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In the past, data in which science and engineering is based, was scarce and frequently
obtained by experiments proposed to verify a given hypothesis. Each experiment was
able to yield only very limited data. Today, data is abundant and abundantly collected
in each single experiment at a very small cost. Data-driven modeling and scientific
discovery is a change of paradigm on how many problems, both in science and engineering,
are addressed. Some scientific fields have been using artificial intelligence for some
time due to the inherent difficulty in obtaining laws and equations to describe some
phenomena. However, today data-driven approaches are also flooding fields like mechanics
and materials science, where the traditional approach seemed to be highly satisfactory.
In this paper we review the application of data-driven modeling and model learning
procedures to different fields in science and engineering.

1. Introduction

The walk of humankind in life is a complex journey of learning through observation and experiencing of the world, 
from which we collect property data, sometimes easily quantifiable, sometimes more qualitative. Also, from observation, we 
relate events to that property data. It is from repetitive experiences from which we can determine some patterns that relate 
events to data, and events to events themselves. In the case of science discovery, these patterns and relations are formalized 
in laws and equations, the data are formalized in properties and variables, and the observations are formalized in event 
measurements, which may be actions or properties themselves. Laws and equations, typical in science, allow us to perform 
predictions and facilitate the transmission of the learning procedure in a very compact manner, with the minimum amount 
of information. However, the classical process of learning in science is a slow process which needs much observational 
experience, usually from expensive proposed experiments, as to discover the main variables involved and their influence on 
events for a probably huge amount of possible combinations, missing frequently unforeseen relevant variables. Furthermore, 
the classical scientific approach is hypotheses-driven and hence is biased by them. The scientific method was established 
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because of the natural biases and weaknesses of the human mind, including the natural bias humans have when seeking 
metaphysical explanations which are not based on real observations ([1] and [2], citing Francis Bacon in Novum Organum 
Scientiarum, AD 1620). However, the classical scientific method is still biased by the deductive thinking of the human 
mind. Data-driven procedures seek, if possible, an unbiased implicit approach to our learning experience based on raw data 
from real observations. These procedures have the additional advantage of testing correlations between different variables 
and observations, learning unforeseen patterns in nature and allowing us to discover new scientific laws or even more, 
performing predictions without the availability of such laws. We are living the era of data science, which impacts all aspects 
of life [3]. Data-driven procedures are giving rise to a new economy. Data-based science will also change our lives and 
how we do science. Data collection, data-mining [4] and data-visualization will also be of paramount importance in science 
discovery. Data-driven scientific discovery is considered the fourth paradigm [5], so founding agencies have begun to invest 
significantly in data-driven science (The Economist, Briefing 5/6/2017). For example, National Science Foundation of the USA 
granted in 2014 $31 million in awards to lay the groundwork in data-science (NSF News Release 14-132). The purpose of this 
brief review of the relatively novel field of data-driven modeling in science and engineering, is to give a scent of different 
approaches and applications in several scientific and engineering fields of data-driven modeling. Therefore, sampling some 
approaches and applications is our purpose; no intention is made to include all possible works, applications or procedures, 
but just to give a big picture of some paths followed in different fields.

2. Data-driven discovery in science

2.1. Computer power facilitates computer-based discovery

The ever-increasing rise of computational power in the past few decades has led to significant advances in statistical and 
machine learning techniques [6]. The collection of algorithms and data mining methods developed as a result have formed 
the core mathematical architecture of artificial intelligence (AI) agents, and although AI has a long history in scientific 
discovery [7], data-driven approaches in modern computers can now ingest and process algorithms at scale. This has been 
largely enabled by the plummeting costs of sensors, computational power, and data storage technologies. Indeed, such vast 
quantities of data afford us new opportunities for data-driven discovery, which, as mentioned, has been referred to as the 
4th paradigm of science [5].

