by the bifurcation 

theory in the limit of a vanishing size for the geometric 

imperfection of the metal layer. 

The current paper may be viewed as an extension of the 

investigations carried out in [7], which were restricted to 

a phenomenological description for the mechanical 

behavior of the metal layer. 

The remainder of the paper is organized as follows: 

- The constitutive equations describing the mechanical 

behavior of the metal and elastomer layers will be 

outlined in the second section. 

- In the third section, the theoretical framework for the 

two localization criteria will be presented. 

- Various numerical results obtained by the application of 

the developed tool will be presented and discussed in the 

fourth section. 

Notations 

The following notations and abbreviations are adopted in 

this paper: 

- Mechanical fields corresponding to the polycrystal 

(resp. single crystal) scale are denoted by capital (resp. 

small) letters. To be consistent with the notations adopted 

for the metal layer, the different mechanical fields 

corresponding to the elastomer layer are also denoted by 

capital letters. 

- 
PS

: the in-plane part of the field  (in relation with the 

plane-stress assumption). 

- : quantity  associated with layer  (metal or 

elastomer layer). 

- (B): quantity  associated with the band (MK 

analysis). 

- (S): quantity  associated with the safe zone (MK 

analysis). 

- SC and FC will be used, as needed, to specify the self-

consistent scheme and the full-constraint Taylor model, 

respectively. 

- FM (resp. BL) refers in figures of Section 4 to the 

freestanding metal layer (resp. metal/elastomer bilayer). 

These notations may be combined. For instance, tensor 

X  in the elastomer layer of the band is denoted 
E
(B)X . 

2 Mechanical behavior of the bilayer 

2.1 Metal layer 

2.1.1 Constitutive equations at the polycrystalline 
scale 

Let us consider a polycrystalline aggregate, which is 

assumed to be statistically representative of the metal 

layer. The modeling of the mechanical behavior of this 

aggregate is thus sufficient to accurately describe the 

mechanical behavior of the whole metal layer. To derive 

the mechanical behavior of the polycrystalline aggregate 

from the behavior of its microscopic constituents, the 

self-consistent model is used. Only the main lines of this 

scheme are presented in the current section. Further 

details on this model are provided in [8]. Compared to the 

full-constraint Taylor model, which is much more 

commonly used due to its simplicity, the self-consistent 

scheme presents a number of advantages. Indeed, through 

the formulation of this scale-transition scheme, the 

equilibrium condition at the single crystal level is 

satisfied. Also, the grain morphology and the interactions 

between the grain and its surrounding medium are 

accounted for. 

Because the behavior of the polycrystalline aggregate 

is modeled within the framework of finite strains, the 

nominal stress rate N  and the velocity gradient G  are 

used as appropriate stress and strain measures, 

respectively. The macroscopic tangent modulus L  

linking N  to G  is then obtained by using the self-

consistent model 

 :N L G . (1) 

The macroscopic velocity gradient G  and the 

nominal stress rate N  can be derived from their 

microscopic counterparts g  and n  by using the 

averaging Hill theorem [9] 

 ( ) ; ( ) G g x N n x , (2)  

where x  is a material point in the polycrystalline 

aggregate, and a  the average of field a  over the volume 

V  of the polycrystalline aggregate 

 
1

( ) d a a x x
VV

. (3)  

Conversely, the microscopic velocity gradient and 

nominal stress rate are linked to their macroscopic 

counterparts by the following relations: 

 ( ) ( ) : ; ( ) ( ) : g x Α x G n x B x N , (4) 

where ( )Α x  and ( )B x  are fourth-order concentration 

tensors for the velocity gradient and the nominal stress 

rate, respectively. 

At the microscopic level, a behavior law similar to 

Eq. (1) can be derived by combining the constitutive 

relations of the single crystal 

 ( ) ( ) : ( )n x l x g x , (5) 

where l  is the microscopic tangent modulus. 

