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A B S T R A C T

Motivated by the different uniaxial responses of two actual materials filled with either sifted glass beads or sifted 
glass grits, the influence of the fillers shape on the finite strain behavior of highly filled composites (>50%) is 
examined through micromechanical finite element simulations accounting for matrix/filler debonding with a 
cohesive-zone model. Three-dimensional matrix cells filled with 64 monosized spherical particles are compared 
to cells filled with the same number of monosized polyhedra. For this purpose, an original generation process was 
developed to obtain periodic cells with random dispersions of non-regular polyhedra. Finite element simulations 
of uniaxial tensile tests on the periodic cells allow studying the influence of the fillers shape on the macroscopic 
behavior and on the local damage at the matrix/filler interfaces. Actually, the presence of sharp edges and apexes 
for polyhedral particles seems to have a second order impact compared to the cohesive-zone parameters. The 
damage fields demonstrate the same trends for both particles shapes. The different behaviors observed on actual 
composites are rather due to different adhesion properties between fillers and matrix than to the shape of 
particles.   

1. Introduction

In an attempt to develop solid propellants delivering always more
power, new highly energetic fillers have been introduced in the soft 
constituent matrix material, with undesired poor consequences on the 
strength and toughness of the composite. These unsatisfactory me
chanical properties may be attributed to either the change of the matrix/ 
filler adhesion due to the different nature of the fillers or the more 
faceted shape of the new fillers since particle size and aspect ratios have 
been kept similar. The current contribution explores the impact of the 
presence of vertices, edges and faces at the surface of polyhedral parti
cles, on the mechanical stress-strain response of highly reinforced par
ticulate soft materials undergoing possible damage at the matrix/filler 
interfaces. The typical material of interest is a soft matrix filled with 
randomly dispersed quasi-rigid monosized inclusions reaching a volume 
fraction of 55%. For this purpose, a model soft rubber-like matrix was 
filled with either glass grits or glass beads and tested in uniaxial tension 
until failure to characterize the mechanical responses. 

Previously three-dimensional numerical representations and me
chanical simulations of such composites with interfacial damage dealt 

mostly with ductile matrices moderately filled with spherical fillers (see 
for instance Llorca and Segurado, 2004; Segurado and Llorca, 2005 
among others), and fewer studies account for more realistic polyhedral 
fillers (Williams et al., 2012; Weng et al., 2019). Numerical studies 
considering composites with an hyperelastic matrix for which, unlike 
ductile matrix, the softening is due to the damage at the matrix/filler 
only and a very large stiffness contrast exists between the constitutive 
phases, are mostly two-dimensional (Moraleda et al., 2009; Toulemonde 
et al., 2016; Zhang et al., 2018; Li et al., 2018) with little 
three-dimensional contributions (Gilormini et al., 2017), all considering 
spherical particles. The most common generation process for obtaining 
microstructures filled with irregular polyhedra is based on random 
sequential additions (Widom, 1966) of identical (B€ohm and Rasool, 
2016; Drach et al., 2016) or different (Lavergne et al., 2015; Sheng et al., 
2016) polyhedra. However, like for monosized spherical inclusions, the 
process is limited to volume fractions well bellow 55%. Other ap
proaches consisting in the division of space using Poisson planes or 
Voronoï tessellation followed by the shrinkage of the polyhedra faces in 
order to obtain the targeted volume fraction of particles are better suited 
for our application. Such a microstructure building process has been 
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used for the simulations of concrete (Carol et al., 2007; Caballero et al., 
2006), metal matrix composites (Fritzen and Boehlke, 2011), asphalt 
(Wimmer et al., 2016) or solid propellants (Nadot-Martin et al., 2011). 
Numerical simulations of the mechanical properties of such composites 
are usually based on periodic cells combined with periodic boundary 
conditions that allow reducing the size of the representative volume 
element (RVE) (Kanit et al., 2003) to a reasonable extent. Account for 
matrix debonding at matrix/filler interfaces, as it has been observed 
experimentally (Cornwell and Schapery, 1975; Oberth and Bruenner, 
1982; Gilormini et al., 2017) is then possible using finite element 
analysis (FEA) with cohesive-zone models (CZM) that may be imple
mented rather simply (Segurado et llorca 2005; Inglis et al., 2007; 
Gilormini et al., 2017). The objective here is to run such simulations 
with faceted particles and compare the computed macroscopic behavior 
and microscopic damage with those obtained for the same soft matrix 
reinforced by spherical particles. 