In most application fields in the engineering, physical and biological sciences, physical models are expressed as a set 
of governing constitutive relations, spatio-temporal relations, and/or dynamical systems. Data-driven discovery in these ap-
plication areas are specifically constructed to discover constitutive relations and differential governing equations in a wide 
variety of fields, [8], conservation laws [9] or propagation of nonlinear waves [10], spatio-temporal dynamics [11], devel-
opment of predictive procedures for molecular dynamics for nanoscale flow [12], and health monitoring [13]. In particular, 
data-driven techniques may be extremely important in complex areas of life sciences [14], allowing for unveiling unknown 
biological mechanisms [15]. Thus, there are increasingly funding initiatives to obtain new methods, software tools and train-
ing within the framework of Big Data analysis in health [13]. In the field of data-driven modeling in agro-environmental 
science, an overview may be found in [16] and therein references.

From the Schrödinger equation of quantum mechanics to Maxwell’s equations for electromagnetic propagation, know-
ing the governing laws has allowed for transformative technological impact in society (e.g., smart phones, internet, lasers, 
satellites). And just as Newton built upon the work of Kepler and others, proposing the existence of gravity in order to 
derive F = m a and explain Kepler’s elliptic orbits, the discovery of a fundamental governing law is critical for technological 
development, enabling unprecedented engineering and scientific progress, such as sending a rocket to the moon.

2.2. Algorithms for data-driven modeling, discovery of laws and learning physical constraints

The recent and rapid increase in the availability of measurement data of physical systems has spurred the development 
of many data-driven methods for modeling and predicting dynamics. At the forefront of data-driven methods are deep 
neural networks (DNNs). DNNs not only achieve superior performance for tasks such as image classification, but they have 
also been shown to be effective for future state prediction of dynamical systems [10]. A key limitation of DNNs, and similar 
data-driven methods, is the lack of interpretability of the resulting model: they are focused on prediction and do not 
provide governing equations or clearly interpretable models in terms of the original variable set. An alternative data-driven 
approach uses symbolic regression to identify directly the structure of a nonlinear dynamical system from data [17]. This 
works remarkably well for discovering interpretable physical models, but symbolic regression is computationally expensive 
and can be difficult to scale to large problems. However, the discovery process can be reformulated in terms of sparse 
regression [8], providing a computationally tractable alternative, thus leveraging the power of symbolic regression with 
computational tractability. These contrasting techniques show the diversity of strategies that can be employed to extract 
meaningful physics from data. They also highlight the fact that machine learning and artificial intelligence algorithms may be 
capable of learning physics principles and constraints [9]. Using modern sparse regression architectures and neural networks, 
several critical tasks may be enacted from data alone: (i) the discovery of first principles models, (ii) the identification of 
physical constraints and conservation laws, and (iii) improved models using known physics. A diversity of architectures 



allows one to also develop black box and gray box1 modeling strategies for complex systems where physics is only partially 
known. Additionally, the architecture not only allows one to impose physics constraints, or bake-in physics, but it can also 
discover physical constraints that need to be baked-in, i.e. one can constrain learning and one can learn constraints [18]. 
Thus, not only may parsimonious and interpretable physical models be discovered as a direct result of such strategies, but 
critical insights such as conservation laws and physical constraints could also be discovered. These innovations have the 
potential to discover generalizable models which can be modified to handle multi-scale physics, noisy systems, and limited 
data.

3. Data-driven modeling in mechanical engineering and materials science

3.1. The change of paradigm in solid mechanics

Whereas data-driven (big-data) applications have been extensively used in many fields for more than a decade, this type 
of approach has attracted the attention only recently to researchers in the field of modeling of solids. One of the reasons 
for this is that traditionally, the mechanics of solids has followed a quite successful deterministic approach in which, with 
relatively little available experimental data, relatively meaningful predictions where obtained in general, complex situations. 
Furthermore, information about the behavior of a material has been traditionally passed to the community through the 
specification of few material parameters for a specific constitutive model. However, the data-driven change of paradigm has 
reached also the solid mechanics community. These are most probably the main reasons. (1) Currently the computational 
power is large, so the analysis of nonlinear solids is routinely being performed in industry. This has fostered interest in 
simulating more complex materials, which at the same time are generated and optimized by material scientists to achieve 
some desired properties. (2) The variety found in biological materials, including living materials, along with the difficulty of 
their characterization because of the different structure from specimen to specimen, from location to location, and because 
of aging and time, also prompted the search for modeling tools that are not based on a specific modeling structure or 
function, but that can represent a larger variety of materials, conceptually similar but with a wide span of possible behaviors. 
Within this family of approaches, are constitutive manifold approaches. (3) Currently there is a large amount of available 
material data for many types of materials, so there is a need for unstructured modeling that is capable for assimilating 
these data, possibly obtained from diverse types of testing or observations under different conditions. (4) There are currently 
successful model order reduction techniques which reduce the curse of dimensionality, allowing us to develop a modern 
version of the slide rule, precomputing off-line the problem for many possibilities and saving a reduced representation of 
them, so information can be easily passed over and used to rebuild specific solutions at a given time.

