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S U M M A R Y
At near-grounded glacier termini, calving can lead to the capsize of kilometre-scale (i.e.
gigatons) unstable icebergs. The transient contact force applied by the capsizing iceberg on the
glacier front generates seismic waves that propagate over teleseismic distances. The inversion
of this seismic signal is of great interest to get insight into actual and past capsize dynamics.
However, the iceberg size, which is of interest for geophysical and climatic studies, cannot be
recovered from the seismic amplitude alone. This is because the capsize is a complex process
involving interactions between the iceberg, the glacier and the surrounding water. This paper
presents a first step towards the construction of a complete model, and is focused on the capsize
in the open ocean without glacier front nor ice-mélange. The capsize dynamics of an iceberg in
the open ocean is captured by computational fluid dynamics (CFD) simulations, which allows
assessing the complexity of the fluid motion around a capsizing iceberg and how far the ocean
is affected by iceberg rotation. Expressing the results in terms of appropriate dimensionless
variables, we show that laboratory scale and field scale capsizes can be directly compared. The
capsize dynamics is found to be highly sensitive to the iceberg aspect ratio and to the water
and ice densities. However, dealing at the same time with the fluid dynamics and the contact
between the iceberg and the deformable glacier front requires highly complex coupling that
often goes beyond actual capabilities of fluid-structure interaction softwares. Therefore, we
developed a semi-analytical simplified fluid-structure model (SAFIM) that can be implemented
in solid mechanics computations dealing with contact dynamics of deformable solids. This
model accounts for hydrodynamic forces through calibrated drag and added-mass effects, and is
calibrated against the reference CFD simulations. We show that SAFIM significantly improves
the accuracy of the iceberg motion compared with existing simplified models. Various types
of drag forces are discussed. The one that provides the best results is an integrated pressure-
drag proportional to the square of the normal local velocity at the iceberg’s surface, with the
drag coefficient depending linearly on the iceberg’s aspect ratio. A new formulation based on
simplified added-masses or computed added-mass proposed in the literature, is also discussed.
We study in particular the change of hydrodynamic-induced forces and moments acting on the
capsizing iceberg. The error of the simulated horizontal force ranges between 5 and 25 per cent
for different aspect ratios. The added-masses affect the initiation period of the capsize, the
duration of the whole capsize being better simulated when added-masses are accounted for.
The drag force mainly affects the amplitude of the fluid forces and this amplitude is best
predicted without added-masses.
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1 I N T RO D U C T I O N

A current concern in climate science is the estimation of the mass
balances of glaciers and ice sheets. The Greenland ice sheet mass
balance contributes significantly to sea level rise, accounting for
about 15 per cent of the annual global sea level rise between 2003
and 2007 (Zwally et al. 2011). However, it is difficult to draw con-
clusions on general trends given the high uncertainties (Lemke et al.
2007) in these estimations, notably due to difficulties in estimating
and partitioning the ice-sheet mass losses (Van den Broeke et al.
2009). Ice mass balance can be determined by calculating the dif-
ference between the (i) surface mass balance, mainly determined
by inland ice gains minus ice losses and (ii) dynamic ice discharge,
mainly made up of submarine melting and iceberg calving (Van Den
Broeke et al. 2016). One third to one half of the ice mass losses
of the Greenland ice sheet are due to dynamic ice discharge (En-
derlin et al. 2014). Note that dynamic ice discharge is a complex
phenomenon, influenced by ocean and atmospheric forcing and by
glacier geometry and dynamics (Benn et al. 2017).

When a marine glacier terminus approaches a near-grounded
position, calving typically occurs through the capsize of glacier-
thickness icebergs. Such buoyancy-driven capsize occurs for ice-
bergs with a width-to-height ratio below a critical value (MacAyeal
& Scambos 2003). When drifting in the open ocean, icebergs deteri-
orate through various processes such as break-up, wave erosion and
solar or submarine convection melting (Job 1978; Savage 2001),
and release freshwater that can potentially affect overturning ocean
circulation (Marsh et al. 2015; Vizcaino et al. 2015). Wagner et al.
(2017) explain that icebergs mainly melt through wind-driven wave
erosion that leads to lateral thinning and thus eventually a buoyancy
driven capsize of the icebergs. Moreover, iceberg drift simulations
have shown that capsizing icebergs live longer and drift further than
non-capsizing icebergs (Wagner et al. 2017) .

When they capsize right after calving, icebergs exert an almost
horizontal transient contact force on the glacier front. This force is
responsible for the generation of up to magnitude Mw ≈ 5 earth-
quakes that are recorded globally (Ekström et al. 2003; Podolskiy
& Walter 2016; Aster & Winberry 2017) and can be recovered from
seismic waveform inversion (Walter et al. 2012; Sergeant et al.
2016). The study of iceberg calving and capsizing with such glacial
earthquakes data is a promising tool, complementary to satellite im-
agery or airborne optical and radar sensors as it can provide more
insights into the physical calving processes and iceberg–glacier–
ocean interaction (Tsai et al. 2008; Winberry et al. 2020) as well
as it can track ice losses almost in real time. However, there is no
direct link between the size of an iceberg and the generated seismic
signal (Tsai et al. 2008; Amundson et al. 2012; Walter et al. 2012;
Sergeant et al. 2016, 2018). Sergeant et al. (2018, fig. 6d) showed
that a given centroid single-force (CSF) amplitude, which is usually
used to model the relevant signal, can be obtained with icebergs of
different volumes (their fig. 6d). Olsen & Nettles (2019, fig. 9) found
a weak correlation between the seismic data (CSF amplitude) and
the dimensions of the iceberg, the authors also suggested that taking
into account hydrodynamics and iceberg shape could improve this
correlation. Different processes involving the interactions between
the iceberg, glacier, bedrock, water and ice mélange contribute to
the type of calving, earthquake magnitude and seismic waveform
(Tsai et al. 2008; Amundson et al. 2010, 2012).

To investigate in detail the link between iceberg volume, con-
tact force and the generated seismic signals, the use of a hydro-
dynamic model coupled with a dynamic solid mechanics model is
required. The iceberg-ocean interaction governs the iceberg capsize

dynamics and thus controls the time-evolution of the contact force
which is responsible for the seismic waveform and amplitudes. Full
modelling of the glacier / ocean / bedrock / iceberg / ice-mélange
system is beyond capabilities of most existing models because it
requires complex and costly coupling between solid mechanics,
contact dynamics and fluid dynamics. Simplified models of cap-
sizing icebergs proposed in the literature approximate icebergs by
2-D rectangular rigid solids subject to gravity and buoyancy force,
iceberg-glacier contact force and simplified hydrodynamic effects
using either added-masses (Tsai et al. 2008) and/or pressure drag
(Amundson et al. 2012; Burton et al. 2012; Sergeant et al. 2018,
2019). These models have been proposed to describe a specific as-
pect of the capsize: its vertical and rotational motion (Burton et al.
2012) validated against laboratory experiments, or the horizontal
force that icebergs exert on the glacier fronts (Tsai et al. 2008;
Sergeant et al. 2018). To build a complete catalogue of seismogenic
calving events that can be used for seismic inversion and iceberg
characterization, the model must accurately describe the interac-
tions between the iceberg, the glacier and the ocean. At the same
time, its formulation should either remain sufficiently simple to en-
able fast simulations of numerous events or, alternatively be based
on the interpolation of the response surface constructed on numer-
ous full-model simulations. In particular, the horizontal force and
the torque exerted by the fluid on the iceberg should be modelled
as accurately as possible, since it controls the horizontal contact
force (Tsai et al. 2008; Amundson et al. 2012; Burton et al. 2012;
Sergeant et al. 2018).

This paper aims (i) to provide insights in the complex interac-
tions between a capsizing unconstrained iceberg and the surround-
ing water in 2-D using a reference fluid dynamics solver and (ii)
to reproduce the main features of this interaction using a simplified
model formulation suitable for being integrated in a more com-
plete model. For this, we use a computational fluid dynamics solver
(ISIS-CFD Software for Numerical Simulations of Incompressible
Turbulent Free-Surface Flows) to generate reference results for the
capsizing motion. This model solves Reynolds Averaged Navier–
Stokes Equations (RANSE) and handles interactions between rigid
solids and fluids with a free surface, but is not yet validated for
modelling contacts between solids. This state-of-the-art solver has
been extensively validated on various marine engineering cases (Vi-
sonneau 2005; Queutey et al. 2014; Visonneau et al. 2016) but not
yet applied to kilometre-size objects subject to fast and big rota-
tions like capsizing icebergs in the open ocean, which give rise to
high vorticity. Before applying ISIS-CFD to the field-scale iceberg
capsize, we evaluate how well it can reproduce small-scale labora-
tory experiments (typical dimension of 10 cm). We compare here
ISIS-CFD simulations to the laboratory experiments conducted by
Burton et al. (2012).

To obtain a model that can be easily coupled with a solid me-
chanics model, we propose a simplified formulation (SAFIM, for
Semi-Analytical Floating Iceberg Model) for the interactions be-
tween iceberg and water. In this model, the introduced hydrody-
namic forces account for water drag and added-masses, these two
effects being considered uncoupled and complementary. Such a de-
scription was initially proposed for modelling the effect of waves
on vertical piles (Morison et al. 1950) and has been widely used
for modelling the effect of waves and currents on bulk structures
(Tsukrov et al. 2002; Venugopal et al. 2009). The SAFIM’s hydro-
dynamic forces involve some coefficients that need to be calibrated
to represent as accurately as possible the effects of the hydrodynamic
flow on the capsize motion. These coefficients were calibrated on
the reference results provided by ISIS-CFD.



Figure 1. Simplified iceberg’s geometry: the centre of gravity is G and
the centre of buoyancy is B. The forces acting on the moving iceberg are:
the gravity force Fg , the hydrostatic fluid force Fs and the hydrodynamic
pressure sketched by the pink shaded area, the forces from the added mass
are not indicated; these efforts also induce a torque on the iceberg.

The paper is organized as follows. Section 2 presents the refer-
ence ISIS-CFD fluid dynamics model and its results are compared
with those of laboratory experiments from Burton et al. (2012). The
complexity of the fluid motion surrounding the iceberg and the pres-
sure on the iceberg are then discussed. The similarities between the
laboratory-scale and field-scale simulations are also presented. In
Section 3, we present the SAFIM model and discuss the differences
with other models from the literature. In Section 4, ISIS-CFD and
SAFIM are compared for different case-studies, the error quantifi-
cation and fitting of parameters are discussed. Section 5 is an overall
discussion: comparison of previous models, the new SAFIM model
and the reference ISIS-CFD model, followed by a discussion of
different drag and added-mass models, which is concluded by a
sensitivity analysis with respect to physical properties of geophysi-
cal systems.