The paper is organized as follows. In the next section, the experi
mental evidences motivating the study are reported in terms of the 
microstructures and mechanical behaviors of model materials consisting 
of an acrylate soft matrix filled with different glass fillers. Section 3 
presents the numerical materials and simulation framework. Then, re
sults of the finite strain uniaxial tension simulations are reported dis
cussing the link between the local damage and the resulting macroscopic 
mechanical responses for both composites filled with spherical glass 
beads or polyhedral glass fillers. Concluding remarks close the paper. 

2. Microstructure and behavior of actual model composites

Model particulate reinforced materials have been elaborated in the
lab. A rubbery polymer matrix network has been highly filled with 200/ 
250 μm sifted glass beads or slivers. The matrix was synthesized by 
mixing 98% molar mass of methacrylate (MA) and 2% molar mass of 
polyethylene glycol dimethacrylate (PEGDMA) of molar weight 750 g/ 
mol, with photo-initiator 2,2-Dimethoxy-2-phenylacetophenone 
(DMPA). The products were used as received by Sigma-Aldrich. The 
fillers were first cleaned following Cras et al. (1999) recommendations 
and slowly added to the stirring mix. The pasty blends were poured in 
glass molds and exposed to UV light during 40 min for polymer cross
linking. Once removed from the molds, the composite plates were 
exposed to a temperature of 45�C during 15 min for annealing possible 
process residual stresses. The material microstructures recorded with 
microCT scans are displayed in Fig. 1. The fillers are of similar sizes and 
the glass slivers aspect ratios, while not being equal to 1, remain close to 
1. 

For mechanical testing, rectangular specimens of final dimensions 40 
� 10 � 3 mm3 were punched in the plates. For each sample, the glass 
bead volume fraction was estimated accurately with an AccuPycII 1340 
gas pycnometer. Three samples of both composites showing the targeted 
55% volume fraction of glass fillers were selected. The samples were 
glued (with Loctite Flexcomet PU 15) to aluminum jaws and uniaxial 
tensile tests were carried out at the low constant crosshead speed of 0.1 

mm/min on an Instron 5967 tensile machine. The strain was measured 
by video extensometry based on a Labview routine following two dots 
recorded by a 3 MPx camera equipped with a telecentric lens. The stress- 
strain responses of both composites are reported in Fig. 2a. Both mate
rials display linear responses followed by some softening, a sign of the 
occurrence of some debonding at the matrix/filler interfaces for the 
matrix exhibits a rather linear behavior (Fig. 2b). However, while the 
softened response seems to remain stable up to failure for the composite 
filled with glass grits, a significant softening occurs at approximately 8% 
strain with a downturn followed by some hardening before failure for 
the beads composite. Additionally, the composite filled with polyhedral 
inclusions displays significantly larger strength but also more dispersion 
in the mechanical response. In order to understand the similarities and 
differences between the material responses, finite element analyses are 
now carried on numerical materials that are presented in the next 
section. 

3. Numerical composites

3.1. Microstructure generation 

3.1.1. Spherical inclusions 
The complexity of generating isotropic materials when highly filled 

with monosized spheres lies in the difficulty to achieve high volume 
fractions while ensuring the random distribution of particles. Such mi
crostructures have been extensively studied. The generation process 
detailed in Francqueville et al. (2019) has been reproduced directly here 
and only the main steps are recalled. A Lubachevsky and Stillinger 
(1990) algorithm was used (Skoge et al., 2006). In accordance with the 
literature (Gusev, 1997), periodic microstructures with 64 identical 
spheres have been generated and selected based on geometrical prop
erties characterized thanks to the two-point correlation function and a 
nearest-neighbor distribution function. Note that during microstructure 
generations, the minimum distance between particles has not been 
restricted to avoid possible bias (Gusev, 2016). 

3.1.2. Polyhedral inclusions 
Microstructures defined by a matrix filled with randomly dispersed 

irregular polyhedra are obtained through a Voronoï tessellation, and the 
main steps of the generation process are illustrated in Fig. 3. 