3.2. Constitutive manifolds and reduced representations for multiscale analysis

One of the main problems addressed currently by data-driven models is the multiscale analysis of heterogeneous mate-
rials, see [19] and the more recent works [20–25]. For the case of soils, multi-field, multi-scale poroplasticity data-driven 
modeling using recursive homogenizations and deep learning has been performed by Wang and Sun [26]. Nonlinear hy-
perelastic problems have been also addressed in [27] through constitutive maps. Here, one of the main purposes of the 
data-driven procedures is to virtually test microstructured solids, probably with very complex microstructures, and to de-
velop a constitutive manifold, see Fig. 1. This manifold is computed off-line, often through reduced sampling and reduced 
representation (Fig. 1), for example hyper-reduction [28,29] and Proper Generalized Decompositions (PGD) [20,30,31]. PGD 
approximations have also been used combined with the LATIN approach for multiscale analysis [32]. In [33], PGD is effi-
ciently considered for data-assimilation. Once an off-line representation is obtained, during analysis at the continuum level, 
a material behavior representation closest to the precomputed manifold is searched. The advantage is the general repre-
sentation of material behavior and moderate online computational effort. To this regard, clustering techniques have been 
presented as a tool for avoiding the curse of dimensionality [34,35]. Clustering has been used for long time in data driven 
techniques, see, e.g., [36]. In [37,38], see also [39], numerically explicit spline potentials (NEXP) are proposed to represent 
the hyperelastic behavior of multiscale materials, and the coefficients are computed sampling the material in a strain space. 
The advantage is that an analytical differentiable function is available and constitutive tangents for Newton schemes are 
easily computed.

Within the framework of solid mechanics, there are other applications where data-driven approaches are increas-
ingly pursued. For example, in [40], within the context of Integrated Computational Materials Science Engineering (ICME), 
reduced-order data-driven modeling is employed for assessing the high cycle fatigue performance of polycrystalline alpha-Ti 
structures. Fatigue problems are also analyzed in [41] and also in [24], where a data-driven approach is used to identify 
the small fatigue crack driving force. A review of data science in materials science is given in [42]. Diffusion in random 
heterogeneous media is studied in [43]. A review of data-driven techniques, classification of variables and material prop-
erties, and specially of machine learning in materials informatics, is given in [44]. In [45], model reduction techniques are 

1 In contrast to theoretical (fully determined from physics, no data needed) and black-box models (fully determined from data, no physical understanding
needed), a “gray box” model is a model employing some physics or basic understanding, but which still needs to be calibrated from, or completed with,
data.



Fig. 1. Data-driven approaches in solid mechanics. Macro (left): variables and possible parameters are macroscopic; data-driven procedures determine the
constitutive/design manifolds from observed macroscopic behavior. Micro-macro (center): a model for the microscopic behavior is used, with material
parameters meaningful at the microscopic scale. Massive simulations are performed to develop either micro or macro constitutive manifolds as a function
of parameters at the micro scale. Reduced representations may be used at any level. Macro-micro-macro (right): Minimal microscopic information is used
(e.g., the material structure), assumed constitutive laws are avoided. The raw kinematic microstructural dependencies are pushed to the continuum scale,
carrying the microstructural variables. Compliant macro-micro behavior is obtained at the continuum level, solving both behaviors at once.

also employed for viscoplastic analyses. Complex relations between variables of processes and structure relations in additive 
manufacturing are also obtained through a multiscale, multiphysics approach in [31]. A different application is given in [22], 
where the nonlinear anisotropic electrical response of graphene/polymer nanocomposites is studied employing computa-
tional homogenization based on neural networks. Neural networks have also been used in the characterization of materials 
with a flexible analytical model in the background (e.g., [46], [47]). This same group used genetic algorithms and data-based 
metamodels of friction laws (friction response surfaces) in the design of tires to optimize their wear performance [48], [49].