2 C F D S I M U L AT I O N S O F I C E B E RG
C A P S I Z E

2.1 Problem set-up

In this paper, we investigate the capsize of unstable 2-D icebergs in
the open ocean, that is away from the glacier front, other icebergs
and in absence of ice-mélange. Water and ice densities are noted ρw

and ρ i. In our numerical simulations, for the field scale, we take the
typical values of ρw = 1025 kg m−3 and ρi = 917 kg m−3. For the
laboratory experiments, the densities are set to ρw = 997 kg m−3

and ρi = 920 kg m−3, which would enable a direct comparison
with Burton et al. (2012). A typical geometry is shown in Fig. 1. The
out-of-plane dimension L of the iceberg (i.e. along ey) is assumed to

be sufficiently large compared to the height and the width such that
the problem can be considered essentially 2-D. This assumption is
discussed in Section 5.6.

In this 2-D set-up, icebergs are assumed to be rectangular with
in-plane dimensions H and W and an aspect ratio denoted by ε =
W/H. Rectangular icebergs in a vertical position are unstable, that is
will capsize spontaneously, for aspect ratios smaller than a critical
value (MacAyeal & Scambos 2003):

ε < εc =
√

6 ρi
ρw − ρi

ρ2
w

.

This critical aspect ratio is εc ≈ 0.75 for the field densities and εc ≈
0.65 for the laboratory densities. For ε > εc, icebergs are vertically
stable and will not capsize unless initially tilted sufficiently (Burton
et al. 2012).

The iceberg is assumed to be homogeneous and rigid, that is
it does not deform elastically. The mass of an iceberg per unit of
thickness along ey is given by m = ρ iH2ε. Points G and B are
the centre of gravity of the iceberg and the centre of buoyancy,
respectively. The iceberg position is described by the horizontal and
vertical positions of G, denoted xG and zG, respectively, and by the
inclination θ with respect to the vertical axis, which is collinear
with the vector of the gravity acceleration. Hw is the water depth.

2.2 ISIS-CFD solver

The ISIS-CFD solver, developed by LHEEA in Nantes (France), is
a state-of-the-art solver for the dynamics of multiphase turbulent
flows (Queutey & Visonneau 2007; Leroyer et al. 2011; Guilmineau
et al. 2017, 2018), interacting with solid and/or flexible bodies
(Leroyer & Visonneau 2005; Hay et al. 2006; Durand et al. 2014),
and with a free surface. Today, it is one of very few available software
products capable of solving problems as complex as interactions be-
tween solids and fluids with a free surface (water and air interface).
The target applications of ISIS-CFD are in the field of marine engi-
neering, for example modelling the dynamic interactions between a
ship and surface waves (Visonneau 2005; Queutey et al. 2014; Vi-
sonneau et al. 2016) or the complex flows and interactions involved
in the global hull-oars-rower system in Olympic rowing (Leroyer
et al. 2012). ISIS-CFD solves the Reynolds Averaged Navier-Stokes
Equations (RANSE, Robert et al. 2019) and also disposes few other
turbulence models.

For the specific application of iceberg capsize (Fig. 1), two dif-
ferent turbulence equations were tested and were found to give very
similar results: k-w (Menter 1993) and Spalart-Allmaras (Spalart &
Allmaras 1992). The code uses an adaptive grid refinement (Wack-
ers et al. 2012) or an overset meshing method (mandatory to deal
with large amplitude body motion close to a wall for example) to
connect two non-conforming meshes. The mesh used here is a con-
verged mesh with n = 43 000 elements. An example of a typical
mesh is illustrated in Fig. 2. The coupling between the solid and the
fluid is stabilized with a relaxation method based on the estimation
of the periodically updated added-mass matrix (Yvin et al. 2018).
The lateral sides of the simulation box are put far from the capsizing
iceberg, and include a damping region, so that the reflected waves
do not interfere with the flow near the iceberg for the duration of
the simulation.

In the field of application of the ISIS-CFD flow solver, the typical
range of Reynolds numbers (Re) extends from 106 for model-scale
ship flow to 109 for full-scale ship flow (Visonneau et al. 2006), and
the local viscous contribution to the hydrodynamic force is as high



Figure 2. A portion of a typical mesh used for the simulation of iceberg capsize with ISIS-CFD. The two axes represent the dimensionless horizontal position
x/H and the dimensionless vertical position z/H. The iceberg ε = 0.5 (in white) is in the centre of a squared domain (fine mesh in red) moving and rotating with
the iceberg over a background domain (coarser mesh in blue). The mesh is automatically refined around the air-water interface (a finely meshed horizontal
zone) and also around the solid/fluid interface.

as ≈50 per cent of the total drag force. Here, the ISIS-CFD solver
is applied to a significantly different geometry (rectangular shape
of iceberg instead of streamlined shape of ship), type of motion
(big rotations instead of translational motion) and dimensions (km-
scale icebergs instead of tens of metres long ships). This application
provides new challenges for the ISIS-CFD solver: high vorticity and
free surface motion, greater lengths and velocities together with
massive separations due to the sharp corners of the iceberg.

2.3 Laboratory experiments

Since ISIS-CFD simulations are compared with laboratory data
(Section 2.4), we briefly summarize here the technical details of
the corresponding experiments conducted by Burton et al. (2012).
The laboratory experiments consist in the capsize of parallelepi-
pedic plastic icebergs of density ρi = 920 ± 1 kg m−3 in a long and
narrow fjord-like tank 244 cm long, 28 cm wide and 30 cm tall, filled
with water at room temperature (ρw ≈ 997 kg m−3). To assess the
effect of water depth Hw on iceberg-capsize dynamics, two types of
experiments were conducted in which the water height was varied
from 11.4 to 24.3 cm. The iceberg height was H = 10.3 cm, (H <

Hw) and the width varied between W = 2.5 cm and W = 10.2 cm,
corresponding to aspect ratios ranging between 0.25 and 1. The
length of the iceberg was L = 26.6 cm, which is slightly smaller
than the tank width to reduce edge effects so that the flow can be
considered as 2-D. The plastic icebergs were initially placed slightly
tilted with respect to the vertical position and were held by hand
close to hydrostatic equilibrium. When the surface of the water be-
came still, several drops of dye were introduced around the plastic
iceberg to visualize the water flow. Then the icebergs were released
to capsize freely. The capsizes were recorded by a camera located
outside the tank. Snapshots are shown in Fig. 3(top row). Further
experimental details can be found in Burton et al. (2012). A selec-
tion of four experiments are presented here, corresponding to aspect
ratios ε = 0.246, 0.374, 0.496 and 0.639.

Laboratory experiments show, to some extent, the fluid motion
using dye at some specific locations. The ISIS-CFD computational
fluid dynamics model makes a valuable contribution to the under-
standing of the complex motion of the fluid surrounding a capsiz-
ing iceberg since it computes the whole velocity field in the fluid.
Fluid velocity colour maps computed with ISIS-CFD are qualita-
tively compared with the images of the laboratory experiments in

Figs 3(a)–(f), the maps of the iceberg’s surface velocity computed
using the calibrated SAFIM model (see Section 3) are also shown
in Figs 3(g), (h) and (i). All results are shown at the identical time
moments centred at the time when θ = 90◦.

Results for the capsize of an iceberg of aspect ratio ε = 0.496
are shown for three different times: in Figs 3(a), (d) and (g) during
capsize; in Figs 3(b), (e) and (h) when the iceberg reaches the
horizontal position for the first time (θ = 90◦); and in Figs 3(c),
(f) and (i) some time later. The arrows represent the dimensionless
velocity |u′| = |u|/√gH , where u is the velocity field of the fluid.
We observe a good qualitative agreement between the position and
inclination of the iceberg obtained by ISIS-CFD and the laboratory
experiments. Note that the iceberg is submarine when it reaches
θ ≈ 90◦ for the first time (Figs 3b and e). The motion of the
fluid—initially almost at rest—is visible all around the capsizing
iceberg. Large vortices, associated with the iceberg motion, are
clearly visible throughout the capsize in Fig. 3 (top and middle row).
The intense fluid motion represents an important amount of kinetic
energy that is eventually dissipated; this energy is transmitted by
the motion of the iceberg, and this slows down the iceberg. Note
also that the iceberg moves leftwards during the capsize.

2.4 Comparison of simulations with experiments

Here, we compare ISIS-CFD with the laboratory experiments by
Burton et al. (2012). In Fig. 4, results are provided for three different
unstable icebergs: a thin ε = 0.246 iceberg, a medium ε = 0.374
iceberg and a thick ε = 0.639 iceberg. The horizontal position xG,
vertical position zG and tilt angle θ are plotted against time. As the
plastic icebergs were initially positioned by hand, some variability
in the results are observed. To provide an estimate of the variability
of the protocol, three experiments with identical plastic icebergs
and the same (nominal) initial conditions were conducted for each
aspect ratio. We selected these three aspect ratios because of the
consistency of the experimental results. The initial conditions in
ISIS-CFD were chosen to fit the average values of the laboratory
experiments. In ISIS-CFD simulations, the icebergs were tilted by
a small angle of 0.5◦ for the thin and medium iceberg (black curves
in Figs 4g and h) and a larger angle of 15◦ for the thicker iceberg
(black curves in Fig. 4i). The icebergs were initially placed in a
hydrostatic equilibrium. The water level in the tank Hw = 11.4 or
24.3 cm was found to have a negligible effect on the iceberg motion:



Figure 3. Side view of experiments from Burton et al. (2012) (a, b, c); colour map of the dimensionless velocity u′ = u/
√

gH , where u is the velocity field in
the water computed with ISIS-CFD (d, e, f); dimensionless velocity along the surface of the iceberg with SAFIM (g, h, i). Three time moments of the capsize
(indicated on top of each column) are shown. The timescale is calibrated such that t = 0 s corresponds to the first time when the iceberg reaches θ = 90◦, as
in Burton et al. (2012). The iceberg aspect ratio is ε = 0.496. The floor and walls are not shown in the snapshots. The corresponding animation of ISIS-CFD
simulation is available in supplementary material [S1].

results are within the data variability shown in Fig. 4. Therefore,
the experiments with a constant water depth Hw = 24.3 cm are
compared with the ISIS-CFD simulations carried out for the same
water depth.

We first analyse the motion of the iceberg during capsize. Once
released, it tilts to reach the horizontal position with associated up-
ward and sideward motion. It then rises out of the water in a rocking
motion superimposed with a continuous horizontal displacement
(Fig. 4). The thinner the iceberg, the faster it moves in the horizon-
tal direction with a quasi constant velocity at least for the first 1.5 s.
This horizontal motion is an important aspect of the iceberg capsize
on which we would like to focus here. Note that, besides gravity and
buoyancy which cannot cause horizontal motion, the only external
force acting on the capsizing iceberg is due to the relative motion
of water around the iceberg (the air has a negligible effect here).
These hydrodynamic forces are responsible for the horizontal ice-
berg motion. They need to be captured accurately by the model as
they contribute considerably to the contact force generated between
the iceberg and the glacier front when a just-calved iceberg capsizes
(Tsai et al. 2008; Sergeant et al. 2018).