Furthermore, it is assumed that all mechanical variables 

are homogeneous within the individual single crystals 

 
g gN N

1 1
( ) ( ) ; ( ) ( )

 
  g x g x l x l xI I I I

I I
θ θ , (6) 

where 
g

N  is the number of single crystals that compose 

the polycrystalline aggregate, and Iθ  is an indicator 

function defined as 

 ( ) 1 if ; ( ) 0 if   x x x xI I I Iθ V θ V . (7) 
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Thus, for any material point x  within single crystal I, 

relation (5) becomes 

 :n l gI I I . (8) 

The relation between L  and l  can be obtained by 

combining Eqs. (1)-(5) 

  ( ) : ( )L l x A x  (9) 

By using Green’s tensor, the analytical expression of 

the concentration tensor A I  is obtained after some 

developments 

:


             A Ι Τ l L Ι Τ l LI II I II I ,(10) 

where ΤII  is a fourth-order tensor, which is function of 

L , that describes the interaction between grain I and its 

surrounding medium. The macroscopic tangent modulus 

derived by the 1-site self-consistent version of the 

incremental scheme of Hill [9] can be finally obtained as 

follows: 

 
1

:


 L l A
gN I I I

I
f , (11) 

where If  is the volume fraction of single crystal I. 

The above equations (10) and (11) represent a non-

linear problem, which is incrementally solved by using 

the iterative fixed point method. At each time increment, 

the main unknown of this iterative problem is the 

macroscopic tangent modulus L . It must be noted that 

the full-constraint Taylor model can be easily deduced 

from the self-consistent approach, by considering that the 

concentration tensors A I  of the different grains are equal 

to the fourth-order identity tensor. In this particular case, 

no iteration is required. To calculate  by Eq. (11), the 

microscopic tangent modulus l I  of all individual grains 

should be computed. To this end, the following section is 

dedicated to the derivation of the analytical expression of 

the microscopic tangent modulus. 

2.1.2 Constitutive equations at the single crystal 
scale 

The mechanical behavior of the single crystals that make 

up the polycrystalline aggregate is described by a rate-

independent constitutive framework. Because the single 

crystals undergo finite strains, the effect of lattice rotation 

is accounted for. 

The microscopic velocity gradient is additively split 

into its symmetric and skew-symmetric parts, denoted as 

d  and w , respectively 

 T T1 2) ( ) ; 1 2) ( )       d g g w g g . (12) 

The strain tensor d  and the spin tensor w  are split 

into their elastic and plastic parts 

 e p e p    d d d w w w . (13) 

The rotation of the single crystal lattice frame r  is 

related to the elastic part of the spin tensor ew  by the 

following relation: 

 T e. r r w . (14) 

In order to satisfy the objectivity principle, the co-

rotational rate σ  of the Cauchy stress tensor σ , with 

respect to the lattice rotation, is related to the elastic 

strain rate 
e

d  by the following hypoelastic law: 

 e e e e. . :   σ σ w σ σw C d , (15) 

where 
e

C  is the fourth-order elasticity tensor. The elastic 

behavior of the metal layer is assumed to be isotropic and 

therefore 
e

C  is defined by the Young modulus E  and 

the Poisson ratio . 

The inelastic deformation is only due to the slip on 

the crystallographic planes. Thus, p
d  and p

w  can be 

defined by the following relations: 

s sN Np p

1 1
sgn( ) ; sgn( )

 
  d R w Sβ β β β β β

β β
γ γτ τ ,(16) 

where: 

 sN  is the total number of slip systems (equal to 12 for 

FCC crystallographic structure).  

 βγ  is the slip rate of the slip system β.  

 R β  (resp. S β ) is the symmetric part (resp. skew-

symmetric part) of the Schmid orientation tensor.  

 βτ  is the resolved shear stress of the slip system β , 

which is equal to :σ R β . 

The Schmid law is used to model the plastic flow of 

the single crystal, as follows: 

 
c

s

c

< = 0
1,..., N :

= 0

 
  

 

β β β

β β β

τ τ γ
β

τ τ γ
, (17) 

where 
c

βτ  is the critical shear stress of the slip system β .  