3.3. Continuum approach and representation functions

As mentioned, data-driven approaches in solid mechanics entail usually a large number of finite element computations 
to determine the behavior of the material for a representative amount of combinations and loading domain, typically tens 
[50] or hundreds of thousands [38] of analyses. Then, it is important to select a proper reduced sampling and representation
approach [21]. Somehow in this line is the cubic spline representation for hyperelastic materials [51,52], which has been
extended to anisotropic materials [53,54] and damage [55]. This type of procedure has also been employed in large strain
nonequilibrium (strain-level dependent) viscoelasticity [56,57]. Data-driven approaches are also used in solid mechanics for
different purposes. For example, to be able to determine the behavior of a material from observed deformation patterns
of structures [58–60]. The idea is to fully substitute the material laws by constitutive manifolds [61,62] preserving only
the conservation laws. A data-driven formulation fully consistent with thermodynamics was proposed in [33,63]. The ini-
tial small strain deterministic approach in [58] has also been extended to noisy data and dynamics [64], where Shannon
entropy-maximizing schemes, frequently used in image processing [65] are employed. Similar problems are addressed in the
animation industry, where realistic simulations of the deformations of cloth for realistic visual perception are also pursued
[66]. A hybrid approach combining first order models with data-based enrichment was addressed in [67].

3.4. Bio-inspired models and data-driven modeling in biomechanics

In the field of biomechanics, and specially in characterizing soft tissues, cells and their behavior, data-driven approaches 
look promising, because a deep knowledge that may bring traditional laws, and even relations between variables, is lacking. 
For example, in [68] data-driven reduced-order models from atomistic simulations are employed to develop a microtubule 
model for cells. The interest in data-driven approaches for biomechanics is highlighted in [69]. Within the context of bi-
ological systems, a polynomial order heuristic algorithm is developed in [70] with the purpose of inferring the governing 



behavior of dynamical systems. A review of data-driven modeling of biological processes, at different scales and from differ-
ent perspectives, is given in [71]. Biological systems also inspire data-driven approaches as the so-called artificial immune 
systems (see, e.g., [72–74]). This is an adaptative computational system which replicates some properties of the immune 
system as error tolerance, redundancy and diversity of systems, distribution of tasks, dynamic learning, system adaptation 
and, specially, self-monitoring. This technique has been used, for example, by [75,76] for damage detection in composites 
and in Structural Health Monitoring (SHM). In SHM, the combination of physics-based assessment and of data-driven proce-
dures in damage identification can be found in [77]. Previous data-driven approaches, as stochastic subspace identification, 
were also used for finite element model updating in damage evolution in [78].

3.5. Physics- and structure-based data-driven approaches

The difficulties in considering all aspects of engineering modeling and science with data-driven procedures, and the 
interest in taking advantage of the learnings from the classical approach, is currently motivating a mixed approach in which 
data-driven modeling is guided by some physical insight [79]. The purpose of developing mixed approaches is to improve 
the reliability of the obtained relations through fundamental principles, like conservation laws (e.g., energy conservation and 
maximum entropy).

The usual approaches, explained in the previous paragraphs, are either macro or micro-macro approaches, see Fig. 1. In 
the former, all the procedure is performed and the continuum scale. In micro-macro (structure-based) approaches, constitu-
tive relations are defined at the microscale as a function of material parameters. In a macro-micro-macro approach (Fig. 1), 
the microscale only defines some kinematic relations between micromechanical variables. These relations are pushed to the 
continuum scale relating them to macroscopic ones. At the continuum level, a data-driven method is applied determining 
the behavior at both scales [80].

4. Data-driven procedures in other engineering fields

Apart from the already mentioned engineering applications, data-driven procedures are being used in a large variety of
other engineering fields. In this section we just sample representative applications in different topics.