Fig. 4 shows that ISIS-CFD results are in very good agreement
with the laboratory data especially in terms of the evolution of the
tilt angle. The slight discrepancy on the vertical and rotational mo-
tion computed by ISIS-CFD could be due to differences between the
laboratory and simulation set-ups with regards to the 2-D approxi-
mation and the initial conditions as discussed above. Another reason
for this slight discrepancy could be related to the turbulence model
treated by the RANS approach. The generation of large vortices and
separations are not initially induced by turbulent phenomena. We

observed that Euler approach (perfect fluid with no viscosity and
thus no possible dissipation of energy in turbulence phenomenon)
captures similar flow topologies. However, the evolution of these
vortices and separations can be affected by turbulent effects for
which the RANS approach is not specifically designed for. Simu-
lations using methods such as DES (detached eddy simulation) or
LES (large eddy simulation) could improve the accuracy but would
require high computational costs.

2.5 From the laboratory to the field scale

In the previous section, ISIS-CFD simulations were shown to fit
laboratory experiments very well. However, our aim is to reproduce
the dynamics of the capsize of field-scale icebergs with dimensions
of several hundred metres, that is four orders of magnitude larger
than for the laboratory scale. Also, as pointed out by Sergeant et al.
(2018), the laboratory-scale Reynolds number Re = LU/ν ≈ 103,
is six orders of magnitude smaller than the characteristic Reynolds
number Re ≈ 109 for the field scale (with L the typical length, U
the typical speed and ν the dynamic viscosity of the fluid). Global
viscous effects are expected to be more pronounced for laboratory-
scale than for the field-scale capsize. Therefore, the question is
whether laboratory-scale experiments can be used to understand
the kinematics of the field-scale iceberg capsize.

We compare the horizontal force induced by the water to the ice-
berg during its capsize computed by ISIS-CFD for the two cases:
(1) a field-scale iceberg of height H = 800 m and (2) a laboratory-
scale iceberg of height H = 0.103 m, all other parameters being the
same: the aspect ratio ε = 0.25, infinite water pool, same densities



Figure 4. Horizontal position xG (a, b, c), vertical position zG (d, e, f) and tilt angle θ (g, h, i) of icebergs of height H = 10.3 cm for ε = 0.246 (a, d, g),
ε = 0.374 (b, e, h) and ε = 0.639 (c, f, i). Data are provided for three laboratory experiments (solid black), ISIS-CFD simulations (solid red) and SAFIM
simulations (dashed blue). The origin of the time axis in all experiments and simulations is set to the time at which the iceberg reaches the horizontal position
for the first time, that is when θ = 90◦ (green stars and dashed lines), as in Burton et al. (2012).

of the water and the ice, taken to be equal to the field densities (Sec-
tion 2.1). Results are given in Fig. 5 using dimensionless variables,
that is a dimensionless horizontal force F ′

x = Fx/(mg) acting on
the capsizing iceberg and a dimensionless time t ′ = t/

√
H/g. Note

that this horizontal force F ′
x acting on the iceberg is the hydrody-

namic force. However, in the case of iceberg-glacier interaction a
similar hydrodynamic force will contribute to the total contact force
between a glacier and a capsizing iceberg. We observed that the two
curves corresponding to the two scales are very similar from the
beginning of the movement until t

′ ≈ 15.6, which corresponds to
θ ≈ 90◦. This similarity between the forces at the laboratory and
field scales can be explained using the Vaschy-Buckingham π the-
orem, assuming that the effect of viscosity is negligible, as detailed
in Appendix A. For times larger than t

′ ≈ 15.6, the discrepancy
between laboratory and field scales is larger and dimensions start
to play a more important role. This discrepancy probably originates
from the fact that after the buoyancy driven capsize, the iceberg
motion is driven by the evolution of complex vortices and different
gravity-waves dynamics.

The other variables of the system (vertical force and torque acting
on the iceberg and horizontal and vertical displacement and incli-
nation of the iceberg) are also similar for the laboratory and field
scales.

Since it was demonstrated that the laboratory and field scales pro-
duce the same horizontal dimensionless force, in the remaining sim-
ulations we will present only the dimensionless quantities obtained
from simulations of the laboratory-scale iceberg with H = 0.103 m,
for densities corresponding to field values, and in absence of sea
floor. The laboratory scale was chosen because numerical conver-
gence is easier to achieve in ISIS-CFD for the laboratory scale than
for the field scale. The sensitivity of the capsize to the densities
will be discussed in Section 5.5. Also, the depth of the sea floor
was observed to have no significant effect on the capsize dynamics.
Results for icebergs of different heights (but of the same aspect
ratio) can be deduced with a factor of proportionality given by the
normalizations from Table 1.

In ISIS-CFD simulations and laboratory experiments, we observe
five stages during the capsize:

(i) In the initial phase (0 < t
′

< 6), the horizontal force F ′
x

oscillates around zero with a negligible amplitude (about 1 per cent
of its extremum amplitude). This stage is the initiation of the capsize
with buoyancy and gravity forces making the iceberg rotate and rise.

(ii) Then the absolute value of F ′
x increases, first slowly and then

faster until the first extremum at t
′ ≈ 12.2. This is explained by the



Figure 5. The horizontal dimensionless force F
′ = Fx/(mg) that the water exerts on the iceberg (ε = 0.5) is plotted against a dimensionless time t

′ = t/TH with
the characteristic time TH = √

H/g for both laboratory (H = 0.103 m, TH = 0.102 s, in red) and field (H = 800 m, TH = 9.03 s, in blue) scales. The iceberg
inclination θ (grey curve with scale on the right) is plotted against dimensionless time t

′
, the curve is the same for the lab scale and the field scale. The vorticity

fields around the iceberg at four different times are also shown: (a) initial phase of iceberg’s motion t
′ ≈ 7.3, (b) time of maximal force in the left direction t

′

≈ 12.2, (c) time of maximal force in the right direction t
′ ≈ 15.6 and (d) corresponds to the oscillations of the iceberg at later time t

′ ≈ 17.1. The pink shaded
area represents the local hydrodynamic pressure. The colour maps are discussed in Section 5.3 and the phases (i) to (v) are discussed in 2.5.

Table 1. Table of dimensionless variables, with N
′

denoting the dimen-
sionless variable related to N and with the iceberg linear mass density
m = ρi H2 ε, G the centre of gravity of the iceberg and the character-
istic time TH = √

H/g. Note that the dimensionless forces and torques
can also be written through a normalization by the characteristic mass m,
length H and time TH with the following formulas: F ′

x = Fx T 2
H /(m H ),

F ′
z = Fz T 2

H /(m H ) and M ′
θ = Mθ T 2

H /(m H2). See Section. 5.5 for a dis-
cussion on a non-dimensionalization with a dimensionless time Tρ, H that
depends on the densities.

Variable name Dimensionless variable

Forces F
′ = F/(mg)

Torque M ′
θ = Mθ /(mgH )

Positions r
′ = r/H

Time t ′ = t
√

g/H
Velocity u′ = u/

√
Hg

fact that the induced vertical and rotational velocities and acceler-
ations of the iceberg produce a hydrodynamic force that has a non-
zero horizontal component, which is the only horizontal force acting
on the iceberg. It induces a horizontal motion of the iceberg towards
the left for the anti-clock wise iceberg rotation considered here.

(iii) The absolute value of F ′
x decreases to F ′

x = 0 before t
′ ≈

14.4, which corresponds to θ ≈ 70◦ (Fig. 5). The horizontal motion
of the iceberg triggers a horizontal resisting fluid force.

(iv) The force F ′
x becomes positive and increases to an extremum

at t
′ ≈ 15.6, where the iceberg is horizontal θ ≈ 90◦. Its amplitude

is of the same order of magnitude than the first negative force but
the duration is shorter. Therefore, it decelerates the iceberg leftward
motion, but does not cancel it.

(v) At the later stage (after t
′ ≈ 15.6), F ′

x oscillates around zero
and is slowly damped. The iceberg rocks around θ = 90◦ and drifts
to the left while slowly decelerating.

The highest water velocities in the surrounding ocean are reached
when the iceberg is close to θ = 90◦. Dimensionless velocities are
shown in Fig. 6. We observe that for an iceberg of height H (here
800 m):

• high velocities in the fluid ≈ 0.5
√

g H (here ≈ 42 m s−1) are
reached between times t

′ = 10 (here ≈ 90 s) and t
′ = 34 (here

≈ 307 s), see dark red regions in Figs 6(b), (c) and (d).
• at a distance of about H from the iceberg, the water flows at a

maximum speed of ≈ 0.01
√

g H (here ≈ 88 cm s−1).
• at a distance of about 3.5 H from the iceberg, the water flows

at a maximum speed of ≈ 0.0005
√

g H (here ≈ 4.4 cm s−1).



Figure 6. Iso-lines of the absolute value of the dimensionless velocity |u′| = |u/
√

gH | in the fluid surrounding the iceberg with aspect ratio ε = 0.5 (grey
rectangle). Captions (a), (b) and (c) correspond to the same times as in Figs 5(a)–(c). Panel (d) at time t

′ = 24.9 shows the vanishing fluid motion. An animated
figure is available in supplementary material [S2].

Note that the maximum plume velocities measured in (Mankoff
et al. 2016; Jouvet et al. 2018) are horizontal velocities at the surface
≈ 3 m/s.

Moreover, we observe that the iso-lines for the velocities are
roughly semi-circles centred on the iceberg, with a radius slightly
higher in the horizontal direction.

3 E M P I R I C A L M O D E L S A F I M

3.1 General formulation

The reference ISIS-CFD model has the advantage of being very
accurate for fluid-structure interactions but it cannot readily model
contacts between deformable solids. As explained in the introduc-
tion, we aim to construct a simpler fluid-structure interaction model
that can be more easily coupled with dynamic solid-mechanics mod-
els. Thus we propose a simple empirical model that can be used to
estimate the horizontal force applied to a capsizing iceberg. This
model was initiated in (Sergeant et al. 2018, 2019) and is extended
and validated in this study.

