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Abstract. In the present work, a powerful modeling tool is developed to predict and analyze the 

onset of strain localization in polycrystalline aggregates. The predictions of localized necking are 

based on two plastic instability criteria, namely the bifurcation theory and the initial imperfection 

approach. In this tool, a micromechanical model, based on the self-consistent scale-transition 

scheme, is used to accurately derive the mechanical behavior of polycrystalline aggregates from that 

of their microscopic constituents (the single crystals). The mechanical behavior of the single crystals 

is developed within a large strain rate-independent constitutive framework. This micromechanical 

constitutive modeling takes into account the essential microstructure-related features that are 

relevant at the microscale. These microstructural aspects include key physical mechanisms, such as 

initial and induced crystallographic textures, morphological anisotropy and interactions between the 

grains and their surrounding medium. The developed tool is used to predict sheet metal formability 

through the concept of forming limit diagrams (FLDs). The results obtained by the self-consistent 

averaging scheme, in terms of predicted FLDs, are compared with those given by the more classical 

full-constraint Taylor model. Moreover, the predictions obtained by the imperfection approach are 

systematically compared with those given by the bifurcation analysis, and it is demonstrated that the 

former tend to the latter in the limit of a vanishing size for the initial imperfection. 

Introduction 

In the field of sheet metal formability, the study and the prediction of plastic strain localization 

have attracted interest of scientists for a long time. Although a number of valuable contributions 

have already been published, the modeling and the development of accurate tools for strain 

localization prediction still remain an active research topic. This research topic has been initiated by 

the pioneering works of Keeler and Backofen [1] and Goodwin [2], who introduced the concept of 

forming limit diagram (FLD). The FLD of a sheet metal represents a curve, plotted in the principal 

strain space, above which localized necking is likely to occur for various strain paths   ranging 

from uniaxial tension (   ) to equibiaxial tension ( ). The development of these predictive 

approaches is based on the coupling between a constitutive framework, to describe the evolution of 

the variables defining the mechanical state of the studied material, and a localization criterion to 

predict the onset of localized necking. The first developed predictive models mainly follow a 

phenomenological description for the mechanical behavior of the studied sheet metals. In this 

regard, one can quote Hill [3], who used a phenomenological isotropic rigid–plastic model, along 

with an instability approach nowadays known as Hill's zero-extension criterion, to predict the left-

hand side of the FLD. Later, Marciniak and Kuczynski [4] introduced the initial imperfection 

approach and coupled this localized necking criterion with an isotropic rigid–plastic model in order 



 

to predict the right-hand side of the FLD. Despite their very common use, the phenomenological 

constitutive models are not able to accurately account for some essential physical aspects of the 

material behavior, such as initial and induced textures and other microstructure-related parameters 

(grain morphology, crystallographic structure ...). To overcome these drawbacks, micromechanical 

modeling can be used instead, for the description of the mechanical behavior of sheet metals. 

Indeed, the use of advanced and physically-motivated micromechanical models for polycrystalline 

aggregates allows investigating the impact of microstructures and deformation mechanisms on 

material ductility, in an attempt of establishing a link between microstructure-related parameters and 

ductility. This is the approach followed in the present paper to predict ductility limits of 

polycrystalline aggregates. This prediction is based on the combination of three main components: 

constitutive modeling at the single crystal scale, a scale-transition scheme to derive the mechanical 

behavior at the macroscopic level, and a localization criterion to predict the occurrence of localized 

necking: 

 In the current study, a rate-independent approach is adopted to model the mechanical behavior 

of FCC single crystals. Elasticity is accounted for by using an isotropic linear hypoelastic law, 

while the plastic flow, which is assumed to be solely due to the shear over the slip systems, is 

modeled by the Schmid law [5]. An isotropic hardening law is used to express the evolution 

of the critical shear stresses as a function of the slip rates. This rate-independent formulation 

is more appropriate when the viscous effects are negligible, which is typically the case in cold 

forming processes. 

 To derive the mechanical behavior of polycrystalline aggregates from the behavior of their 

microscopic constituents (single crystals), the self-consistent scale-transition scheme is used. 

This scheme is based on the theoretical developments detailed in Lipinski and Berveiller [6]. 

Compared to the Taylor model, which is more commonly used in the literature for its 

simplicity, the use of the self-consistent approach presents several advantageous: the 

equilibrium condition at the grain level is well respected, and the grain morphology as well as 

the interactions between the grain and its surrounding medium are accounted for in the 

modeling. 