4.1. Industrial processing

Data-driven techniques have been used for some years in industrial processing both for monitoring and for predicting. 
A review of these techniques may be found in [81]. Data-driven techniques combined with physically-based models are 
also present in virtual, digital and hybrid twins as reported in [82]. Data-driven modeling of the production processes in the 
automotive industry can be found in [83]. In the production of biofuels, created by microorganisms, where there is a need to 
engineer the microorganism’s metabolism, the optimization of the host and the pathways as to maximize the production of 
the fuel is performed by data-driven approaches in [84]. Soft sensors are computer-based virtual sensors giving information 
about a process. They are used, for example, in new automobiles to give remaining fuel reading, avoiding oscillations of the 
gauge. An early review of data-driven soft sensors in the chemical production industry are reviewed in [85]. To improve the 
duration of products and to avoid problems due to stochastic variations in batch processes, a subspace-aided data-driven 
approach is proposed in [86] and applied to fed-batch penicillin production. Physics-based data-driven modeling is being 
proposed in production engineering and in control, e.g., to control heating/cooling systems in buildings [87].

4.2. Gas and oil industry

Of course, the oil and gas industry, as well as earth scientists and engineers, have also benefit from data-driven 
procedures in all aspects of modeling soil behavior, exploration and production, including seismic analysis, reservoir char-
acterization, management and production. The book [88] gives a summary of data-driven techniques used in the field. Data 
mining, pattern recognition and machine learning algorithms are used in [89] for full reservoir modeling of shale assets for 
hydrocarbon production. Mixed physics-based, data-driven approaches are also starting to be proposed in this field, see, e.g., 
[90–92]. In the case of earthquake engineering, Song et al. [93] give data-driven computer codes for accurately predicting 
the performance of buildings from raw databases.

4.3. Fluid and particle dynamics

Data-driven procedures are being increasingly used in fluid dynamics, especially to improve accuracy of simulations in 
turbulence when using Reynolds Averaged Navier Stokes (RANS) modeling. Duraisamy [94] developed a data-driven approach 
to model turbulent and translational flows. From their data-driven procedure, applying inverse problems, they inferred the 
functional form of deficiencies in known closure models and then improved them using machine learning to obtain accurate 
predictions; see also [95]. Data-driven approaches (convolutional networks) are also used in [96] to accelerate Navier-Stokes 
simulations. Data-driven modeling to improve the prediction of the Reynolds stress anisotropy in the shear layer of jet-in-
crossflow simulations is also used [97]. In [98], a review of data-driven techniques to model turbulence, with emphasis in 



Fig. 2. The steps to drug-discovery. Artificial intelligence and data-driven procedures using multiple datasets/databases may substantially accelerate the first
steps, in which molecules are selected, combined, improved and refined, saving important funds.

reducing uncertainties in RANS models is given. Data-driven dimension reduction procedures applied to dynamical systems, 
both for modal decompositions and for transfer functions, are studied in [99] among others. Reduced order representations 
based on dynamic mode decomposition methods [100] combined with proper orthogonal decompositions are also em-
ployed in naval hull shape optimization for improved drag and lift properties [101]. Three different methods to learn slosh 
dynamics and advancing the solution in time have also been studied in [102], namely Proper Orthogonal Decomposition, 
Locally Linear Embedding and Topological Data Analysis. These methods provided solutions faster than real time in a laptop 
computer.

A different application especially well-suited for data-driven procedures is the simulation of crowds. The behavior of 
crowds and individuals within a crowd has been frequently modeled as fluids and particles within it, but it is recognized 
that actual crowds follow complex laws because they react to external and internal stimuli. The works [103,104] develop 
an agent-based data-driven simulation procedure to simulate crowds in computer graphics simulations. The movements 
of the crowds have been obtained from aerial recordings, from which the behavior of individuals obtained from those of 
surrounding ones was devised. A similar work, but aimed at emergency plans, is presented in [105].