As proposed by Tsai et al. (2008), Burton et al. (2012) and
Sergeant et al. (2018), one possible way to construct such a simple
model of a capsizing iceberg consists in solving equations of a
rigid iceberg motion subject to relevant forces and torque while
discarding water motion. The general equations of iceberg motion
for such simplified models can be written in two dimensions as:

(m + mxx )ẍG + mxz z̈G + Jxθ θ̈ = Fd · ex (1)

mxz ẍG + (m + mzz)z̈G + Jzθ θ̈ = (
Fg + Fs + Fd

) · ez (2)

Jxθ ẍG + Jzθ z̈G + (I + Iθθ )θ̈ = (Ms + Md ) · ey (3)

where I = ρ iH4ε(1 + ε2) is the moment of inertia of the iceberg with
respect to its centre of gravity G and around an axis parallel to ey

(multiplying I by the iceberg thickness along ey gives the inertia for
the 3-D case). Such a formulation accounts for the hydrostatic force
Fs and the corresponding torque Ms computed at G, the gravity
force Fg , overall hydrodynamic effects expressed by the force Fd

and the associated torque Md at G and so-called added-masses mxx,
mzz, Iθθ , mxz, Jzθ and Jxθ that account for the mass of water that must
be accelerated during the iceberg motion.

Hydrodynamic forces that oppose the motion of the iceberg are
commonly called drag forces Fd . The corresponding drag torque
Md accounts for a particular distribution of the drag pressure along
the iceberg surface. The drag force usually scales with the squared
relative velocity between the water and the solid with a factor of fluid
density and it acts in the opposite direction of this velocity. Note that
the friction drag can be neglected here, as shown in Appendix A.

When the water motion is not computed, the added-mass (AM)
should also be included in the model. Added-masses introduce some
additional inertia to the moving iceberg. This effect is known to be
significant when the density of the fluid is comparable or bigger
than the density of the solid, such as for ice and water. The matrix
of added-masses, which is symmetrical (Molin 2002; Yvin et al.
2018), has the following form:

[m AM ] =
⎡
⎣mxx mxz Jxθ

mxz mzz Jzθ

Jxθ Jzθ Iθθ

⎤
⎦ (4)

Added-mass effects are of two types: a force associated with an
added-mass can arise in a given direction due to (1) an acceleration
in that direction, which corresponds to the diagonal terms mxx, mzz

and Iθθ in eqs (1–3), and (2) an acceleration in another direction,
which is accounted for by the coupled terms mxz, Jzθ , Jxθ .



Within this framework, models proposed by Burton et al. (2012)
and Tsai et al. (2008), summarized in Table 2, differ in the way
they account for the drag and the added-mass. In the formulation
proposed by Tsai et al. (2008), pressure drag and the associated
torque are not considered and only some of diagonal terms are taken
into account in the added-mass matrix. In the formulation by Burton
et al. (2012), added-mass effects are neglected. As for the drag
effects, they are assumed to depend only on individual components
of the velocity of G and on the angular velocity, for example the
drag along ex only depends on the velocity ẋG . As a consequence,
both models predict that an iceberg initially at rest (ẋG = 0) will not
experience any horizontal movement along ex during its capsize. As
discussed above, this result contradicts experimental and ISIS-CFD
results.

3.2 SAFIM

To better reproduce the motion of capsizing icebergs, we have de-
veloped a new model along the lines of previous propositions by
our group (Sergeant et al. 2018, 2019). The model is referenced as
SAFIM. In addition to the previously used drag formulation, this
new model uses a drag coefficient varying with the aspect ratio and
integrates a tunable added-mass effect. As will be shown, SAFIM
reproduces the main results of ISIS-CFD. For example, it predicts
the horizontal movement of capsizing icebergs initially at rest.

A particular feature of the drag model in SAFIM is that it is
based on the local velocity of the iceberg’s surface through which
the drag pressure could be approximated as p = ρwvnsign(vn)/2,
where v is the local velocity of the iceberg surface, vn = |v · n|
is the corresponding normal velocity, and n is the local normal to
the surface of the iceberg. Therefore, the total drag force and the
drag torque are evaluated as integrals of local pressure over the
submerged part of the iceberg �s:

Fd = −α
1

2

∫
�s

ρwv2
nsign(vn)n d�, (5)

Md = −α
1

2

∫
�s

ρwv2
nsign(vn)(r − rG) ∧ n d�, (6)

where, r is the local position vector and rG is the position vector
of the iceberg’s centre of mass; the wedge sign ∧ denotes a vector
cross product. We consider here a quadratic dependence of the local
drag force on the normal velocity, this is discussed in Section 5.3.
The integral expressions for the drag force and torque are given in
Appendix B. The factor α of the order of unity is the only adjustable
parameter of the drag model. It can be adjusted with respect to the
reference CFD simulations or experiments. We recall that in the
original papers of Sergeant et al. (2018, 2019), this factor was set
to α = 1 by default. However, due to the complexity of the fluid
flow, the optimal value of α may change with the geometry of the
iceberg.

This formulation, rather than attempting to describe the local
pressure accurately, which is difficult based on geometrical consid-
erations only (Section 5.3; Sergeant et al. (2018)), aims at providing
a good approximation of the global forces and torques acting on the
rotating iceberg. As opposed to the simplified drag model of Burton
et al. (2012) - in which the drag force and torque depend only on
the velocity of the centre of gravity - the hydrodynamic forces Fd

and the torque Md depend here on the iceberg’s current config-
uration zG, θ (which determines the submerged part), and on the
three velocities ẋG, żG, θ̇ , (which together with the inclination an-
gle θ determine the local normal velocity). This makes it possible

to produce a horizontal force acting on the iceberg during capsize
even for icebergs initially at rest. Another advantage is that a unique
fit-parameter α is required to represent the drag effect, contrary to
three independent fit parameters used in Burton et al. (2012). This
makes it possible to easily generalize the model to more complex
iceberg geometries.

As for the added-masses in SAFIM, we will consider two possi-
bilities: simplified added-masses and computed added-masses. The
simplified added-masses option is based on analytical formulas for
the diagonal terms of the added-mass matrix. The coupled terms
of added-mass are taken to be equal to zero: mxz = 0, Jzθ = 0, Jxθ

= 0. The formulas used are taken from (Wendel 1956) for fully or
partly submerged solids and were adapted to a capsizing body. The
horizontal and vertical added-masses take the following forms:

mxx = 1

4
Cx π ρw H 2

eff (zG, θ ) (7)

mzz = 3

16
Cz π ρw W 2

eff (zG, θ ) (8)

where Heff and Weff are the effective height and width defined as
the projection of the submerged part of the iceberg along the hori-
zontal and vertical axes, respectively (see Fig. 1 and Appendix B2)
which depend on the vertical and angular positions of the iceberg.
Therefore, the added masses mxx and mzz evolve during the capsize.
On the other hand, the added moment of inertia Iθθ is assumed to
depend only on the height of the iceberg, so it remains constant
during the capsize:

Iθθ = 0.1335 Cθ π ρw

(
H

2

)4

. (9)

In order to adjust the added-mass effect used in SAFIM to repro-
duce the reference ISIS-CFD results, we introduce three calibration
factors in the above equations: Cx, Cz and Cθ (see Section 4 for
calibration).

Computed added-masses are calculated using a computational
fluid dynamics solver. This is done by applying a unit acceleration
on the iceberg for the considered degree of freedom, which leads
to a simplified expression of the Navier-Stokes equations (eq. (16)
in (Yvin et al. 2018)). Then we obtain an equation for the pressure
(the eq. (18) in (Yvin et al. 2018)) which can be solved on the
fluid domain using a numerical method such as the finite element,
boundary element method or finite-volume method (used in this
study (Queutey & Visonneau 2007)). The integration of the induced
pressure on the emerged part of the iceberg in response to a unit
acceleration along x, z or rotation around y gives the corresponding
column of the symmetrical added-mass matrix including both di-
agonal and coupled entries. Similarly to the simplified added-mass,
the values of the computed added-mass also depend on the iceberg
position and they therefore evolve during the capsize. For the com-
puted added-masses, the coupled terms are non-zero, giving rise to
a coupling between horizontal, vertical and rotational accelerations.

To solve the motion eqs (1–3) with SAFIM, the Störmer-Verlet
integration scheme is used. Since SAFIM has only three degrees of
freedom, the integration over time is very fast, only a few seconds
compared to few hours for ISIS-CFD on a single CPU. The time
step in SAFIM that ensures a sufficiently accurate results is 	t =
0.1 s in the field scale and 	t = 0.001 s in the laboratory scale. In
both cases, this step corresponds to a dimensionless time step of
	t ′ = 	t/

√
H/g ≈ 0.01.



Table 2. Dynamic fluid forces proposed by Tsai & Ekström (2007) and Burton et al. (2012) for iceberg capsize
modelling.

Ref. Added-mass (AM): Drag:

(Tsai et al. 2008) mxxT = 3πρw L
8

(
H2 cos(θ )2 + W 2 sin(θ )2

)
Fd = 0

mzzT = 0 Md = 0
IθθT = ρw

24 (H2 − W 2)2

mxz = 0, Jxθ = 0, Jzθ = 0
(Burton et al. 2012) mxx = 0 FdB · ex = νx |ẋ |2sign(ẋ)

mzz = 0 FdB · ez = νz |ż|2sign(ż)
Iθθ = 0 MdB · ey = νθ |θ̇ |2sign(θ̇ )

mxz = 0, Jxθ = 0, Jzθ = 0

4 P E R F O R M A N C E A N D L I M I TAT I O N S
O F S A F I M

4.1 SAFIM’s calibrations

The validation of the proposed model should be suited to the final
objectives: (1) an accurate reproduction of the forces exerted by the
water on the iceberg during capsize; (2) the ease of implementa-
tion in a finite element solver for simulation of the whole iceberg–
glacier–bedrock–ocean system (left for future work), (3) suitability
of the model for the entire range of possible geometries of icebergs
encountered in the field. In this context, we consider 2D icebergs
with rectangular cross-sections (Fig. 1). We use typical densities
observed in the field. As discussed in Section 5, the considered den-
sity has a non-negligible effect on the calving dynamics. We apply
SAFIM to the same four geometries as described in Section 2.3,
with initial tilt angles given in Section 2.4 and Table C1.

To compare SAFIM and ISIS-CFD results, we compute the mis-
match in the time-evolution of the horizontal forces Fx (L2 norm)
during the capsize. The phases of the capsize that we focus on are
phases (ii) and (iii) (defined in Section 2.5). The reason we do not
seek to perfectly model the initial phase (i) with SAFIM is discussed
in Section 5.2. Also, SAFIM is designed to model the capsize phase
but cannot model the very end of the capsize (θ > 80◦), that is
phase (iv), nor the post-capsize phase (v). In these phases, forces
induced by complex fluid motion, which are difficult to parametrize,
are expected to dominate gravity and buoyancy forces.

For SAFIM with a drag force and no added-masses, the mismatch
is defined as:

E1 =
∫ t2

t1

∣∣FxISIS (t) − FxSAFIM (t − 	t)
∣∣2

dt∫ t2
t1

|FxISIS (t)|2dt
(10)

with Fx being the total horizontal force acting on the iceberg, t1

such that Fx(t1) = 1/6Fmin and t1 < tmin and t2 such that Fx(t2)
= 1/6Fmin and t2 > tmin , with Fmin being the first extremum of
the force and tmin the time at which it occurs. In Fig. 5, t ′

1 = 10.3
and t ′

2 = 14.2. This time interval is within phases (ii) and (iii). Since
without added-mass the initial phase of capsize cannot be accurately
reproduced, for the comparison purpose, the SAFIM response is
shifted artificially in time so that the first extremum of the curve fits
that of ISIS-CFD. This time shift 	t is discussed in Section 5.2.