The Cauchy stress tensor σ  is related to the nominal 

stress tensor n  by the following relation: 

 .n f σj , (18) 

where j  is the Jacobian of the microscopic deformation 

gradient f . The nominal stress rate n  required in Eq. (5) 

can be easily obtained from Eq. (18) 

  . Tr ( ) .  n f σ σ d g σj . (19) 

In the current paper, an updated Lagrangian approach 

is adopted. Thus, in Eq. (19), f  is set to the second-order 

identity tensor 
2

I  and j  is set to 1 , which reduces to 

L
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 Tr ( ) .  n σ σ d g σ . (20) 

By combining Eqs. (12), (13), (15), (16) and (20), n  

can be expressed as a function of the slip rates βγ  

 
 

 s

e

2

N e

1
. .sgn( )



       

   

n C σ I d σ w d σ

C R S σ σ Sβ β β β

β

β γτ
.(21) 

Let us now introduce the set of active slip systems 

, defined as the slip systems for which the slip rates are 

strictly positive. The set of slip systems β  used in Eq. 

(21) is then reduced to the set  

 
 

 

e

2

e . .sgn( )


       

   

n C σ I d σ w d σ

C R S σ σ Sβ β β β

β

β γτ
.(22) 

In order to obtain the expression of the microscopic 

tangent modulus l  from relation (22), the slip rates of the 

active slip systems βγ  should be expressed as functions 

of g . To this end, the consistency condition, restricted to 

the active slip systems, is used 

 
c

: sgn ) 0        β β β ββ τ τ τ γ .(23) 

By using the definition of the resolved shear stress as 

well as Eqs. (13)1 and (15), the resolved shear stress rate 
βτ  can be expressed as 

 e p( ): : : :    R σ R C d dβ β ββ τ . (24) 

As to the time derivative of 
c

βτ , it is given by the 

following isotropic hardening law: 

 

c

1

0

1

0

:

1 ;







  

 
   

 
 



 s

β α

α

n

N α

0 α

β τ h γ

h
h h γ

τ n




, (25) 

where 
0h  is the initial hardening rate and n  the power-

law hardening exponent. 
0
τ  is the initial critical shear 

stress, which is assumed to be the same for the different 

slip systems. 

The expression of the slip rates for the active slip 

systems is finally obtained by inserting Eqs. (16)1, (24) 

and (25) into the consistency condition (23) 

 

e
sgn( ): : :

:


 



 R C

y

d

d

αβα α

α

β

β M τγ
, (26) 

where M  is the inverse of matrix P  of rank Card( ) , 

which is defined by the following index form: 

 e: sgn( ) sgn( ) : :,    R C Rαβ α β α ββ P h τα τ

. (27) 

Combining Eqs. (5), (21) and (26), one can obtain the 

analytical expression of the microscopic tangent modulus 

l  

 

e 1 2

2

e : . .

( ) ( )

sgn( )

l C σ I σ σ

C R S σ σ S y


    

   

 

α α α α

α

ατ
,(28) 

where 1  and 2  are fourth-order tensors that reflect 

the contribution of Cauchy stress convective terms 

 

1

2

1
(δ δ )

2
1

(δ δ )
2

( )

( )

σ

σ

 

 

ijkl lj ik kj il

ijkl ik lj il kj

σ σ

σ σ





. (29) 

In order to update the different microscopic variables, 

the above constitutive equations should be integrated 

incrementally over each time increment. Analyzing these 

constitutive equations, one can observe that the main 

unknowns are the set of active slip systems and the 

corresponding slip rates. An implicit ultimate algorithm, 

very similar to the one developed in [10], is used to 

integrate these equations. The microscopic tangent 

modulus is determined from the updated microscopic 

variables at the end of the time increment. 

2.2 Elastomer layer  

In contrast to the metal layer, the mechanical behavior of 

the elastomer layer is assumed to be homogeneous and is 

modeled by a hyperelastic neo-Hookean law [11]. The 

formulation of this model allows linking the Cauchy 

stress tensor Σ  to the left Cauchy-Green tensor V  

 2

2 Σ I Vq  , (30) 

where   is the shear modulus, q  an unknown 

hydrostatic pressure to be determined by applying the 

incompressibility constraint, and V  is defined by the 

following relation: 

 2 T.V F F , (31) 

with F  being the deformation gradient tensor of the 

elastomer layer. 