 Two strain localization criteria are coupled with the self-consistent micromechanical model 

for the FLD prediction: the imperfection approach, initially developed by Marciniak and 

Kuczynski [4], and the bifurcation theory, initiated by Rice [7]. Thanks to the Schmid law, 

which is used to model the plastic flow at the single crystal scale, the application of the 

bifurcation theory provides realistic levels for the necking strains. This would not be the case 

if the mechanical behavior was taken rate-dependent. The FLDs predicted by the two 

localization criteria are compared in the present paper. It is especially demonstrated that the 

results of the initial imperfection analysis tend towards the bifurcation predictions in the limit 

of a vanishing size for the geometric imperfection. 

The remainder of the paper is organized as follows: 

- The constitutive equations describing the single crystal behavior will be developed in the 

second section. 

- In the third section, the theoretical framework of the self-consistent approach will be presented. 

- The main equations governing the localization criteria will be exposed in the fourth section. 

- Several numerical results and comparisons obtained by the application of the developed tool 

will be presented and discussed in the fifth section. 

 

 



 

Modeling of the single crystal behavior 

Let us denote by g  the Eulerian velocity gradient applied at the single crystal scale. The local 

elastic–plastic constitutive law is defined by means of the tangent modulus l  relating the nominal 

stress rate n  to g  as 

:n l g . (1) 

The velocity gradient g  is additively split into its symmetric and anti-symmetric parts, denoted 

by d  and w , respectively. Under small elastic strain assumption, the strain rate tensor d  and the 

spin tensor w  are additionally split into their elastic and plastic parts 

e p e p       g d w d d d w w w . (2) 

In the present model, the slip on crystallographic planes is considered to be the only source of 

plastic flow. This constitutive assumption can be expressed as follows: 

s sN Np β β β p β β β

β 1 β 1
γ sgn( ) ; γ sgn( )τ τ

 
  d R w S , (3) 

where: 

 βγ  is the absolute value of the slip rate on the slip system β. 

 sN  is the total number of slip systems (equal to 12 for FCC single crystals). 

 βR  (resp. βS ) is the symmetric part (resp. anti-symmetric part) of the Schmid orientation 

tensor. 

 βτ  is the resolved shear stress for slip system β. 

In order to satisfy the objectivity principle, the lattice co-rotational rate σ  of the Cauchy stress 

tensor σ  is related to the elastic strain rate e
d  by the following hypoelastic law: 

e e e e. . :   σ σ w σ σw C d . (4) 

where e
C  is the fourth-order elasticity tensor. Elasticity is assumed to be isotropic and is defined by 

the Young modulus E  and the Poisson ratio . 

The rotation r  of the single crystal lattice frame is defined by the following evolution law: 

T e.r r w . (5) 

We introduce the resolved shear stress βτ , which is defined as the projection of the Cauchy stress 

tensor σ  on the Schmid orientation tensor 

β β
sβ 1,..., N τ   R σ: : . (6) 

By using Eqs. 4 and 5, the resolved shear stress rate βτ  is obtained after some straightforward 

calculations 

β β
sβ 1,..., N τ    R σ: : . (7) 

Combining Eqs. 7, 4, and 3, βτ  can be expressed as 

sNβ β e α α β e α

s α
β 1, ..., N : τ : : sgn( ) γ : :τ

1
   R C R C Rd . (8) 

As mentioned before, the plastic flow at the single crystal scale is governed by the Schmid law 

[5]. This law states that slip may occur on a given slip system   only if the absolute value of its 

resolved shear stress βτ  reaches a critical value β

c
τ  



 

β β β
c

s β β β
c

τ < τ γ = 0
β 1,..., N :

τ = τ γ 0.


  

 

  (9) 

The initial critical shear stress is assumed to be the same for the different slip systems and it is 

taken equal to 
0

τ . The evolution of the critical shear stress β

c
τ  is given by the following isotropic 

hardening law: 

s s

n 1

N N0β α α

s c 0α 1 α 1
0

h
β 1, ..., N : τ h γ ; h h 1 ; γ

τ n



 

 
       

 
 

  , (10) 

where 
0h  is the initial hardening rate and n  is the power-law hardening exponent. 

