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Abstract: This paper analyzes the ability of different machine learning techniques, able to operate
in the low-data limit, for constructing the model linking material and process parameters with the
properties and performances of parts obtained by reactive polymer extrusion. The use of data-driven
approaches is justified by the absence of reliable modeling and simulation approaches able to predict
induced properties in those complex processes. The experimental part of this work is based on the in
situ synthesis of a thermoset (TS) phase during the mixing step with a thermoplastic polypropylene
(PP) phase in a twin-screw extruder. Three reactive epoxy/amine systems have been considered
and anhydride maleic grafted polypropylene (PP-g-MA) has been used as compatibilizer. The final
objective is to define the appropriate processing conditions in terms of improving the mechanical
properties of these new PP materials by reactive extrusion.

Keywords: reactive extrusion; data-driven; machine learning; artificial engineering; polymer
processing; digital twin

1. Introduction

Initially, the industry adopted virtual twins in the form of simulation tools that represented
the physics of materials, processes, structures, and systems from physics-based models.
These computational tools transformed engineering science and technology to offer optimized design
tools and became essential in almost all industries at the end of the 20th century.

Despite of the revolution that Simulation Based Engineering—SBE—experienced, some domains
resisted to fully assimilate simulation in their practices for different reasons:

• Computational issues related to the treatment of too complex material models involved in too
complex processes, needing a numerical resolution difficult to attain. Some examples in polymer
processing concern reactive extrusion or foaming, among many others.

• Modeling issues when addressing materials with poorly known rheologies, as usually
encountered in multi-phasic reactive flows where multiple reactions occur.

• The extremely multi-parametric space defined by both the material and the process, where the
processed material properties and performances strongly depend on several parameters related,
for example in the case of reactive extrusion, to the nature of the reactants or the processing
parameters, like the flow rate and viscosity, the processing temperature, etc.
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In these circumstances, the use of data and the construction of the associated models relating
the material and processing parameters to some quantities of interest—QoI, by using advanced
artificial intelligence techniques, seems an appealing procedure for improving predictions, enhancing
optimization procedures and enabling real-time decision making [1].

1.1. Data-Driven Modeling

Engineered artificial intelligence—EAI—concerns different data-science functionalities enabling:
(i) multidimensional data visualization; (ii) data classification; (iii) modeling the input/output
relationship enabling quantitative predictions; (iv) extracting knowledge from data; (v) explaining for
certifying, and (vi) creating dynamic data-driven applications systems.

The present work aims at creating a model able to relate material and processing parameters to
the processed material properties and performances. For this reason, in that follows, we will focus on
the description and use of different strategies for accomplishing that purpose.

In the past, science was based on the extraction of models, these being simply the causal
relation linking causes (inputs) and responses (outputs). This (intelligent) extraction or discovery was
performed by smart (and trained) human minds from the data provided by the direct observation of
the reality or from engineered experimental tests. Then, with the discovered, derived, or postulated
model, predictions were performed, leading to the validation or rejection of these models. Thus,
physics-based models, often in the form of partial differential equations, were manipulated by using
numerical techniques, with the help of powerful computers.

However, sometimes models are not available, or they are not accurate enough. In that case,
the most natural route consists of extracting the model from the available data (a number of inputs
and their associated outputs). When data are abundant and the time of response is not a constraint,
deep-learning could constitute the best alternative. However, some industrial applications are subjected
to: (i) scarce data and (ii) necessity of learning on-the-fly under stringent real-time constraints.

Some models, as those encountered in mechanics, are subjected to thermodynamic consistency
restrictions. They impose energy conservation and entropy production. In our former works [2–5],
we proved that such a route constitutes a very valuable framework for deriving robust models able
to assimilate available data while fulfilling first principles. However, some models cannot be cast
into a physical framework because they involve heterogeneous data, sometimes discrete and even
categorical. Imagine for awhile a product performance that depends on four factors: (i) temperature of
the oven that produces the part; (ii) process time; (iii) commercial name of the involved material, and
(iv) given-name of the employee that processed it. It seems evident that processes, whose representing
data-points (implying four dimensions in this particular example) are close to each other, do not imply
having similar performances. In that case, prior to employing techniques performing in vector spaces,
in general based on metrics and distances, data must be mapped into that vector space. For this
purpose, we proposed recently the so-called Code2Vect [6] revisited later.

Nonlinear regressions, relating a given output with the set of input parameters, are subjected to a
major issue: complexity. In other words, the number of terms of a usual polynomial approximation
depends on the number of parameters and the approximation degree. Thus, D parameters and a
degree Q imply the order of D power Q terms and, consequently, the same amount of data are needed
to define it. In our recent works, we proposed the so-called sparse Proper Generalized Decomposition,
sPGD [7] able to circumvent the just referred issue. It is based on the use of separated representations
with adaptive degree of approximation, defined on unstructured data settings and sparse sensing to
extract the most compact representations.

Assuming that the model is expressible as a matrix relating arrays of inputs and outputs (as
standard Dynamic Mode Decomposition—DMD—performs with dynamical systems [8,9]) both
expressible in a low-dimensional space (assumption at the heart of all model order reduction
techniques), the rank of the matrix (discrete description of the model) is assumed to be low [10].



1.2. Reactive Polymers Processing

Reactive extrusion is considered to be an effective tool of continuous polymerization of monomers,
chemical modification of polymers and reactive compatibilisation of polymer blends. In particular,
co-rotating and contra-rotating twin-screw extruders have proven to be a relevant technical and
economical solution for reactive processing of thermoplastic polymers. The literature dedicated to
reactive extrusion shows that a very broad spectrum of chemical reactions and polymer systems has
been studied [11–15].

The many advantages of using the extruder as a chemical reactor can be described as follows:
(i) polymerization and/or chemical modifications can be carried out in bulk, in the absence of
solvents, the process is fast and continuous (residence time of the order of a few minutes); (ii) if
necessary, devolatilization is effective, leading to the rapid removal of residual monomers and/or
reaction by-products; and (iii) the screw design is modular, allowing the implementation of complex
formulations (fillers, plasticizers, etc.).