4.4. Bioengineering

Bioengineering is another field in which data-driven algorithms may find extraordinary applications. For example, phys-
iological variables as blood glucose and hormones such as insulin, cortisol, epinephrine, glucagon, and their dynamic inter-
relations determine the metabolic conditions in patients with diabetes. Data-driven models for diagnosis, glucose prediction 
in insulin-dependent patients and treatment management may be found, for example, in the book edited by Marmarelis and 
Mitsis [106]. In [107], an inverse data-driven regression procedure is developed to compute the cardiac electric diffusivity 
from electrocardiogram signals. Also, in medical imaging, [108] employ non-parametric density estimation and edge confi-
dence maps in the segmentation of brain images obtained from magnetic resonance imaging. Of course, data-driven tools 
as an aid to medical diagnosis and decisions have been used for more than two decades [109]. Examples of applications are 
[110] for breast cancer and [111] for coronary heart disease. A review of Big Data applications in biomedical research may
be found in [112].

5. Data-driven chemistry and drug discovery

5.1. The relevance of data-driven approaches in chemistry

The discovery of new chemical compounds such as small molecule drugs, and the assignment of new application labels 
to existing ones are very complex processes. Usually, the lack of deterministic approaches to predict performance from 
structure and the complexity of carrying out discrete optimization over chemical graphs result in very costly trial-and-error 
tests to arrive at a product with the desired performance. The procedure of drug discovery typically follows different stages 
(see Fig. 2): (1) target validation, (2) primary and secondary assay development (high-throughput screening), (3) hit to lead 
compound, (4) lead optimization, (5) preclinical drug development and (6) clinical drug development [113].

The availability of curated labeled and unlabeled data in the chemical sciences is very large compared with some other 
physical sciences. Since its origins many decades ago, the Chemical Abstracts Service has compiled a list of over 144 million 
known substances, and about 67 million protein and DNA sequences (www.cas .org). More than 15,000 substances are added 
each day. The size of potential chemical space, however, is overwhelmingly larger than our ability to explore it by hand. 
Different estimates for the number of chemically accessible molecules range from 1,030 to 10,100. Therefore, the number of 
possible combinations to explore is very large. The speed at which data is being generated is higher than the speed at which 
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we can analyze them. In this regard, data-driven techniques are important, and they are increasingly being used in guessing 
or narrowing the search for compounds with given desired characteristics [114]. This is especially important because even 
though the number of possible targets has been increasing, the actual number of new drug launches is decreasing, whereas 
the costs associated with their development is increasing steadily [115].

5.2. Data-driven procedures in drug discovery

Computational modeling in drug discovery has been used for some time in industry. Because of the highly competitive 
landscape and the large economic incentives, drug discovery is the strongest driver in the development of cheminformatics 
and data-driven tools in chemistry, including data integration [116,117]. An early analysis of the integration of data and 
knowledge in drug discovery is given in the review paper of Searls [118]. As mentioned by [119], data-driven algorithms 
must be used to identify compounds with a minimum number of liabilities in lead-like and drug-like hits, since hit lists 
have more than 1,000 compounds if drug-like hits or leads are not discarded. High-throughput virtual screening approaches 
have a long history in drug discovery, where predictive machine learning tools are used to prioritize compounds and iden-
tify leads in internal databases with millions of compounds (Fig. 2). An interactive data-driven visual analytics technique, 
named ConTour, was developed by Partl et al. [120] to enable the analysis of compounds based on multi-correlated datasets. 
A review of data-reduction techniques in drug discovery using principal component analysis, Bayesian analysis, hierarchical 
clustering, similarity analysis and projections, can be found in [121] and therein references. One of the most appealing re-
cent developments in computer-driven drug discovery is the combination of supervised machine learning models to predict 
performance with unsupervised models to generate novel promising compounds in a fully automatic manner. Combining 
the large number of unlabeled chemicals that somehow characterize the nature of accessible chemical space, and the abun-
dant activity labels from high-through combinatorial chemistry, automatic chemical design is closer to practice. In this 
line, Gómez-Bombarelli et al. [122] have developed an automatic procedure based on continuous vector representations of 
molecules and the use of neural networks to perform inverse design of molecules. A large number of related works continue 
to explore the application of deep neural networks to this task, including syntax and grammar based generative models that 
can write chemical graphs [123–125], deep-reinforcement learning tools [126,127].