For the different slip systems belonging to the yet-unknown set of active slip systems , the 

consistency condition, based on the Schmid law, can be expressed as 

β

c

β β βχ 0 ,β : τ sgn(τ ) τ 0γ    . (11) 

The expression of the slip rates βγ  for the active slip systems can be easily obtained by 

combining Eqs. 8, 10, and 11 

α eβα α β

α

β sgn( ): = M τ : : :γ


  R C yd d , (12) 

where M  is the inverse of matrix P  defined by the following index form: 

 αβ α β α e ββ : P h sgn(τ ) sgn( ) : :α, τ   R C R . (13) 

Combining the previous equations, the following expression for the microscopic tangent 

modulus l  can be obtained: 

 e 1 2 e α α α α

α

α : . .sgn(τ )


        σ σ
l C σ 1 C R S σ σ S y  , (14) 

where 1  is the second-order identity tensor, while 1

σ
  and 2

σ
  are fourth-order tensors that contain 

convective terms of Cauchy stress components 

1 2

ijkl lj ik kj il ijkl ik lj il kj

1 1
(δ σ δ σ ) ; (δ σ δ σ )

2 2
     

σ σ
. (15) 

The constitutive equations at the single crystal scale can be viewed as a strongly non-linear 

problem, where the main unknowns are the set of active slip systems and the corresponding slip 

rates. An implicit integration algorithm is developed and used to integrate these constitutive 

equations. The full details on this integration algorithm are given in [8]. 

Modeling of the polycrystal behavior 

To derive the overall polycrystalline behavior from knowledge of the behavior of individual 

grains, an incremental version of the self-consistent micromechanical approach is used. Only the 

main equations of this scale-transition scheme are presented here. Further details on this averaging 

scheme are given in [6]. The macroscopic behavior law has the same rate form as that of the single 

crystal (Eq. 1). It allows linking the macroscopic nominal stress rate N  to the macroscopic velocity 

gradient G  by means of the yet-unknown macroscopic tangent modulus L  

N L : G . (16) 



 

The macroscopic velocity gradient and nominal stress rate are defined as the volume averages of 

their microscopic counterparts 

V V

1 1
dV ; dV

V V
G g N n   . (17) 

To solve the averaging problem, fourth-order concentration tensors, linking macroscopic tensor 

fields to their microscopic counterparts, are commonly introduced 

( ) ( ) : ; ( ) ( ) :g x Α x G n x B x N  . (18) 

By combining Eq. 1 with Eqs. 16–18, the macroscopic tangent modulus L  can be expressed in 

the following form: 

( ) : ( )L l x A x , (19) 

where a  is the average of the tensor field a  over the volume of the polycrystal. 

The different microscopic mechanical fields are assumed to be homogeneous over each grain. To 

go further with the derivations, an indicator function Iθ , for each grain I  of volume IV , is defined 

as 

I I I Iθ ( ) 1 if V ; θ ( ) 0 if V   x x x x . (20) 

The local fields can then be expressed in the form 

g gN NI I I I

I 1 I 1
( ) θ ( ) ; ( ) θ ( )g x g x l x l x

 
   , (21) 

where Ig  (respectively Il ) is the volume average of the velocity gradient (respectively tangent 

modulus) for grain I, while 
g

N  is the number of grains that make up the studied polycrystalline 

aggregate. By using Green’s tensor, it can be demonstrated, after some elaborate derivations, that 

the concentration tensor IA  related to grain I is given by 

I II I II IA Ι Τ l L Ι Τ l L


             : , (22) 

where Ι  is the fourth-order identity tensor, and IIΤ  is the interaction tensor for grain I, related to 

Eshelby’s tensor for an ellipsoidal inhomogeneity. In the case of a polycrystalline aggregate 

comprising 
g

N  grains, with their respective volume fraction If , the 1-site self-consistent expression 

corresponding to the self-consistent scheme in the sense of Hill [9] can be finally obtained as 

follows: 

gN I I I

I 1
fL l A


  : . (23) 

The set of constitutive equations (16)–(23) represents a non-linear problem, which is solved by 

using the iterative fixed point method. Note that the full-constraint Taylor model can be easily 

obtained from the self-consistent constitutive equations, by considering that the concentration tensor 
IA  is equal to the fourth-order identity tensor for all grains. 

 



 

Strain localization criteria 

The two localization criteria considered in this study are formulated under the plane-stress 

conditions, which is justified by the fact that the studied sheet metals are sufficiently thin. 