However, there are also some disadvantages in using an extruder as a chemical reactor such as:
(i) the high viscosity of the molten polymers, which lead to self-heating and therefore to side reactions
(thermal degradation for example); (ii) the short residence time which limits reactive extrusion to fast
reactions; and (iii) the difficulty of the scale up to industrial pilot and plants.

In terms of modeling and simulation, various strategies [16] can be considered as it needs to
deal with a large number of highly nonlinear and coupled phenomena. Actually, the strategy of
modeling depends on the objectives in terms of process understanding, material development from
machine design or process optimization, and control. For example, in the case of free radical grafting
of polyolefins, a two-phase stochastic model to describe mass transport and kinetics based on reactive
processing data was proposed in [17].

Regarding process optimization, a simple 1D simulation approach provides a global description
of the process all along the screws, whereas 3D models allow a more or less accurate description of the
flow field in the different full zones of the extruder. However, most of these simulations are based on
simplified steady-state 1D models (e.g., Ludovicc© software [18]).

Actually, the main processing parameters such as residence time, temperature, and extent of the
reaction are assumed homogeneously distributed in any axial cross section. The use of one-dimensional
models allows significant reductions of the simulation effort (computing time savings). In any case,
the flow model is coupled with reaction kinetics that impact the fluid rheology [19].

Thus, one-dimensional models are specially appropriate when addressing optimization or control
in reactive extrusion. In particular, the model proposed in [20] predicts the transient and steady-state
behaviors, i.e., pressure, monomer conversion, temperature, and residence time distribution in different
operation conditions.

However, these simulations require several sub-models on establishing constitutive equations
(viscosity, chemical kinetics, mass and temperature transfers). Actually, it takes time and the intuition
and accumulated knowledge of experienced specialists. Furthermore, it is important to note that,
despite the impressive effort spent by hundreds of researchers and thousands of published papers,
no constitutive equation exists describing, for example, the behavior of complex polymer formulations
such as reactive extrusion systems.

In summary, such a process is quite complex and would require a detailed study on the influence
of the nature of polymers and chemical reactions (kinetics and rheology), processing conditions
(temperature, screw speed, flow rate, screw profile). Nevertheless, a determinist answer to each of
these parameters is out of consideration and actually we believe that the understanding of such a
process is quite unrealistic from usual approaches.

1.3. Objectives of the Study

The present work aims at addressing a challenge in terms of industrial applications that is not
necessarily based on improving the understanding of the process itself, but replacing the complex fluid



and complex flow by an alternative modeling approach able to extract the link between the process
outputs and inputs, key for transforming experience into knowledge.

A model of a complex process could be envisaged with two main objectives: (i) the one related to
the online process control from the collected and assimilated data; (ii) the other concerned by the offline
process optimization, trying to extract the optimal process parameters enabling the target properties
and performances. Even if the modeling procedure addressed in this work could be used in both
domains, the present work mainly focuses on the second one, the process modeling for its optimization;
however, as soon as data could be collected in real-time, with the model available, process control
could be attained without major difficulties.

There are many works in which each one uses a different data-driven modeling technique,
diversity that makes it difficult to understand if there is an optimal technique for each model, or if
most of them apply and perform similarly. Thus, this paper aims at comparing several techniques
first, and then, using one of them that the authors recently proposed, and that performs in the
multi-parametric setting, address some potential uses.

2. Modeling

In this section, we revisit some regression techniques that will be employed after for modeling
reactive extrusion. For additional details and valuable references the interested reader can refer to
Appendix A.

In many applications like chemical and process engineering or materials processing, product
performances depend on a series of parameters related to both, the considered materials and the
processing conditions. The number of involved parameters is noted by D and each parameter by xi,
i = 1, . . . , D, all of them grouped in the array x.

The process results in a product characterized by different properties or performances in number
smaller or greater than D. In what follows, for the sake of simplicity and without loss of generality,
we will assume that we are interested in a single scalar output noted by y.

From the engineering point of view, one is interested in discovering the functional relation
between the quantity of interest—QoI—y and the involved parameters x1, . . . , xD ≡ x, mathematically,
y = y(x) because it offers a practical and useful way for optimizing the product by choosing the most
adequate parameters xopt.

There are many techniques for constructing such a functional relation, currently known as
regression, some of them sketched below, and detailed in Appendix A where several valuable references
are given.

2.1. From Linear to Nonlinear Regression

The simplest choice consists in the linear relationship

y = β0 + β1x1 + · · ·+ βDxD, (1)

that if D + 1 data are available that is D + 1 couples {ys, xs}, s = 1, . . . , D + 1, then the previous
equation can be written in the matrix form

y1

y2
...

yD+1

 =


1 x1,1 x2,1 · · · xD,1

1 x1,2 x2,2 · · · xD,2
...

...
...

. . .
...

1 x1,D+1 x2,D+1 · · · xD,D+1




β0

β1
...

βD

 , (2)



where xi,s denotes the value of parameter xi at measurement s, with i = 1, . . . , D and s = 1, . . . , D + 1.
The previous linear system can be expressed in a more compact matrix form as

y = Xβ. (3)

Thus, the regression coefficients β0, . . . , βD are computed by simple inversion of Equation (3)

β = X−1y, (4)

from which the original regression form (1) can be rewritten as

y = β0 + WTx, (5)

where WT = (β1 · · · βD).
When the number of measurements P becomes larger than the number of unknowns β0, · · · , βD,

i.e., P > D + 1, the problem can be solved in a least-squares sense.
However, sometimes linear regressions become too poor for describing nonlinear solutions and

in that case one is tempted to extended the regression (1) by increasing the polynomial degree. Thus,
the quadratic counterpart of Equation (1) reads

y = β0 +
D

∑
i=1

D

∑
j≥i

βijxixj, (6)

where the number of unknown coefficients (β0 & βij, ∀i, j) is (D2 − D)/2 that roughly scales with D2.
When considering third degree approximations, the number of unknown coefficients scales with D3

and so on.
Thus, higher degree approximations are limited to cases involving few parameters,

and multi-parametric cases must use low degree approximations because usually the available data
are limited due to the cost of experiences and time.