First, a microstructure with monosized spherical inclusions is 
generated. The centers of the spheres provide with a random dispersion 
of seed points with nearly the same surrounding volumes. In order to 
ensure periodicity, the set of seed points is temporarily duplicated 26 
times around the original cell. Then the Delaunay tetrahedralization of 
the structure is computed and the vertices attached to each center are 
listed to compute the Voronoï diagram. This process leads to a complete 
filling of the volume. In order to reach the targeted volume fraction 
(55%) of fillers, a shrinking is applied to each polyhedron by shortening 
the segments linking its vertices to its seed point. At the end of this 
process, inspired by Fritzen and Boehlke (2009), such microstructures as 
shown in Fig. 4b are obtained. The volumes of irregular polyhedra 
present a dispersion of 10% around the mean volume and are mostly 
equiaxial with 14 faces on average. Hence, in order to ensure the exact 
same volume for every particle for a more rigorous comparison with 
microstructures filled with monosized spheres, the volume of each 
polyhedron was adjusted. Due to the shrinking process, and despite the 
irregular shape of the polyhedra, the distance between polyhedra is very 
regular and parallel planes are facing each other as it is visible in Fig. 3c. 
While this property is sometimes sought-after (Nadot-Martin et al., 
2011), it is contradictory with the microstructure of actual composites, 
as one may see in Fig. 1. Therefore, the generation process has been 
complemented by applying random rotations and translations to each 
polyhedron. A random permutation of polyhedra indexes is defined and 
motions are applied sequentially according to the following sequences. 
Firstly, the type of perturbation, translation or rotation is randomly 

Fig. 1. μCT scans of model composites made of a methacrylate matrix highly 
filled with sifted glass beads (a) or glass slivers (b). 



chosen. Secondly, in the case of a rotation, a random rotation based on 
Euler angles weighted by an amplitude factor and centered on the seed 
point is set and applied to each vertex of the polyhedron. In the case of a 
translation, a random displacement vector is defined and weighted by 
another amplitude factor and applied to each vertex and to the seed 
point of the polyhedron. Thirdly, the transformation is validated or 
rejected, based on a polyhedra non-interpenetration criterion using the 
Gilbert-Johnson-Keerthie algorithm (Gilbert et al., 1988). When the 
random permutation list has been fully swept, each amplitude factor is 
increased if less than 50% of the transformations have been rejected, and 
decreased otherwise. Such a process is looped hundreds of times or until 
the amplitude factors reach a negligible threshold. It has to be applied 
with care to avoid periodicity loss on the cell. The whole procedure was 
implemented with Matlab (2017a) and takes about 1 h for generating 
one 64-particle microstructure on a basic laptop (2.59 GHz Intel Core 
i7-6700HQ CPU with 16 Go RAM), including a pre-meshing step that 
will be explained in the next section. 

3.2. Framework of the numerical simulations 

3.2.1. Microstructure meshing 
A conformal mesh being required for finite element analyses, the free 

meshing software Netgen (Sch€oberl, 1997) is chosen for its efficiency to 
generate periodic meshes. It is also able to list the equations required by 
periodic boundary conditions in the format of the commercial finite 
element sofware Abaqus (2018) which is used here. In the case of 
spherical fillers, a local mesh refinement is implemented as visible in 
Fig. 4, in order to avoid excessively distorted elements in areas of 
near-to-touch spheres (Gusev, 2016). 

Microstructures filled with polyhedra do not display exceedingly 
distorted elements. However, meshing failures have been detected as 
soon as a polyhedron vertex is at a distance smaller than a threshold of 
10� 4 times a, from any vertex, edge, or a face of a polyhedron or cell, a 
being the cell size. Therefore, a pre-meshing step has been added at the 
end of the generation procedure. For each polyhedron, internal dis
tances (edge lengths) and the distances to all surrounding elements (cell 
faces, edges or corners, other polyhedron faces, edges or vertices) are 
estimated. If any internal length is smaller than the threshold, the cor
responding edge is discarded by introducing an extra tiny face, following 
Quey et al. (2011). If any distance to a surrounding element is smaller 
than the threshold, very small random translations are tested until a 
valid position is obtained. The changes introduced during the 
pre-meshing step have been implemented with the constraint of 
microstructure periodicity. Finally, meshed microstructures such as 
shown in Fig. 4 are obtained. 

3.2.2. Mechanical behavior 
The fillers are made of glass, whose behavior may be defined as 

linear elastic characterized by a Young modulus of 69 GPa and a Pois
son’s ratio of 0.25, which are common values for glass. In order to better 
describe the polymer rubbery matrix behavior, it was subjected to uni
axial tensile tests. The non-linear stress-strain response was well 

Fig. 2. (a) Uniaxial tensile responses recorded on three specimens for each model composite displayed in Fig. 1 and (b) the composite matrix behavior well 
reproduced by the hyperelastic Ogden model. 

Fig. 3. Process of generation of a microstructure filled with randomly dispersed non-regular polyhedra, (a) starting with a random dispersion of spheres, (b) which 
centers are used as seed points for Voronï tessellation. (c) Then, particles are shrunk to lower the volume fraction of particles from 100 to 55%. (d) Finally, random 
rotations and translations are applied to each polyhedron. 