 

Bifurcation theory. In the current work, the three-dimensional formulation of the bifurcation 

approach implemented in [10] is adapted to the plane-stress framework. With the plane-stress 

condition, the macroscopic velocity gradient and nominal stress rate tensor are defined by the 

following generic forms: 

1 0 0 ? ? 0

0 ρ 0 ; ? ? 0

0 0 ? 0 0 0

   
   

    
   
   

G N , (24) 

where ρ  is the strain-path ratio, and symbol ?  designates the unknown components in both tensors. 

The bifurcation criterion is defined by the singularity of the acoustic tensor, expressed in the 

following form: 

PS PS PSdet ( ) 0L. . , (25) 

where: 

 PS  is the unit vector normal to the localization band. 

 PSL  is the plane-stress tangent modulus, which relates the in-plane components of the nominal 

stress rate tensor to the in-plane components of the velocity gradient. 

The 2D expression PSL  of the tangent modulus is derived from the 3D expression L  by the 

following condensation relation: 

αβ33 33γδPS

αβγδ αβγδ

3333

α, β, γ, δ ,
L L

1 2 : L L
L

    . (26) 

Initial imperfection approach. The initial imperfection approach (referred to in what follows as 

the M–K approach) is based on the assumption of the preexistence of an initial geometric 

imperfection in the form of a narrow band across the thickness of the sheet metal, as illustrated in 

Fig. 1. Quantities inside (resp. outside) the band are designated by superscript B (resp. H). 

 

 (a)  (b) 

Fig. 1. M–K analysis for a sheet metal: (a) Initial configuration of the sheet; (b) Current 

configuration of the sheet. 

Both inside and outside the band, the strain and stress fields are assumed to be uniform. The 

current thickness 
Be  (resp. 

He ) is related to the initial thickness 
B

0
e  (resp. 

H

0
e ) by 



 

H H H B B B

0 33 0 33
e e exp( ) ; e e exp( )    , (27) 

where 
B

33
  and H

33
  are, respectively, the logarithmic strains inside and outside the band in the 

direction normal to the sheet. 

The initial (resp. current) geometric imperfection is measured by the ratio 
  (resp.  ) defined 

as 

B B

0
0 H H

0

e e
ξ 1 ; ξ 1

e e
    . (28) 

This initial (resp. current) imperfection is also characterized by the orientation 0
θ  (resp. θ ) of 

the normal vector 
PS

0  (resp. 
PS

) with respect to the rolling direction of the sheet metal. The 

evolution law for the localization band orientation θ  depends on three quantities: the initial band 

orientation 
0

θ , the logarithmic strain outside the band along the rolling direction H

11
Ε , and the strain-

path ratio   

H

0 11
θ arctan tanθ exp(1 ρ) Ε    . (29) 

In addition to Eqs. 27–29, the M–K analysis is based on three other main equations: 

 The kinematic compatibility condition at the interface between the band and the homogeneous 

zone (i.e., outside the band): 

PS B PS H PS PS
G G C   . (30) 

 The equilibrium equation across the interface between the band and the homogenous zone 

(expressed in terms of the macroscopic nominal stress rate): 

B PS PS B H PS PS He . e .  . (31)  

 The plane-stress constitutive relations developed in the previous section, expressed inside and 

outside the band, respectively: 

PS B PS B PS B PS H PS H PS H: ; :Ν L G Ν L G  . (32) 

Using Eq. 32, the equilibrium condition 31 can be expressed in terms of the velocity gradients 

PS B
G  and PS H

G . Then, the compatibility condition 30 can be used to compute the jump vector 
PS

C  

 
H1

PS PS PS B PS PS PS H PS B PS H

B

e
. . . . :

e

   
   

  
C L L L G . (33) 

Further details on the algorithmic aspects and on the numerical implementation of both 

localization criteria can be found in [11]. 

Numerical predictions 

Material data. The material parameters corresponding to the modeling at the single crystal scale are 

given in Table 1 below. 

 

 



 

Table 1. Material parameters 

Elasticity parameters Hardening parameters 

E [GPa]  0
τ  [MPa] h0 [MPa] n 

210 0.3 40 390 0.2 

The studied polycrystalline aggregate is composed of 2000 grains. The initial crystallographic 

texture is generated randomly and is assumed to be orthotropic (see Fig. 2). All of the grains are 

assumed to be initially spherical with identical volume fraction. 

RD

TD
 

 

Fig. 2. Initial texture of the studied polycrystalline aggregate: {111} pole figure. 