The so-called sparse-PGD [7] tries to encompass both wishes in multi-parametric settings: higher
degree and few data. For that purpose, the regression reads

y =
N

∑
i=1

D

∏
j=1

Fj
i (xj), (7)

where the different single-valued functions Fj
i (xj) are a priori unknown and are determined

sequentially using an alternate directions fixed point algorithm. As at each step one looks for a single
single-valued function, higher degree can be envisaged for expressing it into a richer (higher degree)
approximation basis, while keeping reduced the number of available data-points (measurements).

2.2. Code2Vect

This technique deeply revisited in the Appendix A proposes mapping points xs, s = 1, . . . , P,
into another space ξs, such that the distance between any pair of data-points ξi and ξ j scales with the
difference of their respective outputs, that is, on |yi − yj|.

Thus, using this condition for all the data-point pairs, the mapping W is obtained, enabling for
any other input array x compute its image ξ = Wx. If ξ is very close to ξs, one can expect that its
output y becomes very close to ys, i.e., y ≈ ys. In the most general case, an interpolation of the output
is envisaged.



2.3. iDMD, Support Vector Regression, and Neural Networks

Inspired by dynamic model decomposition—DMD—[8,9] one could look for W minimizing the
functional F (W) [10]

F (W) =
P

∑
s=1

(
ys −WTxs

)2
, (8)

whose minimization results in the calculation of vector W that at its turn allows defining the regression
y = WTx. Appendix A and the references therein propose alternative formulations.

Neural Networks—NN—perform the same minimization and introduce specific treatments
of the nonlinearities while addressing the multi-output by using a different number of hidden
neuron layers [21].

Finally, Support Vector Regression—SVR—share some ideas with the so-called Support Vector
Machine—SVM [22], the last widely used for supervised classification. In SVR, the regression reads

y = β0 + WTx, (9)

and the flatness in enforced by minimizing the functional G(W)

G(W) =
1
2

WTW, (10)

while enforcing as constraints a regularized form of

|ys − β0 −WTxs| ≤ ε, s = 1, . . . , P. (11)

3. Experiments

The purpose of this project is the dispersion of a thermosetting (TS) polymer in a polyolefin matrix
using reactive extrusion by in situ polymerisation of the thermoset (TS) phase from an expoxide resin
and amine crosslinker. Here, Polypropylene (PP) has been chosen as the polyolefin matrix. A grafted
PP maleic anhydride (PP-g-MA) has been used to ensure a good compatibility between the PP and the
thermoset phases.

These studies were carried out as part of a project with TOTAL on the basis of a HUTCHINSON
patent [23]. This patent describes the process for preparing a reinforced and reactive thermoplastic
phase by dispersing an immiscible reactive reinforcing agent (e.g., an epoxy resin as precursor on the
thermoset dispersed phase). This process is characterized by a high shear rate in the extruder combined
with the in-situ grafting, branching, and/or crosslinking of the dispersed phase. These in situ reactions
permit the crosslinking of the reinforcing agent as well as the compatibility of the blend with or without
compatibilizer or crosslinker. The result of this process is a compound with a homogeneous reinforced
phase with thin dispersion (<5 µm) leading to an improvement of the mechanical properties of the
thermoplastic polymer. The experiments carried out in the framework of the present project are mainly
based on some experiments described in the patent. However, new complementary experiments have
been carried out to complete the study.

3.1. Materials

The main Polypropylene used as the matrix is the homopolymer polypropylene PPH3060 from
TOTAL. Two other polypropylenes have been used to study the influence of the viscosity, and several
impact copolymer polypropylenes have also been tested in order to combine a good impact resistance
with the reinforcement brought by the thermoset phase. A PP-g-MA (PO1020 from Exxon) with around
1 wt% of maleic anhydride has been used as a compatibilizer between the polypropylene matrix and
the thermoset phase. All the polypropylenes used are listed in Table 1 with their main characteristics.



Table 1. Nature, supplier, and melt flow index –MFI– (216 kg/230 ◦C/10 min) of PP polymers.

Name Nature Supplier MFI (g)

PPH3060 Polypropylene homopolymer TOTAL 1.8

PPH7060 Polypropylene homopolymer TOTAL 12

PPH10060 Polypropylene homopolymer TOTAL 35

PPC14642 Impact Copolymer Polypropylene TOTAL 130

PPC10641 Impact Copolymer Polypropylene TOTAL 44

PPC7810 Impact Copolymer Polypropylene TOTAL 15

PPC7810C Impact Copolymer Polypropylene TOTAL 15

Exxelor PO1020 Polypropylene grafted 1 wt% of maleic anhydride Exxon Mobil 430

Concerning the thermoset phase, three systems have been studied. As a common point, these three
systems are based on epoxy resins that are DGEBA derivates with two epoxide groups, two different
resins (DER 667 and DER 671 from DOW Chemicals have been used. The first two systems, named R1
and R2 here, are both constituted of an epoxy resin mixed with an amine at the stoichiometry. The first
uses the DER 667 with a triamine (Jeffamine T403 from Huntsman) that is sterically hindered, whereas
the second one uses the DER 671 with a cyclic diamine (Norbonanediamine from TCI Chemicals.
Melamine has also been tested in one of the formulations. The third system, named R5 here, mixes the
epoxy resin DER 671 with a phenolic hardener (DEH 84 from DOW Chemicals) that is a blend of three
molecules: 70 wt% of an epoxy resin, a diol, and less than 1 wt% of a phenolic amine. These systems
have been chosen in order to see the influence of the structure, molar mass, and chemical nature on
the in-situ generation of the thermoset phase within our polyolefin matrix. Table 2 summarizes the
systems studied.

Table 2. Composition at the stoichiometry of the systems studied.