6. Data quality and stochastic processes

In any data-driven model or process, data quality is very important, since erroneous or biased data may produce erro-
neous models and erroneous decisions. A recent dramatic example may be the crash of two B-737-Max airplanes. Whereas 
the crashes are still under investigation, preliminary findings note that erroneous data from a single angle-of-attack sensor 
may have produced the anti-stall software to tilt the airplane down, an issue central to the fatal accidents [128]. It is appar-
ent that data redundancy and data time-series analyses may, in most occasions, enhance data quality to yield better models 
and model predictions. According to ISO 9001:2015 standard, the definition and assessment of data quality depends on the 
context and use of data, see also [129,130]. There are several reviews on data-quality research, data curation (correction, 
reorganization, maintenance, integration and preparation of data), data-quality definitions and attributes in different fields, 
see for example [131,132], and [133] for linked data. The recent book [134] reviews many data quality aspects in different 
fields.

Within the context of model learning in science and engineering, quantitative data quality, as obtained from experiments, 
seems central to the quality of models and predictions themselves. In this regard, some characteristics (quality dimensions) 
are very important, as accuracy, completeness, consistency and credibility [135,129]. There are algorithms for data-quality 
analysis and curation. For time series, algorithms can detect and correct issues like data shifts, diverging patterns, unphysical 
patterns, mismatched records or trends, noise patterns, etc, see for example [136,137] and therein references. In some fields 
like Prognostic and Health Management of systems, data clustering plays a key role in differentiating multiple system 
conditions. Algorithms are reviewed in [138] regarding clustering differentiation and quality enhancement; see also therein 
references.

The quality in description of a process is often related to the understanding of its stochastic nature or that of the variables 
and observations involved, so the application of data-driven methods to stochastic phenomena and stochastic processes is 
also a current area of research. For example, Hou et al. [139] study the approximation capability of deep generative networks 
in capturing the posterior distribution in Bayesian inverse problems through learning a transport map. Raissi et al. introduce 
in [140] the concept of parametric Gaussian processes in order to encode massive amounts of data in a small number of 
data points. A remarkable feature is that their parametric Gaussian processes quantify the uncertainty of the predictions 
associated with the process imperfections. Surrogate models facilitate simpler and faster ways of inquiring approximate so-
lutions in the space of design variables. For the case of stochastic, high-dimensional and variable-fidelity-source systems, 
Yang and Perdikaris [141] present a deep learning probabilistic procedure to construct these predictive data-driven surro-
gates, based on input-output pairs, with quantified uncertainty. Other works are those of Soize and Ghanem [142] which 
propose a procedure for generating realizations of a random vector in an unknown subset of the Euclidean space which is 
consistent with observational data of the vector, and that of Soize and Farhat [143], which presents a fast predictor-corrector 
approach for computing the vector-valued hyperparameter for a novel nonparametric probabilistic method with the purpose 
of quantifying the uncertainties of the model-form in nonlinear computational mechanics; see also therein references.



7. Conclusions

The 21st Century is considered the Century of Big Data. The change of century has brought a historic change in our
society. Computers, Internet and the new digital devices are producing a large amount of data. Current computational 
power and cloud computing also allow for an unforeseen number of simulations. However, instead of being overwhelmed 
by such amount of raw information, we are learning how to take advantage of the new paradigm. Software companies have 
taught us that much benefit and key information may be obtained from data analytics. Then, we are learning new ways of 
doing things, among them, science and engineering.

Data-driven procedures focus on data and try to extract variables and relations directly from raw data, giving frequently 
more accurate responses without the use of classical analytical laws and equations. However, many open questions re-
main, and in some occasions, drawbacks have been found as the lack of fulfillment of some physical principles. Then, new 
physics-based data-driven procedures are getting in.

Data-driven procedures are also used to predict what science will be done in science (a field known as Science of Science 
[144]), which may be relevant to funding agencies and to researchers looking for long term funding [145]. However, we are 
at the start of a new epoque in which data science has shown many remarkable success cases, so data-driven algorithms 
are not needed for predicting that funding agencies will increasingly invest more and more funds in data-driven science.
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