Fig. 4. Finite element meshes for periodic cells with 64 monosized spheres or 
polyhedra filling 55% volume of the microstructures. 



reproduced by the Ogden strain energy density (Ogden, 1972) with a 
single set of parameters, μ ¼ 0:6 MPa and α ¼ 3:2(Fig. 2b). Finally, a 
reasonable bulk modulus value of 3 GPa was chosen. Note that, due to 
the very large ratio of the bulk modulus over the shear modulus of the 
matrix, quadratic 10-node hybrid tetrahedral elements were used in this 
material phase, whereas standard quadratic 10-node tetrahedral ele
ments were used in the glass particles. 

Damage at the matrix/filler interfaces has been introduced thanks to 
CZM elements characterized by a simplified version of the Tvergaard 
and Hutchinson law (Tvergaard and Hutchinson, 1993) that is conve
niently defined by three parameters only when normal and tangent 
interface behaviors are identical. The law is illustrated in Fig. 5, in the 
case of purely normal (or, equivalently, purely tangent) loading. Normal 
and shear cohesive stress constitutive equations write as, 
8
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with λm being the largest non-dimensional separation factor encoun
tered at the interface. The Macaulay brackets, 〈 �〉, allow distinguishing 
normal separation from normal compression. Such cohesive elements 
are available in Abaqus for linear elements only. Therefore, in order to 
preserve consistency with the quadratic solid elements used in the mesh 
to ensure good convergence, quadratic cohesive elements have been 
implemented by writing a User Element routine. 

The cohesive elements were inserted by duplicating all the facets at 
the surfaces of the fillers and by creating quadratic 12-node prismatic 
cohesive elements with null initial thicknesses. This duplication process 
takes into account the periodic equations for nodes located on the sides 
of the microstructure cell. Finally, dummy 6-node triangular elements 
were defined on the particles surfaces to allow the visualization of the 
damage state in the cohesive elements, which was passed on to the 
dummy elements via a UVARM user routine. To make the influence of 
the dummy elements negligible, their Young modulus was set to 10� 20 

MPa with a Poisson’s ratio of 0.25. 
Note that a viscous regularization was introduced to improve the 

computational convergence, adapting the method of Gao and Bower 
(2004) to the Tvergaard and Hutchinson law. The negligible impact of 
the viscous term on the computed mechanical response has been veri
fied, while its efficiency allowed to delay the computational divergence 
significantly. 

4. Results and discussion

4.1. Macroscopic stress-strain responses of numerical composites 

In order to validate the reproducibility of the obtained numerical 
results, some simulations were run with the same set of parameters for 
two different microstructures filled with polyhedra. Fig. 6 shows the 
numerical macroscopic responses. Firstly, the isotropy of one micro
structure is confirmed. Secondly, the macroscopic responses of two 
different microstructures are very similar. This will allow us to look at 
the response of one microstructure in one direction only. 

The macroscopic behaviors and local damages of microstructures 
filled with monosized spheres have been studied before (de Francque
ville et al., 2020). Therefore three sets of parameters, listed in Table 1, 
have been carefully selected for their displacements to failure δf 

consistent with the size of the particles, and critical strengths Tc driving 
to different microstructure failure scenarii. 

Simulations were run on both kinds of microstructures. Fig. 7 shows 
the macroscopic responses obtained for the three sets of CZM parameters 
that are also displayed. According to the CZM parameters, three types of 
behaviors are obtained but similar stress-strain responses are shown for 
both types of reinforcements. In case 1, the linear elastic response is 
followed by a steady softening. This behavior shows the same features as 
the actual composites filled with grits. In case 2, after the softening sets 
in, a downturn appears which is a feature that is witnessed on the actual 
composite filled with spheres (Fig. 2). Finally, in case 3, damage appears 
earlier, which is understandable due to a lower value of Tc. While the 
composite strength is low the softening is steady like in case 2. More 
importantly, according to the numerical results, the faceted particles do 
not seem to change significantly the macroscopic results of the com
posites, and the difference of behaviors witnessed in Fig. 2 for the actual 
materials is likely due to a change in the matrix/filler interface prop
erties rather than in the shape of the fillers. To better understand the 
similarities of the macroscopic behaviors, a close look is taken at the 
local damage undergone at the filler interfaces. 

4.2. Local damage initiation and evolution upon stretching 

The analysis of the local damage characterized by the matrix 
debonding at the filler/matrix interfaces provides with a local under
standing of the macroscopic behavior. Starting with case 1, at the 
beginning of the loading, when the material response is linear, no CZM 
element has reached the critical strength Tc, then the macroscopic 

Fig. 5. Cohesive elements traction-separation behavior for a purely normal (or 
purely tangent) displacement that may be characterized by three independent 
parameters among the set of five (K, Γ, Tc, δc, δf ). 