Epoxy Amine/Hardener Abbreviation

DER 667 Jeffamine T403 R1

DER 671 DEH 84 R2

DER 671 Norbonane diamine R5

The kinetics of these chemical systems have been studied from the variation of the complex
shear modulus from a time sweep experiment with an ARES-G2 Rheometer (TA Instruments).
The experiments have been performed for temperatures from 115 ◦C to 165 ◦C using a 25 mm
plate-plate geometry, with a 1 mm gap, at the frequency ω = 10 rad/s and a constant strain of 1%.
The kinetics have been performed on a stoichiometric premix of the reactants. The gel times of the
systems have thus been identified as the crossover point between the loss and storage modulus.
Note that the reaction is too fast to be performed at temperatures beyond T = 165 ◦C. Consequently,
an extrapolation according to an Arrhenius law allowed us to determine the gel time of the systems
at T = 200 ◦C (Barrel temperature of the extruder). The results give a gel time lower than 10 s for the
three systems (tgel(R1) = 4.5 s, tgel(R2) = 10 s, and tgel(R5) < 1 s), so we made the hypothesis that the
reaction time is much lower than 1 min and thus that the reaction is totally completed at the die exit of
the extruder. Moreover, a Dynamic Mechanical Analysis (DMA) showed that the main mechanical
relaxation Tα associated with the Tg of the thermoset phase is close to 80 ◦C, which is the Tg observed
for TS bulk systems.

The influence of the addition of silica on the final properties has been studied with two different
silicas (Aerosil R974 and Aerosil 200).



3.2. Methods

3.2.1. Extrusion Processing

The formulations have been fulfilled in one single step with a co-rotating twin screw extruder
(Leistritz ZSE18, L/D = 60, D = 18 mm), with the screw profile described in Figure 1.

Figure 1. Diagram of the screw profile in the study.

Two different temperatures profiles have been used, one at 230 ◦C and the other one at 200 ◦C,
both with lower temperatures for the first blocs to minimize clogging effects at the inlet. These temperature
profiles are described in Figure 2.

Figure 2. Diagram of the temperature profile in the study.

Several screw rotation speeds and flow-rates have been used to study the influence of the process
on the final materials (N = 300, 600, 450, 800 rpm; ẇ = 3, 5, 6, 10 kg/h).

The solid materials were mixed and introduced at the entrance by a hopper for the pellets and
with a powder feeder for the micronized powders. As for the liquid reagents, they were injected over
the third bloc with an HPLC pump. The formulations are cooled by air at the exit of the extruder and
then pelleted.

3.2.2. Characterization

Tensile-test pieces (5A) and impact-test pieces have been injected with a Babyplast injection
press at 200 ◦C and 100 bar. Young modulus has been determined by a tensile test with a speed of
1 mm/min and Stress at yield, Elongation at break, and Stress at break have been measured with a
tensile speed of 50 mm/min. Impact strength has been measured by Charpy tests on notched samples
at room temperature.

4. Data-Driven Modeling: Comparing Different Machine Learning Techniques

As previously mentioned, a model that links the material and processing parameters with the
processed material properties is of crucial interest. By doing that, two major opportunities could be
envisaged: the first one concerns the possibility of inferring the processed material properties for



any choice of manufacturing parameters; (second), for given target properties, one could infer the
processing parameters enabling them.

In this particular case, process parameters are grouped in the six-entrees array x:

x =



Rotation Speed [rpm]

Exit Flow Rate [kg/h]
Temperature [◦C]

TS dispersed Phase [%]

PP− g−MA/TS Ratio [−]
Ratio TS [−]


(12)

whereas the processed material properties are grouped in the five-entrees array y, containing the
Young modulus, the yield stress, the stress at break, the strain at break, and the impact strength,

y =


E [MPa]
σy [MPa]
σb [MPa]

εb [−]
Reamb [

kJ
m2 ]

 . (13)

As previously discussed, our main aim is extracting (discovering) the regression relating inputs
(material and processing parameters) x with the outputs (processed material properties) y, the
regression that can be written in the form

yi = yi(x), (14)

where yi() represents the linear or nonlinear regression associated with the i-output, or when
proceeding in a compact form by creating the multi-valued regression relating the whole input
and output data-pairs, as

y = y(x). (15)

The intrinsic material and processing complexity justify the nonexistence of valuable and reliable
models based on physics, able to predict the material evolution and the process induced properties.
For this reason, in the present work, the data-driven route is retained, from the use of regression
techniques, as the ones previously summarized.

The available data come from experiments conducted, described in the previous section
that consists of P pairs of arrays xs, and ys, s = 1, · · · , P, that is:

[xs, ys], s = 1, . . . , P, (16)

all them reported in Tables A1 and A2 included in the Appendix B (for the sake of completeness and
for allowing researchers to test alternative regression procedures).

Table A1 groups the set of input parameters involved in the regression techniques. The hyper
parameter MaskIn is a boolean mask indicating if the data are included in the training (MaskIn= 1) or it
is excluded from the training to serve for quantifying the regressions performance (MaskIn= 0). On the
other hand, Table A2 groups the responses, experimental measures, for each processing condition.

As indicated in the introduction section, one of the objectives of the present paper is analyzing
if different machine learning techniques perform similarly, or their performances are significantly
different. For this purpose, this section aims at comparing the techniques introduced in Section 2,
whereas the next section will focus on the use of one of them.

In order to compare the performances of the different techniques, an error was introduced serving
to compare the regressions prediction. In particular, we consider the most standard error, the Root



Mean Squared Error (RMSE). When applied to the different regression results, it offers a first indication
on the prediction performances. Table 3 reports the errors associated with each regression when
evaluating the output of interest that is the array y for a given input x, for all the data reported
in Tables A1 and A2. Because the different outputs (the components of array y) present significant
differences in their typical magnitudes, Table 4 reports the relative errors, computed from the ratios
between the predicted and measured data difference to the measured data.

Table 3. RMSE error for the different regression techniques.