For the SAFIM model with a drag force and added-masses, a
more demanding mismatch is used, which reads as:

E2 =
∫ t3

0

∣∣FxISIS (t) − FxSAFIM (t)
∣∣2

dt∫ t3
0 |FxISIS (t)|2dt

(11)

where t = 0 is the beginning of the simulation and t3 the first
time for which the horizontal force crosses zero Fx(t3) = 0 after

tmin , which corresponds to t ′
3 = 14.4 in Fig. 5. This time interval

includes phases (i), (ii) and (iii). The force is not shifted in time as
for E1. Errors (10) and (11) are computed for a parametric space of
drag and added-mass coefficients as detailed in Appendix C. The
optimized values of the coefficients α, Cx, Cz and Cθ are chosen
such that the errors E1 and E2 are minimized.

4.2 Effect of drag and added-mass

We analyse the horizontal force produced by SAFIM in order to
understand the effects of the drag force and added-masses on the
dynamics of the iceberg capsize. To do so, the dynamics of an
iceberg with an aspect ratio ε = 0.246 were simulated by SAFIM
with and without drag and with and without added-masses and
compared to the results of ISIS-CFD (Fig. 7):

case 0: no drag and no coupled terms in the added-mass matrix: the
horizontal force predicted by SAFIM is equal to zero F ′

x = 0, ∀ t,
as expected. For the sake of clarity, this case is not plotted in Fig. 7.
case 1: drag and no added-mass (no AM) is shown in Fig. 7 for
two values of the drag coefficient α = 1 (purple curve) and α =
0.85 (blue curve). The value α = 0.85 is the optimized value of α

obtained by minimizing the error E1. The force has a slightly higher
amplitude (around t

′ ≈ 8.5) and duration with α = 1 than with the
optimized drag coefficient α = 0.85. Even though the amplitude and
shape of the SAFIM horizontal force are very similar to the ISIS-
CFD results, the full capsize occurs earlier with SAFIM. When
the SAFIM curves are shifted in time by 	t

′ = 2.7 (cyan curve in
Fig. 7), the previous SAFIM force fits well ISIS-CFD. The shape
is the same and the error on the waveform is E1 = 5.2 per cent,
with a relative error on the first force extremum of 4 per cent. A
comparison of SAFIM with the optimized α-factor, SAFIM with
α = 1, and ISIS-CFD is given in Appendix D, for the four aspect
ratios.
case 2: drag and simplified added-mass: when coefficients for the
drag and added-masses are taken all equal to 1 the horizontal force
is very different from the reference ISIS-CFD results (orange curve
in Fig. 7). The duration of the capsize is largely overestimated and
the amplitude is strongly underestimated. The optimized drag and
added-mass coefficients that give a minimum error E2 are α = 1.1
for the drag, Cθ = 0.75 for the added moment of inertia and zero
factors (Cx, Cz) = (0, 0). The corresponding results (yellow curve in
Fig. 7) are in a very good agreement with the reference results (E2

= 10 per cent) both for the shape and for the time corresponding to
the force extremum t

′ ≈ 11.45. The added moment of inertia (coef-
ficient Cθ ) slows down the initial rotation of the iceberg. However,
the amplitude of the force extremum is slightly underestimated by



Figure 7. Computed horizontal force F ′
x = Fx/(mg) applied on the iceberg versus dimensionless time t ′ = t/

√
H/g for a reference ISIS-CFD simulation and

for SAFIM simulations with different drag and added-mass parameters.

8 per cent. The accuracy of the formula of the simplified added-
masses with coefficients equal to 1 is discussed in Section 5.4.
case 3: no drag and computed added-masses: SAFIM (dark green
curve in Fig. 7) fits the reference results quite well in amplitude but
not in time and predicts a huge second minimum.
case 4: drag and computed added-masses: when correcting the drag
coefficient to α = 3.0, which minimizes the error E2, SAFIM fits
better in time, reproducing the initial slow change of the force, but
the amplitude and the shape still do not fit ISIS-CFD (black curve
in Fig. 7). Similarly to the simplified added-masses, the computed
added-masses slow down the initial rotation of the iceberg.

This analysis suggests that the drag force has mainly an effect on
the amplitude of the first force extremum and that the added-masses
have an effect on the duration of the initiation of the capsize. Also,
optimized coefficients of drag and added-masses improve the model
significantly compared with the case with all coefficients set to 1.
Further discussions on the pros and cons of the SAFIM models are
given in Section 5.1.

4.3 Effect of the iceberg’s aspect ratio

We will now analyse the forces and the torque acting on the four se-
lected geometries of icebergs computed by ISIS-CFD and SAFIM.
The evolution of the dimensionless horizontal force F ′

x , vertical
force F ′

z , torque M ′
θ , horizontal displacement x ′

G , vertical displace-
ment z′

G and inclination θ obtained by ISIS-CFD and SAFIM are
plotted in Fig. 8 for SAFIM best-fitted results obtained with drag
and without added-masses and in Fig. 9 for SAFIM results with

drag and simplified added-masses. SAFIM models use optimized
parameters indicated in Table C1 for each aspect ratio.

We will first discuss the sensitivity of the forces computed with
the reference model ISIS-CFD to the aspect ratios ε. We observe
that the amplitude of the first extremum of both the horizontal
force F ′

x and the vertical force F ′
z decreases with increasing as-

pect ratio. Consequently, the amplitude of the horizontal accelera-
tion ẍG = Fx/m = gF ′

x , also decreases with increasing aspect ratio.
This is consistent with the observed slower horizontal displacement
of icebergs with larger aspect ratios as reported in Section 2.4. Also,
the durations of the capsize do not differ much in the four cases.

drag and no added-masses (case 1): The minimal error E1 increases
with the aspect ratio (from 5 per cent for ε = 0.246 and up to
24 per cent for ε = 0.639). The optimal drag coefficient α increases
in an approximately affine way with the aspect ratio (Fig. 10a) as:

αopt(ε) ≈ −1.6 + 8.8ε

with the coefficient of determination equal to R2 = 0.98. This linear
regression is valid within the range of studied aspect ratios 0.246 ≤
ε ≤ 0.639. Note that this formula should not be used for ε < 0.18 for
which the drag coefficient would be negative, which is physically
meaningless.

drag and simplified added-masses (case 2): The minimal errors E2

for SAFIM with drag and simplified added-masses are greater than
the errors E1 with drag and no added-masses Fig. 10(b). As for E1,
the error E2 increases with the aspect ratio (from 10 per cent for
ε = 0.246 up to 26 per cent for ε = 0.639). Note that for all the



Figure 8. Capsize simulations for SAFIM with drag, without added-masses and with time-shifts, and for ISIS-CFD: evolution of the dimensionless total
horizontal force F ′

x , vertical force F ′
z and torque M ′

θ on the iceberg (a, c, d, e), of the horizontal x ′
G and vertical z′

G positions of G and of the inclination θ of
the iceberg (b, d, f, g). Results are given for icebergs with ε = 0.246 (a, b), ε = 0.374 (c, d), ε = 0.496 (e, f) and ε = 0.639 (g, h). SAFIM curves were shifted
(green arrow) by the dimensionless time 	t ′ = 	t

√
g/H . The SAFIM drag coefficient α and time 	t

′
are indicated in the titles.

four studied cases, optimization of the error requires keeping only
one non-zero added-mass coefficient, namely the added moment
of inertia coefficient. The simplified added-masses allows a slow
initiation of rotation, which can be explained by an added moment
of inertia of the surrounding fluid.

drag and computed added-masses (case 4): In that case, SAFIM
predicts the time and amplitude of the extremum of the force and
the torque less accurately than the two previous cases: the error E2

> 34 per cent for all the four studied cases (Fig. 10b). The corre-
sponding results are not shown here.



Figure 9. Same as in Fig. 8 but for SAFIM with drag, simplified added-masses and no time shift (	t
′
). SAFIM drag coefficient α and added-mass coefficient

Cθ are indicated in the titles.

5 D I S C U S S I O N

First we will discuss the performance of SAFIM in Sections 5.1 and
5.2, then the modelling choices in Sections 5.3 and 5.4 and finally
the sensitivity of the model results to geophysically meaningful
variations of parameters in Sections 5.5, 5.6 and 5.7.

5.1 SAFIM performance and comparison with existing
models

The advantages of the formulated and validated SAFIM model
with drag and without added-masses is that (1) it can be readily
implemented in a finite element model like the one in (Sergeant



Figure 10. (a) Optimized values of the drag coefficient α for different iceberg’s aspect ratios, which were determined for SAFIM with and without added-mass,
only added moment of inertia was used in the simplified added-mass model, and a full added-mass matrix was used for the computed added-mass; (b) the
minimal error of the horizontal force corresponding to different models for different iceberg’s aspect ratios. The optimal parameters and corresponding minimal
errors are also given in Table C1.

et al. 2018), (2) it requires only one parameter, the drag coefficient
αopt(ε) ≈ −1.6 + 8.8ε, (3) it quite accurately reproduces the shape
and amplitude of the horizontal force. The drawback of this model
is that it does not correctly simulate the kinematics of the iceberg
capsize, especially the time needed to reach the peak force (see
discussion in Section 5.2). In addition, the evolution of the torque
and vertical force is not well reproduced.

The advantage of SAFIM with drag and simplified added-masses
is that it correctly reproduces the time of the force extremum (no
shift in time is needed) and it reproduces the torque and the vertical
force better than SAFIM with drag and no added-masses. Its draw-
back is that it underestimates the amplitude of the first extremum
of the horizontal force by ≈10 per cent.

SAFIM with drag and computed added-masses gives less accu-
rate results than the two other versions. Assuming that the computed
added-masses are physical and accurate (Yvin et al. 2018), the drag
model in SAFIM is not suitable with that added-mass formulation
since it does not make it possible to reproduce the dynamics of the
iceberg.

The proposed SAFIM model well predicts the first part of the
horizontal force applied by the fluid on the iceberg, either when
using a drag force only (i.e. no added-masses) and shifting the curve
in time or when using a drag force and simplified added-masses
(and no shift in time). However, the evolution of the force after the
capsize (θ > 80◦) is not well modelled. This is probably due to the
fact that the evolution of the local fluid pressures is governed by a
complex fluid motion around the iceberg (see Section 5.3) which is
hard to parametrize without full fluid dynamics computations. The
duration and amplitude of the positive peak in the force is however
comparable to that of the first minimum of the force (see e.g. for ε

= 0.374 Fig. 8).
An advantage of SAFIM over previous models (Tsai et al. 2008;

Burton et al. 2012) is that, thanks to a special form of the drag
force, it can describe the horizontal movement of a capsizing iceberg
triggered by its rotation. As shown in Sergeant et al. (2018), SAFIM
can distinguish between a top-out and bottom-out capsize, when
used to simulate the contact force between a capsizing iceberg and

a rigid glacier front. A qualitative explanation of the emerging non-
zero horizontal force given by the drag force is given in Appendix B.