Fig. 6. Comparison between the stress-strain responses of one polyhedra 
microstructure submitted to uniaxial tension according to each Cartesian axis 
and another polyhedra microstructure. Symbols designate the computa
tional divergence. 



softening results from damage occurring on several elements where Tc 

has been reached. The low value of Tc favors the early development of 
damage evenly spread across the microstructure resulting in the low 
stress-strain response. At larger strain, complete matrix/filler separation 
appears on several elements across the microstructure as one can read in 
Fig. 8. In case 2, material macroscopic stress-strain response softens 
when damage occurs at the matrix/filler interface. Later, the downturn 
happens when several CZM elements, located in a plane perpendicular 

to the direction of applied tension, reach δf that is complete failure 
(Fig. 8). It is worth noting that once localization happens, it may be 
enhanced by the periodic boundary conditions. Therefore, results will 
not be discussed passed the localization appearance. In case 3, damage 
evolves slowly without reaching complete failure due to the large value 
of δf . 

As shown in Fig. 8, the same types of damage are witnessed for both 
types of microstructures, explaining the similar stress-strain responses 
displayed in Fig. 7. The fact that the microstructure filled with spherical 
particles shows stress-strain responses slightly below the stress-strain 
responses of the polyhedra filled microstructure is more likely due to 
the early appearance of damage where particles are close to touch in the 
microstructure with spherical particles. Actually, two very close spher
ical particles create very strong stress concentration. This was not 
necessarily witnessed in previous studies due to lower volume fractions 
of particles or due to a prescribed minimum distance between particles. 

These results prove that for highly filled rubberlike materials, 

Table 1 
Cohesive-zone properties for which the numerical responses are computed and 
analyzed.   

K (MPa/mm) Tc (MPa)  δf (mm)  

Case 1 70 0.05 0.02 
Case 2 70 0.1 0.02 
Case 3 70 0.1 0.06  

Fig. 7. (a) Macroscopic stress-strain responses of microstructures filled with polyhedra or spheres for (b) the cohesive-zone parameters listed in Table 1. Compu
tational divergence are indicated by a cross symbol. 

Fig. 8. Maps of the interface separation factor at 8% macroscopic strain in microstructures filled with spheres (top) or polyhedra (bottom) for the three sets of 
cohesive-zone parameters listed in Table 1. 



polyhedral particles are not more critical than spheres for the appear
ance and development of damage at their surfaces, as one could have 
wrongly anticipated. Actually, the shape of the composite stress-strain 
response appears to be driven more by the properties of the filler/ma
trix interface than by the shape of the fillers. Coming back to the 
experimental behaviors presented in Fig. 2, one would identify the 
behavior of the glass beads composite with the responses of case 2, and 
the glass grits composite with case 3. According to our simulations, the 
difference in behaviors between the two materials is not to be explained 
by different particle shapes but rather by different adhesion properties at 
the matrix/filler interfaces due to different types of glass and/or 
different fillers roughnesses. 

5. Conclusions

The influence of the fillers shape on the finite strain behavior of
highly filled composites (>50%) has been examined through micro
mechanical finite element simulations accounting for damage with a 
cohesive-zone model. This analysis has been motivated by the uniaxial 
responses of two actual materials filled with either sifted glass beads or 
sifted glass grits. While the generation of microstructures highly filled 
with a random dispersion of monosized spheres is available in the 
literature, an original generation process has been developed to obtain 
periodic random dispersions of monosized polyhedra. This process in
cludes a Voronoï tessellation, a shrinkage of all polyhedra, and appli
cation of random rotations and translations to each polyhedron to 
ensure a representative configuration of the fillers. Damage has been 
introduced accounting for debonding at the matrix/filler interface with 
a cohesive zone model. When simulating the mechanical behavior of the 
numerical composites with finite element analyses, a second order in
fluence of fillers shape on the composite behavior has been observed, 
with only a slight delay of damage initiation in the case of polyhedral 
fillers. The local damage fields have exhibited the same trends for both 
particles shapes, for different matrix/filler interface behaviors. Results 
show that for highly filled rubberlike materials near-to-touch spherical 
particles are sources of stress concentrations that favor early damage 
appearance. The different behaviors observed on actual composites are 
therefore assumed to result from different adhesion properties between 
fillers and matrix, probably due to different types of glass or/and 
different fillers roughnesses. 
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