RMSE ERROR (%) E (MPa) σyield (MPa) σbreak (MPa) εbreak Reamb (kJ/m)

NN 369.81 7.50 6.92 119.16 2.44

C2V 289.22 5.91 5.81 126.83 1.89

SPGD 229.69 5.34 4.53 127.36 2.05

SVM 229.69 5.34 4.53 127.36 2.05

D. TREE 268.61 5.39 5.53 111.86 2.21

iDMD 252.72 5.41 5.53 114.83 1.89

Table 4. Relative error for different regression techniques.

REL ERROR (%) E (MPa) σyield (MPa) σbreak (MPa) εbreak Reamb (kJ/m)

NN 23.43 24.05 34.96 100.22 43.38

C2V 15.06 16.41 22.22 105.54 37.05

SPGD 18.32 18.97 29.38 106.67 33.73

SVM 14.55 17.12 22.90 107.12 36.58

D. TREE 17.02 17.30 27.96 94.08 39.38

iDMD 16.01 17.35 27.96 96.58 33.70

Sparse PGD—sPGD—employed second degree Chebyshev polynomials and performed a
regression for each of the quantities of interest according to Equation (14). The use of low degree
polynomials avoided overfitting, being a compromise for ensuring a reasonable predictability for data
inside and outside the training data-set. From a computational point of view, 20 enrichment (N in
Equation (A16)) were needed for defining the finite sum involved in the separated representation that
constitutes the regression of each output of interest yi.

Code2Vect addressed the low-data limit constraint by imposing a linear mapping between
the representation (data) and target (metric) spaces, avoiding spurious oscillations when making
predictions on the data outside the training set.

Considering the iDMD because of the reduced amount of available data, the simplest option
consisting of a unique matrix relating the input–output data pairs in the training set (linear model)
was considered, i.e., with respect to Equation (15), it was assumed F(x)) = Fx, and matrix F ensuring
the linear mapping was obtained by following the rationale described in Section 2. The computed
regression performs very well despite the fact of assuming a linear behavior.

The quite standard Neural Network we considered (among a very large variety of possible
choices) presents a severe overfitting phenomenon in the low data-limit addressed here. This limitation
is not intrinsic to NN, and could be alleviated by considering richer architectures and better optimizers,
parameters, out of the scope of the present study.

The main conclusion of this section is the fact that similar results are obtained independently of
the considered technique that seems quite good now from the point of view of engineering. Even if
the errors seem quite high, it is important to note that: (i) the highest errors concern the variables
exhibiting the largest dispersion in the measurements; (ii) the prediction errors are of the same order



as that of the dispersion amplitudes; and (iii) we only considered 35 data-points from the 59 available
for the training (regression construction) while the reported errors were calculated by using the whole
available data (the 59 data-points). The next section proves that the prediction quality increases with
the increase of the amount of points involved in the regression construction (training).

5. Data-Driven Process Modeling

In view of the reported results, it can be stressed that all the analyzed techniques show similar
performances and work reasonably well in the low-data limit (where only 60% out of 59 data points
composed the training data-set were used in the regressions).

As it can be noticed, some quantities of interest such as the Young’s modulus and the stress
at break are quite well predicted when compared with the others on which predictions were less
performant. There is a strong correlation between this predictability capability and the experimental
dispersion noticed when measuring these other quantities, like the strain at break. That dispersion
represents without any doubt a limit in the predictability that must be addressed within a probabilistic
framework. All the mechanical tests were performed on five samples from the same experiment
process on the extruder. The final value is the average of these five tests. The confidence interval is
estimated: 10% for the Young modulus and Yield stress, 20% on elongation and stress at break.

Extracting a model of a complex process could serve for real-time control purposes, but also, as it
is the case in the present work, for understanding the main tendencies of each quantity of interest with
respect to each process or material parameter (the last constituting the regression inputs), enabling
process and material optimization.

In order to perform that sensibility analysis, we consider a given quantity of interest and evaluate
its evolution with respect to each of the input parameters. When considering the dependence with
respect to a particular input parameter, all the others are fixed to their mean values, even if any other
choice is possible. Figure 3 shows the evolution of σb with respect to the six input parameters, using the
lowest order sPGD modes to extract the main tendencies.

From these AI-based metamodels, one should be able to identify the process conditions and the
concentration of the TS phase in order to enhance a certain mechanical property. Thus, in order to
increase the stress at break, increasing the content of thermoset seems a good option, with all the other
properties (Young modulus, stress at yield, strain at break and impact strength being almost insensible
to that parameter). A more detailed analysis, involving multi-objective optimization (making use of
the Pareto front) and its experimental validation, constitutes a work in progress, out of the scope of the
present work.

To further analyze the accuracy of the methodology and the convergence behavior, in what
follows, we consider one of the regression techniques previously described and employed, the sPGD,
and perform a convergence analysis, by evaluating the evolution of the error with respect to the size of
the training data-set.

The training-set was progressively enriched, starting from 30 data points, and then considering 35,
41, 47, and finally 53 (that almost correspond to 50%, 60%, 70%, 80%, and 90% of the available data-set).
The error was calculated again by considering both the training and test data-sets. Table 5 reports the
results on the elastic modulus prediction, and clearly proves, as expected, that the prediction accuracy
increases with the size of the training-set, evolving from around 15% to finish slightly below 10%.

It is important to note that one could decrease even more the error when predicting the training-set,
but overfitting issues will occur and the error will increase tremendously out of the training set
compromising robustness. The errors here reported are a good compromise between accuracy in and
out of the training-set.



Figure 3. Evolution of the stress at break with: (top-left) Exit flow rate; (top-right) PP-g-MA/TS ratio;
(middle-left) Ratio TS; (middle-right) Rotation speed; (bottom-left) Temperature; and (bottom-right)
TS dispersed.

Table 5. Mean error for different numbers of points in the training-set.