We calculate the error in SAFIM with a drag coefficient α = 1 for
all aspect ratios and without added-mass (Fig. 10). Exactly the same
model was used in Sergeant et al. (2018, 2019), but for modelling
an iceberg capsizing in contact with a glacier front. The error E1 is
about two times greater than when taking the optimum value of the
α coefficient for each aspect ratio, and the amplitude and duration of
the first negative part of the force is underestimated—except for the
thinnest iceberg with ε = 0.246, for which the opposite is true. Note
that this error is only relevant for a freely capsizing iceberg. In future
work, the errors for an iceberg capsizing in contact with a glacier
front should be estimated but this will require a reference model
for fluid-structure interactions that can track the contact between
solids, which is a challenging problem (Mayer et al. 2010).

5.2 Initiation of the capsize

In the previous sections, the drag parameter for SAFIM without
added-masses was optimized by implementing an artificial time
shift of the SAFIM force curve with respect to ISIS-CFD. This was
done because, as already mentioned, SAFIM without added-masses
is not able to predict the accurate duration of the initiation of the
capsize, where the motion is slow and the horizontal force is close
to zero.

Various reasons suggest that this initial phase may not be rele-
vant in the global context of the ultimate objective of the project,
that is estimation of the short time-scale volume loss on marine-
terminating icebergs. To achieve this objective, we need to compare
the modelled contact force with the inverted seismic source force.
The very beginning of the seismic force has a too small signal-to-
noise ratio, therefore it is the first peak of the force that is used as
a reference to compare the seismic force and the modelled force.
Also, because this force evolves very slowly at the beginning, it
will not be responsible for the generation of seismic waves with a
period of 50 s that is predominantly observed on glacial earthquake
seismograms (Ekström et al. 2003; Tsai & Ekström 2007; Tsai et al.



2008; Sergeant et al. 2018). Another reason for ignoring the begin-
ning of the capsize is that the duration of the initial slow rotation
[phase (i)] of the iceberg is strongly dependent on the initial angle
of inclination of the iceberg which is hard to constrain in the field
data and, when it is sufficiently small, has little effect on the capsize
[phases (ii), (iii), (iv)]. The initiation phase of the capsize may also
depend on the asymmetrical geometry of the iceberg, its surface
roughness and the 3-D effects (see Sections 5.6 and 5.7).

Nevertheless, if we consider a complete glacier / ocean / bedrock
/ iceberg / ice-mélange system, the initial detachment of the iceberg
can result in various other effects such as basal sliding or vertical os-
cillations of the glacier tongue, which can produce a seismic signal.
Therefore the superposition of these phenomena can be erroneous
if the timing is not well reproduced. To solve this issue, simulations
of the complete glacier / ocean / bedrock / iceberg / ice-mélange
system with a full fluid dynamics model coupled with a model
for dynamics of deformable solids would seem to be unavoidable,
however, as already discussed, it lies beyond actual computational
possibilities of the softwares that we dispose.

5.3 Drag force and local pressure field

Following Burton et al. (2012), a linear drag model with a local
pressure proportional to the normal velocity |vn| was also tested in
SAFIM. It results in the following modification to eqs (5) and (6):

Fd = −α
1

2

∫
�s

ρw|vn|sign(vn)n d�, (12)

Md = −α
1

2

∫
�s

ρw|vn|sign(vn)(r − rG) ∧ n d�. (13)

Such a drag model yields worse results than the original model with
quadratic dependency when compared with the reference ISIS-CFD
model. In addition, other drag models were tested with linear and
quadratic pressure dependency on the velocity, with a non-uniform
parameter α on the surface of the iceberg and with drag depending
on the sign of the local normal velocity vn. Of all drag models tested,
the most accurate was the model with quadratic dependency on the
normal velocity and with a constant α-factor over the whole surface
of the iceberg. However, to better fit the reference results, the α-
factor was made dependent on the iceberg’s aspect ratio, which is an
important difference with the original model presented in Sergeant
et al. (2018).

To go further in our understanding of the forces generated by the
fluid, we analyse the hydrodynamic pressure distribution on the sides
of the iceberg, computed by ISIS-CFD and defined as pdyn = ptot −
psta, with ptot the total fluid pressure and psta the hydrostatic pressure
computed for the reference still water level (z = 0). In particular, we
attempted to establish a link between the spatial distribution of the
hydrodynamic pressure on the iceberg and the local features of the
fluid flow, notably with the normalized vorticity (see Fig. 5) which is
defined as: ω = −√

H/g ey · (∇ ∧ u), with a negative value (blue)
accounting for a vortex rotating clockwise and a positive (red) value
for a counter-clockwise vortex. On the four snapshots presented
in Fig. 5, we also plot the dimensionless hydrodynamic pressure
p′

dyn = pdyn/(ρi H g). The hydrodynamic pressure is plotted as a
shaded pink area outside the iceberg for a negative pressure and
inside the iceberg for a positive pressure. Note that these values are
about two orders of magnitude lower than the average hydrostatic
pressure. The dynamic pressure is higher at locations where there
is a vortex close to the surface of the iceberg such as on the corner

furthest right in Figs 5(b) and (c), on the bottom part of the left side
and in the middle on the right side of the iceberg. This observation
suggests that the dynamic pressure field is highly dependent on the
vortices in the fluid. Such an evolution of complex vortex motion
cannot be reproduced within SAFIM and requires the resolution of
the equations of fluid motion as in ISIS-CFD. Note that the high
values of the pressure on the top side of the iceberg in Figs 5(c) and
(d) are due to an additional hydrostatic pressure produced by the
wave that is above the reference sea level.

Using ISIS-CFD simulations, we made an attempt to correlate
the local hydrodynamic pressure pdyn with the normal velocity vn

via a power law as it is the case in SAFIM:

|pdyn| = b|vn|a . (14)

in order to optimize the drag law used here (in SAFIM, the coeffi-
cients are a = 2 and b = −α sign(vn) ρw/2). This attempt was not
successful. We observed that the values of a and b vary significantly
along the sides of the iceberg and with time particularly on the top
part of the long sides of the iceberg and close to the corners. Also,
we tried to correlate the dynamic pressure for a = 2, as in SAFIM,
without success. Nevertheless, the choices made in SAFIM ensures
rather accurate overall drag forces and torques acting on the iceberg
due to dynamic pressure.

5.4 Accuracy of the added-mass

The simplified added-masses, defined by eqs (7), (8) and (9), with
only diagonal terms in the added-mass matrix, will now be com-
pared with the reference computed added-masses. Both added-mass
matrices depend on the current iceberg position, and therefore they
should be updated at every time step. These matrices are calculated
for the iceberg’s motion computed by ISIS-CFD. We show the time
evolution of the added-masses and the added moment of inertia, for
the capsize of a laboratory-scale iceberg with H = 0.103 m and ε

= 0.246 in Figs 11(a)–(c) and ε = 0.496 in Figs 11(d)–(f).
The simplified horizontal and vertical added-masses are in very

good agreement with the corresponding computed added-masses:
relative error (with the L2 norm) of 21 per cent on mxx for ε =
0.246 and 23 per cent for ε = 0.496; relative error of 11 per cent
on mzz for ε = 0.246 and 13 per cent for ε = 0.496. The simplified
added moment of inertia Iθθ is assumed to be constant in our model
whereas the computed one varies in time and has a smaller value:
relative error of about 30 per cent.

For the aspect ratio ε = 0.246, the horizontal added-mass mxx

decreases from ≈ 2.5 m at the beginning down to ≈ 0.2 m, where
m is the iceberg mass, whereas, symmetrically, the vertical added-
mass mzz increases from ≈ 0.2 m at the beginning up to ≈ 2.5 m
at the end of the capsize. The horizontal added-mass mxx measures
the resistance of the fluid to a horizontal acceleration ẍG of the
iceberg. The iceberg has a longer submerged vertical extension (of
the order of H) at the beginning than at the end (of the order of W)
of the capsize, thus it needs to displace a greater volume of fluid in
a horizontal motion at the beginning than at the end of the capsize
(θ > 90◦). Therefore, a greater added-mass mxx is expected at the
beginning of the capsize. The vertical added-masses mzz, sensitive
to the horizontal extension of the iceberg, experience the opposite
variations in time. The computed added moment of inertia is equal
to the moment of inertia of the iceberg I at the beginning. Then it
increases to 1.25 I and decreases below the iceberg’s moment of
inertia to 0.9 I (see Fig. 11).



Figure 11. Time evolution of dimensionless horizontal added-masses (a) and (d), vertical added-masses (b) and (e), added moment of inertia (c) and (f). The
dashed cyan curves are the simplified added-masses and moment of inertia and the solid green curves are the computed added-masses and moment of inertia.
Values are given for a laboratory-scale iceberg (H = 0.103 m) with field densities and aspect ratio ε = 0.246 in (a), (b) and (c) and ε = 0.496 in (d), (e) and (f).
For each aspect ratio ε, the values are normalized by the mass of the iceberg m = ρiH2ε and the inertia of the iceberg I = ρiH4(1 + ε2)/12. The non-constant
added-masses are given for the positions of the iceberg in the ISIS-CFD simulations. The values of the simplified added-masses are plotted for all coefficients
equal to 1: Cx = Cz = Cθ = 1.

For the aspect ratio ε = 0.496, the variations of the dimensionless
added-masses are different in amplitude but with rather similar
evolutions.

For other geometries, the added-masses (resp. inertia) are also
of the same order of magnitude as the masses (resp. inertia) of
the iceberg as found here for rectangular icebergs. For example, in
the case of a 2-D thin ellipse with an aspect ratio of b/a, with a
the along-flow dimension and b the cross-flow dimension, Newman
(1999) gives the added-masses and added moment of inertia. For
b/a = 0.2, the transverse added-mass is equal to 0.9 times the mass
of the displaced volume of fluid (i.e. the submerged volume of the
solid times the density of the fluid) and the added moment of inertia
is equal to 0.7 times the inertia of the displaced volume of fluid.
For similar densities for the fluid and the solid, the added-masses
and the added moment of inertia are close to those of the solid.
The optimized values of the coefficients for the simplified added-
masses and moment of inertia in SAFIM are given in Table C1.
These values are not in agreement with the reference computed
added-masses. However, as discussed in Section 5.1, the SAFIM
model with the simplified added-mass matrix gives better results
than SAFIM with the computed added-mass matrix. For ε = 0.246,
note that the optimized simplified added moment of inertia (Cθ =
0.75) is close to the computed one. However, the simplified added
moment of inertia is not in agreement with the computed one for
higher ε.