Bifurcation theory results. The evolution of the minimum of the determinant of the acoustic tensor 
PS PS PSL. . , over all possible band orientations θ , as a function of the major strain 

11
Ε  is 

shown in Fig. 3. In this figure, four representative strain paths are considered ( 0 5   . , 0  , 

0 5  . , and 1  ), and both the self-consistent (SC) approach and the full-constraint (FC) Taylor 

model are employed to derive the mechanical behavior of the polycrystalline aggregate. It is clear 

from this figure that the minimum of the determinant of the acoustic tensor abruptly decreases 

during the transition between the elastic and plastic regimes, which occurs at small strains. By 

contrast, in the plastic regime, the decrease is much slower. The onset of localized necking is 

predicted at large plastic strain, when the determinant of the acoustic tensor becomes equal to zero. 
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 (a) (b) 

Fig. 3. Evolution of the minimum of the determinant of the acoustic tensor as a function of 11
  for 

four different strain paths ( 0 5   . , 0  , 0 5  . , and 1  ): (a) FC model; (b) SC model. 



 

The FLDs predicted by the bifurcation criterion, using both the FC and SC models, are shown in 

Fig. 4a. This figure clearly emphasizes large differences between the FLDs predicted by the two 

homogenization schemes. Indeed, the limit strains predicted by the FC model are found to be 

generally much larger than their counterparts predicted by the SC scheme. Fig. 4b shows the 

necking band orientations  , as predicted by the two homogenization models, for the different 

strain paths   that span an entire FLD. Although, on the whole, the curves describing the 

localization band orientation follow an evolution that seems to be qualitatively comparable, there 

are in fact some significant quantitative differences for the necking band orientations predicted by 

the two averaging schemes. An important observation is that, unlike the vast majority of FLD 

approaches based on phenomenological constitutive models, the localization band predicted by 

using crystal plasticity modeling is not necessarily normal to the direction of major strain for all 

positive strain paths. 
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Fig. 4. FLDs and necking band orientations, as predicted by the FC and SC models coupled with 

bifurcation theory: (a) FLDs; (b) Necking band orientation for the different strain paths. 

Initial imperfection results. The numerical results obtained by the application of the M–K 

approach are presented in this section. The evolution of the limit strain 11
E  as a function of the 

initial imperfection size 
  is plotted in Fig. 5 for different strain paths (ρ 0.5  , ρ 0 , ρ 0.5 , 

and ρ 1 ). It can be clearly seen that this limit strain 11
E  decreases when the initial imperfection 

increases. 
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 (a) (b) 

Fig. 5. Evolution of the limit strain 11
E  as a function of the initial imperfection size 

 , for different 

strain paths  : (a) FC model; (b) SC model. 

The comparison between the FLDs predicted by bifurcation theory and those determined by M–K 

analysis is shown in Fig. 6. Three different initial imperfection ratios are considered: 
4

0
10  , 

3

0
10  , and 

2

0
10  . It is found that for all strain paths, the limit strains predicted by bifurcation 

theory set an upper bound to those yielded by the M–K approach. Moreover, this result is valid for 

both scale-transition schemes, namely the FC and SC models. Indeed, Fig. 6 demonstrates that the 

FLDs predicted by the M–K analysis tend towards those determined by bifurcation theory when the 

size of initial imperfection 
  tends towards zero. In other words, the effect of the initial 

imperfection is essentially to shift the FLD downwards. 
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Fig. 6. Comparison between the FLDs predicted by M–K analysis ( 4

0
10  ; 3

0
10  ; 2

0
10  ) and 

the FLD predicted by bifurcation theory: (a) FC model; (b) SC model. 

Concluding remarks 

A modeling tool has been developed in this paper to predict the forming limit diagrams for 

elasto-plastic sheet metals. This tool is based on coupling an advanced micromechanical model with 

two localized necking criteria. The self-consistent approach is used to derive the mechanical 

behavior of the polycrystalline aggregate (which is assumed to be representative of the sheet metal) 



 

from knowledge of the mechanical behavior of the individual single crystals. For predicting the 

limit strains of the polycrystalline aggregate, both the bifurcation theory and the initial imperfection 

approach have been used. Various numerical simulations have been carried out in order to predict 

the limit strains and the associated FLDs for polycrystalline materials. From these predictions, it 

appears that both the shape and the overall level of the FLDs are greatly influenced by the adopted 

scale-transition scheme. It is also demonstrated that when the initial imperfection size involved in 

the M–K analysis tends towards zero, the corresponding FLDs tend towards the bifurcation-based 

FLD. 
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