Training-Set Mean Error (%)

30 15.4

35 12.0

41 10.4

47 10.1

53 9.9



In order to facilitate the solution reproducibility, in what follows, we give the explicit form of the
sPGD regression. As previously discussed, the sPGD makes use of a separated representation of the
parametric solution, whose expression reads for a generic quantity of interest u(x)

u(x) =
N

∑
i=1

D

∏
j=1

Fj
i (xj). (17)

More explicitly, each univariate funcion Fj
i (xj) is approximated using an approximation basis,

u(x) =
N

∑
i=1

D

∏
j=1

Q

∑
k=1

T j
k(xj)α

j
ki. (18)

When approximating the elastic modulus, whose results were reported in Table 5, we considered
six parameters, i.e., D = 6, a polynomial Chebyshev basis consisting of the functions T j

k(xj) (needing
for a pre-mapping of the parameter intervals into the reference one [−1, 1] where the Chebyshev
polynomials are defined). The number of modes (terms involved by the finite sum separated
representation) and number of interpolation functions per dimension were set to N = 10 and Q = 3.
The coefficients related to Equation (18) when applied to the elastic modulus approximation are
reported in Appendix C.

An important limitation, inherent to machine learning strategies, is the fact that most likely other
factors instead of the ones considered as inputs could be determinant for expressing the selected
outputs. This point constitutes a work in progress.

6. Conclusions

We showed in this paper that different machine learning techniques are relevant in the low-data
limit, for constructing the model that links material properties and process parameters in reactive
polymer processing. Actually, these techniques are undeniably effective in complex processes such as
reactive extrusion. More precisely, this work was based on the in situ synthesis of a thermoset phase
during its mixing/dispersion with a thermoplastic polymer phase, which is certainly one of the most
complex cases in the processing of polymers.

We proved that a variety of procedures can be used for performing the data-driven modeling,
whose accuracy increases with the size of the training-set. Then, the constructed regression can be
used for predicting the different quantities of interest, for evaluating their sensitivity to the parameters,
crucial for offline process optimization, and also for real-time process monitoring and control.
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Appendix A. Machine Learning Techniques

This appendix revisits, with some technical detail, the different machine learning techniques
employed in the analyzes addressed in the present work.



Appendix A.1. Support Vector Regression

Finally, Support Vector Regression—SVR—shares some ideas of the so-called Support Vector
Machine—SVM—widely used in supervised classification. In SVR, the regression reads

y = β0 + WTx, (A1)

and the flatness in enforced by minimizing the functional G(W)

G(W) =
1
2

WTW, (A2)

while enforcing as constraints a regularized form of

|ys − β0 −WTxs| ≤ ε, s = 1, . . . , P, (A3)

in particular

G(W) =
1
2

WTW + C
P

∑
s=1

ξsξ∗s , (A4)

with ξs ≥ 0 and ξ∗s ≥ 0, and
ys − (WTxs + β0) ≤ ε + ξs, (A5)

and
(WTxs + β0)− ys ≤ ε + ξ∗s , (A6)

with many other more sophisticated alternatives to extend to the nonlinear case.

Appendix A.2. Code-to-Vector—Code2Vect

Code2Vect maps data, eventually heterogenous, discrete, categorial, etc. into a vector space
equipped of a Euclidean metric allowing computing distances, and in which points with similar output
y remain close one to one another as sketched in Figure A1.

Figure A1. Input space (left) and target vector space (right) [6].

We assume that points in the origin space (space of representation) consist of P arrays composed
on D entries, noted by xi. Their images in the vector space are noted by ξi ∈ Rd, with d � D.
The mapping is described by the d× D matrix W,

ξ = Wx, (A7)



where both the components of W and the images ξi ∈ Rd, i = 1, · · · , P, must be calculated. Each point
ξi keeps the label (value of the output of interest) associated with its origin point xi, denoted by yi.

We would like to place points ξi, such that the Euclidian distance with each other point ξ j scales
with their output difference, i.e.,

(W(xi − xj)) · (W(xi − xj)) = ‖ξi − ξ j‖2 = |yi − yj|, (A8)

where the coordinates of one of the points can be arbitrarily chosen. Thus, there are P2

2 − P relations to
determine the d× D + P× d unknowns.

Linear mappings are limited and do not allow with proceeding in nonlinear settings. Thus,
a better choice consists of the nonlinear mapping W(x) [6].

Appendix A.3. Incremental DMD

We reformulate the identification problem in a general multipurpose matrix form

Wx = y, (A9)

where x and y represent the input and output vectors, involving variables of different nature, both
them accessible from measurements. In what follows, both are assumed D-component arrays.

If we assume both evolving in low-dimensional sub-spaces of dimension d, with d� D, the rank
of K, the so-called model, is expected reducing to d. The construction of such reduced model was
reported in [10], and from the two procedures that were proposed, in what follows, we summarize one
of them, the so-called Progressive Greedy Construction.

In this case, we proceed progressively. We consider the first available datum, the pair (x1, y1).
Thus, the first, one-rank, reduced model reads

W1 =
y1yT

1
yT

1 x1
, (A10)

ensuring W1x1 = y1.
Suppose now that a second datum arrives (x2, y2), from which we can also compute its associated

rank-one approximation, and so on, for any new datum (xi, yi):

Wi =
yiyT

i
yT

i xi
, i = 1, · · · , P. (A11)

For any other x, the model could be interpolated from the just defined rank-one models, Wi,
i = 1, ..., P, according to

W|x ≈
P

∑
i=1

WiIi(x), (A12)

with Ii(x) the interpolation functions operating in the space of the data x, functions that in general
decrease with the distance between x and xi (e.g., polynomials, radial basis, ... ) able to proceed in
multidimensional settings.

Appendix A.4. From Polynomial Regression to Sparse PGD-Based Regression

In the regression setting, one could consider a polynomial dependence of the QoI, y, on the
parameters x1, · · · , xD. The simplest choice, linear regression, reads

y(x) = β0 + β1x1 + · · ·+ βDxD, (A13)



where the D + 1 coefficients βk can be computed from the available data. If 1 + D = P data are
available, yj, j = 1, . . . , 1 + D, coefficients βk can be calculated.