The optimized value Cz = 0 is consistent with the choice of
mzz = 0 in Tsai et al. (2008) even though it is not equal to the
computed vertical added-mass. The optimized coefficient Cx = 0
gives mxx = 0. The horizontal added-mass mxx from Tsai et al.
(2008) varies similarly to the computed added-mass. The added
moment of inertia Iθθ with the formula in Tsai et al. (2008) is
constant throughout the capsize and different from the optimized

added moment of inertia. However, the formula for added-masses
and added moment of inertia from Tsai et al. (2008) were given for
the simulation of an iceberg capsizing in contact with a wall, which
may significantly affect the values of the added-masses.

5.5 Effect of water/ice densities

The laboratory experiments discussed in Section. 2.3 were con-
ducted with water and ice densities slightly different from those in
the field (see Section. 2.1).

As shown in Fig. 12, the dynamics of the iceberg computed by
ISIS-CFD with field densities is significantly different from those
obtained with laboratory densities: the amplitude, duration and ini-
tiation of the capsize are very sensitive to changes in densities. This
sensitivity is also very well reproduced by SAFIM with drag and
no added-masses. Note that no change in the drag coefficient α is
needed to accurately reproduce this effect with SAFIM.

In Section 2.5, we pointed out the similarity between laboratory
scale and field scale simulations if the same water and ice densities
were used in both. To obtain the dimensionless variables, we used
the timescale TH = √

H/g, length scale H and mass scale m (see
Table 1). However, as shown in Fig. 12, using different densities
yields great differences in the horizontal force. Here, we explain how
a simulation of a laboratory-scale iceberg with laboratory densities
can be related to a simulation of a field-scale iceberg with field
densities. We use the same approach as in Section 2.5, with length
scale H and mass scale m but we introduce a timescale depending on
the densities as proposed by Tsai et al. (2008) (ignoring the factor
2π ):

Tρ,H =
√

Hρi

g(ρw − ρi )
. (15)



Figure 12. Horizontal force acting on a capsizing iceberg (H = 0.103 m and ε = 0.246) computed by ISIS-CFD and SAFIM for two different sets of
densities: laboratory densities (blue and cyan curves) ρw = 997 kg m−3 and ρi = 920 kg m−3 and field densities (red and yellow curves) ρw = 1025 kg m−3

and ρi = 917 kg m−3.

In Fig. 13, we plot the dimensionless horizontal force F ′
x =

Fx T 2/(m H ) with respect to the dimensionless time t
′ = t/T for

timescale T = TH and for timescale T = Tρ, H and for three aspect
ratios ε = 0.25, 0.375 and 0.5. For the timescale TH which does
not involve densities, the dimensionless curves differ considerably
whereas for Tρ, H, which takes the densities into account, the agree-
ment is improved, especially for small aspect ratios.

Using a shift in time, the fit can be improved even further. There-
fore, to upscale the laboratory-scale experiments to the field scale,
a dimensionless timescale Tρ, H should be used rather than a simple
scaling TH.

As densities have a large impact on capsize dynamics, more re-
alistic water and ice densities, including their spatial heterogeneity,
should be considered in future capsize models. Water density de-
pends on salinity and temperature. For example, in the fjord of the
Bowdoin glacier (northwest Greenland), water density may change
in the range between 1015 and 1028 kg m−3 (Sejr et al. 2017; Mid-
delbo et al. 2018; Holding et al. 2019; Ohashi et al. 2019). Ice den-
sity is more difficult to evaluate as in situ measurements are rare. It
depends on the volume fraction of air bubbles, which is for example
around 20−30 per cent for firn at ≈ 40 m in depth (Herron & Lang-
way 1980). The density of the iceberg may then be heterogeneous
and can probably range between ≈ 600 and ≈ 930 kg m−3 (the den-
sity of pure ice at −10 ◦C being about 918 kg m−3). With these
ranges of ice and water field densities, the factor

√
ρi/(ρw − ρi )

varies between the extreme values ≈1.18 and ≈3.31, which corre-
sponds to an even greater spread than in our lab/field comparison
(3.46 for lab densities, 2.92 for field values). Therefore considera-
tion of the effect of density and its variability has to be integrated
in the inverse problem for iceberg volume estimation based on the
seismic signal inversion.

5.6 3-D effects

Capsizing icebergs have the following typical dimensions: full-
glacier-height 500 m � H � 1000 m, width in the glacier’s flow
direction W � 0.75H (MacAyeal & Scambos 2003), width along
the glacier’s coast line generally greater than the iceberg’s height
H � L, with the upper limit equal to the glacial fjord width. How-
ever, as discussed above, in our modelling we neglect the effect of
the third dimension on the dynamics of the capsizing iceberg. The
first argument to support this simplification is that iceberg capsiz-
ing in a narrow fjord-like tank [laboratory experiments of Burton
et al. (2012)] is very well reproduced with the 2-D ISIS-CFD model
(Section 2). In the field, icebergs capsize in fjords with much more
complex geometries. For example, the fjord may be much wider
than the iceberg which would yield a truly 3-D motion of the fluid.
Real capsizing iceberg should induce vortices on each side of the
iceberg which may have an effect on the motion of the iceberg that
has not yet been evaluated.

5.7 Effect of the iceberg geometry

This study was conducted with the assumption that the icebergs have
a perfectly rectangular (parallelepipedic) shape and smooth surface.
However, icebergs in the field have much more complex shapes.
The freeboard of an iceberg has irregularities that can range from
a scale larger than 100 m down to a scale less than 0.1 m (Landy
et al. 2015). The roughness of the submerged part of icebergs is
poorly documented because of the difficulty in conducting suitable
measurements. In future work, we could estimate the roughness of
some well documented icebergs, such as the PII-B-1 tabular iceberg
in Northwest Greenland scanned with a Reson 8125 multibeam



Figure 13. Dimensionless horizontal force acting on a capsizing iceberg computed by ISIS-CFD for a field-scale iceberg with field densities ρw = 1025 kg m−3

and ρi = 917 kg m−3 (solid lines) and for a laboratory-scale iceberg with laboratory densities ρw = 997 kg m−3 and ρi = 920 kg m−3 (dashed lines). The top
row (a, b, c) is for timescale TH = √

H/g and the bottom row (d, e, f) is for timescale Tρ,H = √
H/g

√
ρi /(ρw − ρi ). The first, second and third columns

correspond to ε = 0.25, 0.375 and 0.5, respectively.

sonar by Wagner et al. (2014). In fluid mechanics modelling, surface
features have a great impact on the boundary layer close to the
surface and in some cases also on the whole flow (Krogstad &
Antonia 1999). A sensitivity analysis would be needed to assess
the influence of the surface features and surface roughness on the
dynamics of capsizing icebergs.

Furthermore, in our simulations, icebergs were initially in hydro-
static equilibrium. In Sergeant et al. (2018), the effect of hydrostatic
imbalance of the iceberg at the initiation of the capsize was assessed
by varying the vertical position of the iceberg with respect to the
water level. Hydrostatic imbalance results in a different evolution of
the contact force with the glacier front and different dominant fre-
quencies of generated seismic waves. This is supported by seismic
observations of calving events.

6 C O N C LU S I O N

In this study, we have improved the understanding of free iceberg
capsize in open water through fluid-dynamics simulations (ISIS-
CFD solver) validated against laboratory experiments (Burton et al.
2012). In particular, we have shown the complexity of the fluid
motion and the dynamics of the iceberg during capsize: vortices
around the iceberg during and after capsize, motion of the fluid
around the iceberg (velocity of ≈88 cm s–1 for a H = 800 m high
iceberg at a distance H from the iceberg), wave generation, iceberg
submergence when reaching the horizontal position and a significant
horizontal displacement of the iceberg during capsize. Moreover,
we have shown that the non-dimensionalized horizontal force F ′

x =
Fx/(ρi H 2εg) is invariant with the height H of the iceberg. The
horizontal force acting on the iceberg while its capsize changes its
sign after the full capsize. Depending on the iceberg dimensions,
this reverse force could be as high and last as long as the one
acting during the capsize. Extrapolating these results to iceberg
capsize against the glacier terminus would suggest that the force

applied by the rotating iceberg on the glacier could be followed by
a purely hydrodynamic force of opposite sign, once the contact is
lost. This could possibly be compatible with the boxcar force shape
assumed by (Olsen & Nettles 2017, 2019) even though the filtering
of the contact force itself, with a constant sign, would also lead to a
changing sign filtered force as explained by (Sergeant et al. 2018,
fig. 7). This hypothesis should be however clarified by a full scale
CFD analysis including contact and glacier terminus.

We have presented here a Semi-Analytical Floating Iceberg
Model (SAFIM) and demonstrated its accuracy for various geome-
tries as well as for different water and ice densities by comparing the
results with direct numerical CFD simulations. Our simple model
is slightly more complex but more accurate than the one used in
our previous study (Sergeant et al. 2018): the new feature is that the
drag parameter depends on the iceberg aspect ratio (affine function)
to minimize the error with the reference CFD simulations. SAFIM’s
error is of 5 to 20 per cent (about half the maximum error made with
the Sergeant et al. (2018) model) on the horizontal force Fx (without
added-masses) during the capsize phase for different aspect ratios.
An extension of this model to more complex iceberg shapes and to
three dimensions is relatively straightforward. Different options are
offered by SAFIM. For accurate modelling of the amplitude of the
fluid forces, SAFIM should be used with drag but without added-
masses. For accurate modelling of the time of the peak force and the
torque, it should be used with a drag force and an added moment
of inertia. In the global context of estimations of iceberg volume by
analysis of seismic signals generated during iceberg capsize in con-
tact with a glacier front, based on the discussion on the time-shift in
Section 5.2, SAFIM should be used with an optimized drag coeffi-
cient and no added-masses. However, for today this model has been
validated only for the case of the capsize of an iceberg in the open
ocean. Further validation will be conducted for the simulation of the
capsize of an iceberg in contact with a glacier. In the geophysical
context of modelling seismogenic iceberg capsize, further studies



would help improve the model accuracy. Examples of such studies
include (i) modelling of the full glacier / ocean / bedrock / iceberg
/ ice-mélange system, which is computationally very challenging
and (ii) sensitivity analysis of the iceberg dynamics to the iceberg
shape, surface roughness and fjord geometry, which may be also
very complex.
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Krogstad, P.Å. & Antonia, R.A., 1999. Surface roughness effects in turbulent
boundary layers, Exp. Fluids, 27(5), 450–460.

Landy, J.C., Isleifson, D., Komarov, A.S. & Barber, D.G., 2015. Parame-
terization of centimeter-scale sea ice surface roughness using terrestrial
LiDAR, IEEE Trans. Geosci. Rem. Sens., 53(3), 1271–1286.