3 Strain localization criteria 

Let us consider a bilayer comprised of a metal layer M 

and an elastomer layer E. The two layers are assumed to 

be perfectly adhered and sufficiently thin. The small 

thickness assumption allows formulating the two above-

mentioned localization criteria, namely the bifurcation 

theory and the initial imperfection approach, under the 

plane-stress conditions. 
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3.1 Bifurcation theory 

The bilayer is submitted to uniform strain, where the in-

plane strain rates are equal to 
11

1E , 
22
E ρ  and 

12
0E . ρ  is the strain-path ratio ranging from 1/2 

(uniaxial tensile state) to 1 (equibiaxial tensile state). 

Considering the plane-stress conditions, this specific 

loading implies that the macroscopic velocity gradient 

and the macroscopic nominal stress rate tensor have the 

following generic forms: 

 

1 0 0 ? ? 0

0 0 ; ? ? 0

0 0 ? 0 0 0

   
   

    
   
   

G Nρ , (32) 

where symbol ?  designates the unknown components in 

both tensors. These generic forms are valid for both 

layers. 

The bifurcation criterion states that strain localization 

occurs when the acoustic tensor becomes singular. 

Hence, this criterion is expressed in the following form: 

 PS PS PSdet ( ) 0. . L , (33) 

where: 

 PS  is the unit vector normal to the localization band. 

Here, it is taken equal to (cos ,sin )  .  

 PSL  is the averaged plane-stress tangent modulus of the 

bilayer. This modulus is defined by the following 

relation: 

 
PS PS

M M E EPS

M E






L L
L

h h

h h
, (34) 

where 
M

h  (resp. 
E

h ) is the initial thickness of the metal 

(resp. elastomer) layer and PS

M
L  (resp. PS

E
L ) is the plane-

stress tangent modulus of the metal (resp. elastomer) 

layer. 
PS

M
L  is derived from the 3D expression of the metal 

layer tangent modulus 
M

L  (see Section 2.1.1) by using 

the following condensation relation: 

M 33 M 33
PS

M M

M 3333

, , , ,1 2 :   
αβ γδ

αβγδ αβγδ
α β γ δ

L L
L L

L
.(35) 

PS

E
L  is defined by the following relation [7]:  

 PS 1 2

E 2
( ) ( )L Σ Ι Σ Σ      , (36) 

It is worth noting that the tensors 1  and 2  used in 

relation (36) are given in Eq. (29). The non-zero 

components of the fourth-order tensor  are defined by 

the following relations:  

 

11 11 22

22 11 22

11 22

11 22

2 2 ( )

1111

2 2 ( )

2222

2 ( )

1122

2 2

1212

[e e ]

[e e ]

e

[e e ]
2

 

 

 

   


  

  



 

E E E

E E E

E E

E E

μ

μ

μ

μ

. (37) 

For each strain-path ratio , and at each time 

increment, the bifurcation criterion (33) is checked for all 

possible band orientations ( [0, /2]). When the 

acoustic tensor becomes singular for a given band 

orientation, the computation is stopped. The overall 

major strain 
11

E  that is thus calculated corresponds to the 

localization limit strain and the band orientation, which 

zeroes the determinant of the acoustic tensor, corresponds 

to the necking band orientation.  

3.2 Initial imperfection approach 

In order to apply the initial imperfection approach (called 

hereafter M–K analysis for the sake of brevity) to the 

bilayer, the assumption of the preexistence of a groove in 

the form of a band in the metal layer (Figure 1) is made. 

Thus, in accordance with various experimental 

observations, the localization initiates always in the metal 

layer. 

 
Figure 1. M–K analysis for a bilayer (initial geometry and band 

orientation). 

In order to present the equations of the M–K analysis 

related to the metal/elastomer bilayer, the following 

notations are adopted: 

 M (B)h : initial thickness of the metal layer inside the 

band. 

 M (S)h : initial thickness of the metal layer outside the 

band. 

 E (B)h : initial thickness of the elastomer layer inside the 

band. 

 E (S)h : initial thickness of the elastomer layer outside 

the band (equal to E (B)h ). 