Linear regression requires the same amount of data as the number of involved parameters;
however, it is usually unable to address nonlinearities.

Nonlinear regressions can be envisaged when the number of parameters remains reduced,
due to the fact that the number of terms roughly scales with D to the power of the considered
approximation degree.

In this section, we propose a technique able to ensure rich approximations while keeping
the sampling richness quite reduced, the so-called multi-local sparse nonlinear PGD-based
regression—sPGD. The last reads∫

Ω
w(x) (y(x)− y) dx = 0, ∀w(x) (A14)

where Ω is the domain in the parametric space in which the approximation is searched, i.e., x ∈ Ω,
and w(x) represents the test function whose arbitrariness serves to enforce that the regression y(x)
approximates the available data y, and

y =
P

∑
j=1

yδ(xj), (A15)

with δ the Dirac mass, to express that data only available at locations xj in the parametric space.
Following the Proper Generalized Decomposition (PGD) rationale, the next step is to express the

approximated function y(x) in the separated form

y(x) ≈
N

∑
i=1

F1
i (x1)F2

i (x2) · . . . , (A16)

constructed by using the standard rank-one update [7] that leads to the calculation of the different
functions Fj

i (xj) involved in the separated form (A16).

Appendix A.5. A Simple Neural Network

Deep-learning is mostly based on the use of neural networks, networks composed of components
that emulate the neuron functioning that from some incoming data generates an output that, within
more complex and large networks, can become the input of other neurons in other layer.

We consider the schema in Figure A2 that illustrates a neuron receiving two input data x1 and x2

to produce the output Y. The simplest functioning consists of collecting both data, multiplying each by
a weight, W1 and W2 and generate the output by adding both contributions according to

y = W1x1 + W2x2, (A17)

that in the more general case can be written as

y =
D

∑
i=1

Wixi (A18)

or
y = WTx. (A19)



The main issue is precisely the determination of vector W. If an input–output couple is available
(x1, y1), with the input normalized, i.e., ‖x1‖ = 1, then the best choice for the searched vector consists
of W = y1x1 that ensures recovering the known output, i.e.,

WTx1 =
(

y1xT
1

)
x1 = y1. (A20)

Figure A2. Sketch of a simple neuron.

Imagine now that, instead of a single input–output couple, P couples are available
(x1, y1), · · · , (xP, yP), the learning can be expressed by minimizing the functional

ε(W) =
P

∑
s=1

(
ys −WTxs

)2
. (A21)

The nonlinear case employs a nonlinear function of the predictor for the neuron activation.
When the multicomponent inputs produces multicomponent outputs, W becomes a matrix instead the
vector previously considered. However, the procedures for computing that matrix from the knowledge
of P couples (xs, ys), s = 1, . . . , P remain almost the same as the ones previously discussed. In some
circumstances, instead of considering a single layer of neurons, multiple layers perform better.

Appendix A.6. Decision Trees

Decision tree learning is a technique that, given a data set D = {((xi, yi), i = 1, 2, . . . , P}, where xi
are the so-called features and yi the respective target variable to characterize, predicts an outcome, y for
a new vector x that can be a class to which the set x belongs (in that case, we speak about classification
trees), or a real number (in which case, we speak about regression trees).

In a regression tree, the terminal node j is assumed to have a constant value y(j). The learning
procedure consists of the top-down establishment of the variables that best partition the set according
to a given criterion. One of the most popular criteria is the so-called Gini impurity criterion. For a set
of M classes m = 1, 2, . . . , M, and pm the fraction of elements in D labeled within class m, the Gini
impurity index is defined as

I(p) =
M

∑
m=1

pm ∑
n 6=m

pn



and measures the probability of an element to be chosen in its correct set times the probability of a
wrong classification. In general, no matter the particular metrics employed, the goal is to classify the
set so as to obtain as homogeneous as possible classification at terminal nodes.

Appendix B. Experimental Data

Table A1. Input parameters and training mask.

Training Screw Rotation
Speed (rpm)

Exit Flow-
Rate (kg/h) Temperature (◦C) TS Dispersed

Phase % PP-g-MA/TS Ratio Ratio TS

MaskIn INPUT INPUT INPUT INPUT INPUT INPUT

1 800 3 200 0 0 0.00

1 800 3 200 0 0 0.00

0 300 5 230 0 0 0.00

0 300 5 230 0 0 0.00

1 300 5 230 0 0 0.00

0 300 5 230 0 0 0.00

1 300 5 230 0 0 0.00

1 300 5 230 0 0 0.00

1 300 5 230 2 24.00 1.00

0 300 5 230 6 7.67 1.00

0 300 5 230 27 0.48 0.50

0 300 5 230 6 3.17 1.00

1 300 5 230 12 1.42 0.20

1 300 5 230 7 2.57 0.40

1 300 5 230 15 1.00 0.50

0 300 5 230 11 1.64 0.10

1 300 5 230 4 4.75 1.00

1 300 5 230 31 0.45 0.48

0 300 5 230 4 4.75 1.00

0 300 5 230 31 0.45 0.48

1 300 5 230 4 4.75 1.00

1 300 5 230 31 0.45 0.48

0 300 5 230 4 4.75 1.00

0 300 5 230 31 0.45 0.48

1 300 5 230 4 4.75 1.00

0 600 5 230 30 0.47 0.50

0 450 5 230 4 4.75 1.00

1 300 5 230 19 0.84 0.06

1 450 5 230 19 0.84 0.06

1 600 5 230 19 0.84 0.06

1 300 5 230 18 0.89 0.06

1 300 5 230 18 0.83 0.06

1 300 5 230 18 0 0.06



Table A1. Cont.