Lemke, P. et al., 2007. Observations: changes in snow, ice and frozen ground,
climate change 2007: the physical science basis, in Contribution Of Work-
ing Group to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, 337–383, Cambridge Univ. Press.

Leroyer, A. & Visonneau, M., 2005. Numerical methods for RANSE
simulations of a self-propelled fish-like body, J. Fluids Struct., 20(7),
975–991.

Leroyer, A., Wackers, J., Queutey, P. & Guilmineau, E., 2011. Numerical
strategies to speed up CFD computations with free surface—application
to the dynamic equilibrium of hulls, Ocean Eng., 38(17–18), 2070–2076.
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P

A P P E N D I X  A :  D I M E N S I O N A L
A N A LY S I S

The Vashy–Buckingham - π theorem states that the problem can be 
written with n − p dimensionless ratios obtained by a combination 
of the n characteristic variables. The integer p is the number of 
independent physical dimensions in the iceberg capsize system, 
which is 3 (time, length and mass). The characteristic variables of 
the system are the dimensions, H and W, the densities ρi and ρw, the 
water viscosity μw and gravity g, so n = 6.

The n − p = 3 dimensionless ratios are chosen here to be:

ε,
ρw

ρi
,

μw

ρw H 3/2g1/2

The calculation of the horizontal force Fx(t) from the n = 6 in-
dependent characteristic variables of the problem can be written
as:

Fx = f (H, W, ρi , ρw, μw, g)

The Vashy-Buckingham - π theorem states that the problem can be
written as:

Fx

mg
= G

(
ε,

ρw

ρi
,

μw

ρw H 3/2g1/2

)
(A1)

To estimate the effect of viscosity, we compare the pressure and
viscous forces. The fluid force on the surface of the iceberg calcu-
lated by ISIS-CFD is the sum of a friction-induced force (locally
tangent to the fluid/solid interface) and a pressure-induced force
(normal to this interface). In the case of an iceberg with aspect ra-
tio ε = 0.25, the friction force is found to be ≈300 times smaller
than the pressure force for the field-scale case (H = 800 m) and
≈10 times smaller for the laboratory case (H = 0.103 m) as il-
lustrated in Fig. A1. Therefore, viscous effects can be reasonably
neglected in both scales. This leads to the following approximation
for eq. (A1):

Fx

mg
≈ G

(
ε,

ρw

ρi

)
, (A2)

that is for similar initial conditions and boundary conditions, the
evolution with time of the dimensionless force F ′

x = Fx/(mg) only
depends on the aspect ratio ε and the density ratio ρw/ρ i. However,
the function f remains unknown and is investigated in Sections 2.5
and 5.5.
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Figure A1. Viscous forces and pressure forces for (a) a laboratory-scale and (b) a field-scale iceberg capsize, computed by ISIS-CFD.

A P P E N D I X B : S A F I M F O RC E S A N D
T O RQ U E S

The integrated expressions for hydrostatic and drag forces and the
associated torques are given below for SAFIM and for a rectangular
iceberg as in Fig. 1. All these expressions are implemented in the
Python code available online at (Yastrebov & Bonnet 2020).

The effect of the hydrostatic pressure is given by the following
integral: Fs = −ρwg

∫
�s

zn d�, where n is the outward surface nor-

mal and �s is the submerged part of the iceberg. The torque induced
by this pressure distribution with respect to the centre of gravity G
at position rG is given by: Ms = −ρwg

∫
�s

(r − rG) ∧ n d�

The drag force is given by eq. (5), and the drag torque with respect
to G by eq. (6). The calculation of the integral of the pressure drag is
split into integration over all submerged or partly submerged sides
of the rectangular iceberg. Consider a partly submerged side S =
AB and let us assume that corner A is a submerged corner and B is a
corner outside the water. Then the velocity vM of a point M ∈ [AB]
is:

vM = vG + θ̇ey ∧ (r M − rG), (B1)

where vG is the velocity of G, r M = r A + ξ (r B − r A) with ξ ∈
[0, ξ i] and ξ i defining the intersection between[AB] and the water
surface. Thus, for the side AB, the contribution of the drag force is
given by

F AB
d = 1

2
αρwn‖r B − r A‖

ξi∫
0

|vn|2sign(vn) dξ,

where vn = vM · n. For the case of a totally submerged side, ξ i =
1. For the case of a side totally outside the water, the contribution
to the drag force is zero.

B1 Horizontal motion of capsizing iceberg

With the formulation of the drag force given above, we can re-
produce the horizontal motion of a freely capsizing iceberg, which
is observed experimentally and reproduced with the accurate ISIS-
CFD simulations. Obtaining a closed form solution of SAFIM equa-
tions eqs (1), (2) and (3) is out of reach. We wish to give here some
intuitive explanation of the horizontal motion of the iceberg. The
resultant of the buoyancy and gravity forces moves the iceberg up-
wards and makes it rotate: these two effects initiate the vertical and
rotational motion of the iceberg. The induced velocity produces a
force with a non-zero horizontal component.

We now explain why these two initial motions -upwards and
rotation-, together generate a horizontal drag force, in the framework
of SAFIM. We draw the velocity v (triple red arrow) of several points
on the surface of the iceberg and its normal component vnn (dashed
red arrow). In SAFIM, the elementary drag force d Fd (solid black
arrow) is collinear with n and opposes the normal velocity vnn.
The projection of the elementary drag forces on the horizontal axis
d Fdx = (d Fd · ex )ex is shown by a dashed green arrow if it is
leftward and dashed blue arrow if it is rightward. The integral of
these horizontal elemental forces results in the global horizontal
force Fd · ex .

For the case of upward motion Fig. B1(a), the vertical local
velocity is constant along the iceberg surface. The horizontal drag
force on the two long sides of the iceberg is leftward whereas on the
submerged side CD, it is rightward with a smaller amplitude. The
iceberg thus moves to the left.

For the case of rotational motion around G, with no motion of G
(Fig. B1b), the velocity increases with the distance to the centre of
rotation. The further away the point is, the more it contributes to the
drag force. Two points located at the same distance from G, but with
opposite normal velocity vnn (i.e. one point on the blue line and one
point on the green line) have the same absolute contribution to the
drag force but in opposite directions. Thus the drag force on the part
of the surface coloured by solid green lines compensates the drag
force on the part coloured blue. The remaining part of the surface
coloured by dashed green lines at the iceberg bottom, induces a
leftward total horizontal force. Therefore, by superposing vertical
and rotation motion, we obtain a net drag force in the direction of
the initial tilt of the iceberg, here to the left.

B2 Simplified added-masses

The calculation of the simplified added-masses given in eqs (7)
and (8), requires the calculation of the effective height Heff and
effective width Weff of the submarine part of the iceberg (see Fig. 1).
To calculate them, we use the positions of the four corners: C, D,
E, F (Fig. B1). The coordinates of a corner P ∈ {C, D, E, F} have
the general expression:

xP = xG + δP
1

H

2
sin(θ ) + δP

2

L

2
cos(θ)

zP = zG + δP
3

H

2
cos(θ) + δP

4

L

2
sin(θ )



Figure B1. Schematic explanation of the horizontal force induced by the formulation of the drag force in SAFIM for (a) a vertical upward motion of the
iceberg, and (b) a rotation of the iceberg.

with (δP
1 , δP

2 , δP
3 , δP

4 ) defined as follows for the four corners

{δC
1 , δC

2 , δC
3 , δC

4 } = {1, −1, −1, −1},
{δD

1 , δD
2 , δD

3 , δD
4 } = {1, 1,−1, 1},

{δE
1 , δE

2 , δE
3 , δE

4 } = {−1, 1, 1, 1},
{δF

1 , δF
2 , δF

3 , δF
4 } = {−1, −1, 1, −1}.

The effective height can be calculated with the following expres-
sions:

Heff = max ((zw − zC ); (zw − zD); (zw − zE ); (zw − zF ))

where zw is the water level.
The effective width, defined as the distance between the leftmost

and the rightmost points of the submerged part of the iceberg, is
calculated similarly, but after checking which are the submerged
corners and the geometrical intersection between the water surface
and the iceberg sides.

A P P E N D I X C : O P T I M A L PA R A M E T E R S

We summarize in Table C1 the errors of SAFIM computed with
respect to the ISIS-CFD results for a quadratic drag model and
the three options for added-masses (no added-masses, simplified or
computed added-masses). These errors correspond to the minimal
possible errors obtained by the minimization procedure. The step
used for the drag coefficient α was 0.05 and the step for the added-
masses factors was 0.25.

A P P E N D I X D : C O M PA R I S O N O F S A F I M
W I T H M O D E L I N S E RG E A N T E T A L .
( 2 0 1 8 , 2 0 1 9 )

We compare SAFIM model with optimised α-factor, SAFIM model
with α = 1 (as used in Sergeant et al. (2018, 2019)) and ISIS-CFD
in Fig. D1. The optimisation of the drag coefficient α improves
the horizontal force F ′

x and torque M ′
θ , in particular for the three

biggest aspect ratios (Figs D1c–h).

Table C1. First two columns: geometrical characteristics and initial conditions of the studied icebergs. Laboratory-scale
iceberg simulations have height H = 0.1 m and field-scale iceberg simulations have height H = 800 m. The density of
the water is ρw = 1025 kg m–3 and the density of the ice is ρi = 917 kg–3. Next columns: parameters minimizing the
error on Fx and the corresponding error for SAFIM without added-masses, SAFIM with computed added-masses and
SAFIM with simplified added-masses.

No AM Computed AM Simplified AM

ε θ0 [o] Error E1 α Error E2 α Error E2 α Cx Cz CI

0.246 0.5 5.2% 0.85 36.6% 3 10.0% 1.1 0. 0. 0.75
0.374 0.5 9.6% 1.55 34.1% 1.8 21.3% 1.4 0. 0. 0.75
0.496 0.5 20.1% 2.9 40.0% 1.9 23.0% 3.0 0. 0. 0.5
0.639 15 24.7% 4.0 47.4% 2.6 26.2% 4.2 0. 0. 0.25



Figure D1. Capsize simulations for SAFIM with optimized drag without added-masses and with time shifts (black lines), for SAFIM with drag coefficient α

= 1 without added-masses and with time shifts (yellow lines), and for ISIS-CFD (red lines): evolution of the dimensionless total horizontal force F ′
x on the

iceberg (a, c, d, e), and torque M ′
θ (b, d, f, g). Results are given for icebergs with ε = 0.246 (a, b), ε = 0.374 (c, d), ε = 0.496 (e, f) and ε = 0.639 (g, h). SAFIM

curves were shifted (blue arrow) by the dimensionless time 	t ′ = 	t
√

g/H . The SAFIM α-factor and time 	t
′

are indicated in the legends.