On the basis of these notations, the initial geometric 

imperfection ratio 0  (corresponding to the metal layer 

only), can be specified as 

 
M

0

M

(B)
1

(S)
 

h

h
 . (38) 

The M–K analysis is based on four main equations: 

 As a consequence of the perfect adherence between the 

metal and the elastomer layer, the following equalities 
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between the in-plane velocity gradients in the metal 

layer and their counterparts in the elastomer layer are 

satisfied: 

 

PS PS PS

M E

PS PS PS

M E

(B) (B) (B)

(S) (S) (S)

 

 

G G G

G G G
 (39) 

 The kinematic compatibility condition between the 

band and the uniform zone (i.e., outside the band): this 

condition requires that the displacement increments 

should be continuous across the band and it is 

mathematically expressed as 

 
PS PS PS PSS     G G C . (40) 

 The equilibrium balance across the interface between 

the band and the homogeneous zone: 

 

PS PS PS

M M E E

PS PS PS

M M E E

.( (B) (B) (B) (B))

.( (S) (S) (S) (S))



 

Ν Ν

Ν Ν

h h

h h
. (41) 

 The behavior law of both the metal and the elastomer 

layer, restricted to the plane dimension inside and 

outside the band, respectively: these constitutive 

equations are expressed in the following generic form: 

 

PS PS PS PS PS PS

M M E E

PS PS PS PS PS PS

M M E E

(B) (B) (B) ; (B) (B) (B)

(S) (S) (S) ; (S) (S) (S)

 

 

Ν L G Ν L G

Ν L G Ν L G

: :

: :
.(42) 

By inserting the constitutive relations (42) into the 

equilibrium equation (41), this latter becomes 

 

PS PS PS PS

M M E E

PS PS PS PS

M M E E

.( (B) (B) (B) (B)) : (B)

.( (S) (S) (S) (S)) : (S)



 

L L G

L L G

h h

h h
. (43) 

For each strain-path ratio ρ  and each initial band 

orientation 0
 , the equations that govern the MK 

approach are integrated incrementally over each time 

increment. Indeed, by analyzing Eqs. (40) and (43), it can 

be seen that the main incremental unknowns of the M–K 

approach are the two components of the jump vector 
PS

C

. For each loading (determined by a strain path and a 

band orientation), the computations are stopped when the 

norm of the jump vector 
PS

C  increases rapidly, thus 

marking the localization of the deformation in the band 

zone. Further numerical and algorithmic details regarding 

the M–K approach can be found in [7]. 

4 Prediction results 

4.1 Material and geometric data 

The polycrystalline aggregate studied in this paper is 

made of 2000 grains. Its initial crystallographic texture is 

generated randomly (see Figure 2) in such a way that it is 

orthotropic with respect to the rolling and transverse 

directions. Initially, all of the grains are assumed to be 

spherical with the same volume fraction. 

 

Figure 2. Initial crystallographic texture of the studied 

polycrystalline aggregate: {111} pole figure. 

The material parameters of the single crystals are 

given in Table 1. 

Table 1. Material parameters of the single crystals used in the 

metal layer 

Elasticity Hardening 

E [GPa]  0 [MPa] h0 [MPa] n 

210 0.3 40 390 0.35 

 

The shear modulus of the elastomer layer is set to 22 

MPa. The ratio between the initial thickness of the 

elastomer layer and the initial thickness of the metal layer 

is fixed to 0.5.  

4.2 Bifurcation theory predictions 

The evolution of the minimum of the cubic root of the 

determinant of the acoustic tensor PS PS PS. .L , over 

all possible band orientations, as a function of the major 

strain 
11

E  is displayed in Figure 3. The onset of strain 

localization occurs when this minimum reaches 0 as 

defined by the bifurcation criterion (33). The SC 

approach is used as scale-transition scheme. Four 

representative strain paths are considered in this figure:  

0.5,  0,  0.5, and  1. By comparing Figure 3 (a) 

and Figure 3 (b), one can easily observe that the presence 

of the elastomer layer substantially retards the occurrence 

of strain localization. This result is the consequence of 

the fact that under biaxial loading, the tangent modulus of 

the elastomer remains unchanged, or increases, while the 

tangent modulus of the metal layer steadily decreases. 