Training Screw Rotation
Speed (rpm)

Exit Flow-
Rate (kg/h) Temperature (◦C) TS Dispersed

Phase % PP-g-MA/TS Ratio Ratio TS

MaskIn INPUT INPUT INPUT INPUT INPUT INPUT

1 300 5 230 18 0.89 0.06

0 300 5 230 18 0.83 0.06

1 300 5 230 30 0.43 0.50

1 300 5 230 30 0 0.50

1 300 5 230 30 0.43 0.50

0 800 3 200 26 0.77 1.89

0 800 3 200 26 0.77 1.89

1 800 3 200 26 0.77 1.89

1 800 3 200 12 1.67 2.00

1 800 3 200 12 0.75 2.00

0 300 3 200 10 1.50 0.11

1 300 3 200 10 0.80 0.11

0 800 3 200 10 1.50 0.11

1 800 3 200 26 0.77 1.89

1 800 3 200 12 1.67 2.00

1 800 6 200 5.2 0.96 1.89

1 800 4.5 200 5.2 0.96 1.89

0 800 6 200 5.2 0.96 1.89

1 800 6 200 5 1.00 0.08

0 800 6 200 5 1.00 0.08

1 800 6 200 5 1.00 0.08

1 800 6 200 5.2 0.96 1.89

0 800 6 200 5.2 0.96 1.89

0 800 10 200 3.1 0.97 1.82

0 800 6 200 5 1.00 0.08

0 800 6 200 5 1.00 0.08



Table A2. Output quantities of interest.

Training E (MPa) Yield (MPa) σbreak (MPa) εbreak Reamb (kJ/m)
MaskIn OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT

1 1638 34 21 58 5

1 1505 37 26 164 5

0 1062 30 10 86 5.3

0 1357 21 21 10 4.9

1 1379 22 21 10 5.0

0 1281 20 13 69 7.6

1 1549 35 21 477 1.9

1 874 19 15 504 13.1

1 1345 29 14 106 5.6

0 1347 29 16 125 6.0

0 1673 30 21 118 7.4

0 1480 25 7 150 5.2

1 1657 28 12 201 6.1

1 1551 29 13 156 6.7

1 1723 30 12 155 5.8

0 1704 28 11 137 5.4

1 1365 21 19 22 4.3

1 1736 27 27 10 5.1

0 1284 22 15 136 5.6

0 1682 26 28 43 6.3

1 1416 34 24 606 2.4

1 1843 39 37 21 3.6

0 921 21 18 483 9.7

0 1371 26 24 49 12

1 1546 37 15 114 4.9

0 1753 39 29 63 5

0 1606 36 19 127 4.9

1 1655 38 16 105 3.8

1 1730 38 19 84 3.9

1 1802 38 21 54 3.3

1 1311 32 20 125 4.5

1 1181 30 18 180 5.8

1 1194 31 19 256 4.1

1 1073 24 14 155 3.7

0 1134 25 12 191 4.5



Table A2. Cont.

Training E (MPa) Yield (MPa) σbreak (MPa) εbreak Reamb (kJ/m)
MaskIn OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT

1 931 21 19 127 6.8

1 1180 25 16 63 4.4

1 1657 28 12 146 6.1

0 1795 40 37 10 5

0 2077 41 39 7 4.4

1 2273 41 39 10 3.4

1 1976 37 18 47 6.7

1 2021 36 23 44 6

0 1785 35 23 51 10.4

1 1939 37 26 38 10.1

0 1757 35 23 77 9.4

1 2033 38 23 44 5

1 2021 36 23 44 5

1 1943 37 17 46 5

1 2035 36 15 88 5

0 1897 36 26 88 5

1 1754 34 21 48 5

0 1807 35 17 49 5

1 1764 34 20 137 5

1 1067 20 17 215 5

0 2035 36 15 88 5

0 1825 37 16 51 5

0 1024 20 16 98 5

0 1807 35 17 49 5

Appendix C. Coefficients Involved in the Elastic Modulus Regression

Table A3. α1
ki coefficients.

k\i 0 1 2 3 4 5 6 7 8 9 10

0 1590.2 117.7 1.0 −1.0 −1.0 0.7 0.9 0.4 0.2 0.4 −0.3

1 0.0 171.6 0.0 0.0 0.0 −0.7 0.1 −0.6 1.0 −0.7 0.8

2 0.0 −91.9 0.0 0.0 0.0 −0.2 −0.5 0.7 0.1 0.6 −0.5

Table A4. α2
ki coefficients.

k\i 0 1 2 3 4 5 6 7 8 9 10

0 1.0 1.0 1.0 0.8 1.0 0.1 0.2 −0.6 0.5 0.0 −0.5

1 0.0 0.0 0.0 0.5 0.0 −0.7 −0.7 −0.1 −0.6 −1.0 0.0

2 0.0 0.0 0.0 0.3 0.0 0.7 0.7 0.8 0.6 0.1 −0.8



Table A5. α3
ki coefficients.

k\i 0 1 2 3 4 5 6 7 8 9 10

0 1.0 1.0 1.0 0.4 0.7 0.6 0.7 1.0 1.0 0.0 1.0

1 0.0 0.0 0.0 0.9 0.8 0.8 0.7 0.0 0.0 1.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table A6. α4
ki coefficients.

k\i 0 1 2 3 4 5 6 7 8 9 10

0 1.0 1.0 −0.2 1.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0

1 0.0 0.0 0.5 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 −0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table A7. α5
ki coefficients.

k\i 0 1 2 3 4 5 6 7 8 9 10

0 1.0 1.0 1.0 1.0 −0.7 −748.1 802.3 −0.6 0.1 1.0 0.5

1 0.0 0.0 0.0 0.0 −0.2 592.3 −159.1 −0.3 0.5 0.0 0.8

2 0.0 0.0 0.0 0.0 0.7 884.7 −917.2 0.7 0.9 0.0 0.4

Table A8. α6
ki coefficients.

k\i 0 1 2 3 4 5 6 7 8 9 10

0 1.0 1.0 152.2 104.3 66.3 1.0 1.0 235.1 −15.6 6.2 3958.4

1 0.0 0.0 57.1 51.5 −389.9 0.0 0.0 384.5 93.3 −10.4 9578.5

2 0.0 0.0 20.7 89.8 243.9 0.0 0.0 263.9 36.5 −11.5 4680.1
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