 

RD

TD
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 (a)  (b) 

Figure 3. Evolution of the minimum of the cubic root of the 

determinant of the acoustic tensor as a function of E11 for four 

different strain paths ( 0.5,  ,  0.5, and  ): (a) 

Freestanding metal layer; (b) substrate-supported metal layer. 

The effect of the elastomer layer on necking 

retardation for all strain paths [ 1/ 2,1] ρ  is 

investigated in Figure 4. This figure, confirms the 

preliminary result obtained in Figure 3: the elastomer 

layer permits to shift the FLD monotonically upwards, 

and thus enhances the ductility of the bilayer. 

 

 (a) (b) 

Figure 4. Effect of the elastomer layer on the improvement of 

the FLD of the bilayer: (a) SC model; (b) FC model.  

4.3 M–K analysis predictions 

In order to illustrate the onset of strain localization, the 

evolution of the in-plane components of the jump vector 

C  and the determinant of the acoustic tensor in the band 

are plotted in Figure 5 as function of the major strain in 

the safe zone E11. In this simulation, the strain path , the 

initial imperfection ratio 0 and the initial band 

orientation 0 are fixed to 0, 10


 and 0°, respectively. 

The SC model is used to ensure the transition between the 

microscopic and macroscopic scales of the metal layer. It 

is clear from Figure 5 (a) that the jump vector C  remains 

very close to 0  before strain localization. This jump 

vector, and especially its first component, increases very 

abruptly when the strain in the safe zone E11 is about 

0.28, thus leading to the localization of deformation 

within the band. The evolution of the determinant of the 

acoustic tensor in the band is given in Figure 5 (b). The 

limit strain (0.28) is reached when this determinant 

becomes equal to 0. This result is expectable considering 

the similarity in the mathematical formulation of the 

bifurcation theory and the MK approach. The evolution 

of this determinant can be used as a reliable alternative 

indicator of strain localization for the different strain 

paths. 

 

 (a) (b) 

Figure 5. Illustration of the onset of strain localization (bilayer; 

 0; 0 103; 0 0°; SC): (a) Evolution of the in-plane 

components of the jump vector C  as a function of the major 

strain in the safe zone E11; (b) Evolution of the determinant of 

the acoustic tensor in the band as a function of the major strain 

in the safe zone E11. 

The comparison between the FLDs predicted by 

bifurcation theory and those determined by M–K analysis 

is shown in Figure 6. Three different values of the initial 

imperfection ratio 0 are considered: 10
4

, 10
3 

and 10
2

. 

It is clear that the shape and the level of the predicted 

FLDs are significantly influenced by the amount of initial 

geometric imperfection. It is also found that for all strain 

paths, the limit strains predicted by bifurcation theory set 

an upper bound to those yielded by the M–K approach. 

Moreover, this result is valid for both scale-transition 

schemes, namely the FC and SC models. 

 

 (a) (b) 

Figure 6. Effect of the initial geometric imperfection on the 

shape and the level of the FLDs of the bilayer: (a) SC model; 

(b) FC model. 

5 Concluding remarks  

A powerful tool to predict the onset of localized necking 

in substrate-supported metal layers has been developed in 

this paper. In this tool, the mechanical behavior of the 

metal (resp. elastomer) layer is modeled by the self-

consistent micromechanical model (resp. neo-Hookean 

hyperelastic model). The mechanical modeling of the 

bilayer is coupled with two strain localization criteria to 
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predict the limit strains: the bifurcation theory and the 

initial imperfection approach. From the numerical 

predictions obtained by applying this tool, three main 

conclusions can be drawn: 

 The presence of an elastomer layer increases 

substantially the level of the limit strains for the 

bilayer. 

 The shape and the level of the predicted FLDs are 

significantly influenced by the amount of initial 

geometric imperfection, which is assumed to initiate 

in the metal layer. 

 The limit strains of the whole bilayer predicted by 

bifurcation theory set an upper bound to those yielded 

by the M–K approach. 
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