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ABSTRACT

In this communication, a multi-task deep learning-driven homogenization scheme is proposed for predicting the effective thermomechanical
response of unidirectional composites consisting of a random array of inhomogeneity. Toward this end, 40 000 repeating unit cells (RUCs)
comprising an arbitrary number of locally irregular inclusions are generated over a wide range of fiber volume fractions. The finite-volume
direct averaging micromechanics is then employed to evaluate the homogenized thermo-mechanical moduli of each RUC. Subsequently, a two-
dimensional deep convolution neural network (CNN) is constructed as a surrogate model to extract the statistical correlations between the
RUC geometrical information and the corresponding homogenized response. The RUC images together with their homogenized moduli are
divided into two datasets in a ratio of 9:1 with the former part used for training the CNN model and the latter part used for verification. The
results presented in this contribution demonstrate that the deep CNN predictions exhibit remarkable correlations with the theoretical values
generated by the finite-volume micromechanics, with a maximum relative prediction error of less than 8%, providing good support for the
data-based homogenization approach.

I. INTRODUCTION

Heterogeneous materials possess unique thermo-mechanical
and physical properties for specific applications in emerging technol-
ogies. Due to the myriad combinations of both geometric configura-
tions and constituent materials that may be realized in the modern
heterogeneous material system, micromechanics-based simulation of
the thermo-mechanical response of composites continues to play a
significant role in the development and design of novel materials and
structures with superior properties.1–3 At the fundamental level,
micromechanics facilitates the analysis, design, and optimization of
heterogeneous materials and structures with different microstructural
architectures and scales, along with the understanding of the under-
lying theoretical issues and underpinning multi-physics mechanisms.

A large body of work already exists aimed at the microme-
chanical modeling of the thermo-mechanical and multiphysics

behavior of heterogeneous materials, ranging from the simplest
rule-of-mixture assumptions and processing to the more complex
geometric models that require computationally demanding analytical
and numerical treatment.4–7 In general, these approaches can be cate-
gorized into two broad categories, namely, the representative volume
element (RVE) and repeating unit cell (RUC) based approaches,
according to the different geometric representations of material micro-
structures that involve the concepts of statistical homogeneity and
periodicity,8,9 respectively. The extensively employed composite cylin-
der and sphere assemblage models,10 the Mori–Tanaka scheme,11 and
the three-phase model4 were the earliest and most classic geometric
RVE-based models that provide explicit expressions for the effective
moduli. Nonetheless, those approaches neglect the actual micro-
structural details of heterogeneous materials and hence do not take
into account the interaction of adjacent inclusions. At large volume
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fractions, the interaction of the adjacent inclusions is significant
and its neglect may significantly underestimate the local stress
fields that affect the effective moduli and, more importantly, the
failure strength.

The alternative approaches that generate accurate homoge-
nized and localized response for composites with complex micro-
structures are the RUC-based approaches that explicitly impose
periodic boundary conditions, such as finite-element (FE)-based
variational techniques12,13 or the elasticity-based locally exact
homogenization theory (LEHT).14 However, the FE approaches
require substantial computational effort and hence may not be
easily employed in parametric studies, whereas the LEHT is presently
limited to continuous fibers with circular cross sections let alone the
fact that the implementations are very difficult for nonprofessional
users. The finite-volume (FV) direct averaging homogenization
approach for periodic composites materials, Gattu et al.15 and Chen
et al.,16 provides a viable alternative to the finite-element or locally
exact homogenization techniques. The FV micromechanics predicts
undistinguishable localized and effective response relative to the FE
and LEHT techniques but offers a large number of advantages per-
fectly suited for parametric studies, including the availability of
closed-form expressions for the local stiffness matrices, substantially
less execution time, excellent numerical stabilities and convergence
behaviors, and the ability to simulate complex microstructures.
A fundamental difference between the finite-volume- and finite-
element-based solutions of the unit cell problem is the manner of
satisfying local, and thus global, equilibrium equations. While the
minimization of total potential energy within the finite-element
framework leads to ultimate satisfaction of the unit cell’s global equi-
librium with sufficient mesh refinement, the finite-volume approach
enforces equilibrium in the integral sense for every subvolume at
each level of mesh refinement. The readers are referred to recent
review articles by Chen and Pindera17 and Chen et al.18 for addi-
tional references in this area.

Despite rapid advances in micromechanics and homogeniza-
tion theories, interest in developing accurate yet efficient surrogate
models based on big data analysis has also attracted growing
attention.19–22 The deep learning methods enable the progressive
extraction of higher-level features from the raw data, which have
gained tremendous applications in processing images, video, speech,
and audio.23–25 Their successful applications motivate us to develop
a data-based homogenization technique to predict the homogenized
thermo-mechanical response of heterogeneous materials.

Herein, we propose a deep convolution neural network (CNN)-
driven homogenization scheme to investigate the variation of thermo-
mechanical moduli of unidirectional composites with complex micro-
structures. The finite-volume direct averaging micromechanics is
employed to generate the input layer used in the deep convolution
neural network. It should be noted that 40 000 sets of homogenized
moduli for multi-inclusion unit cells were generated using the
finite-volume homogenization technique in an uncompiled MATLAB
environment, which may not be easily achieved in the case of the
primal finite-element calculations. Two material systems that are
widely used in aerospace and wind energy engineering, namely,
graphite/epoxy and glass/epoxy composites, which yield different
fiber/matrix modulus ratios, are considered. After training with
36 000 sets of homogenized moduli for multi-inclusion unit cells

generated via the finite-volume homogenization technique, the deep
CNN can directly map the structural information of heterogeneous
materials onto their homogenized thermomechanical properties
without the need for solving the RUC problems via either analytical
or numerical approaches. Hence, with the trained deep CNN, a
researcher untrained in the techniques of homogenization would be
able to obtain homogenized moduli of periodic composites with
locally random reinforcement distribution by using this algorithm
upon securing an image of the material’s microstructural features.
Section II describes the theoretical framework that combines the
finite-volume micromechanics and deep convolution neural network.
Section III presents two numerical examples to validate the data-
driven homogenization scheme. Section IV concludes the
present contribution.

II. THEORETICAL FRAMEWORK

A. Finite-volume direct averaging micromechanics

The finite-volume direct averaging micromechanics is capable
of rapidly generating a full set of effective thermo-mechanical
moduli for composites whose microstructures are distributed peri-
odically in the space; hence, it is used to construct the input dataset
for the deep CNN algorithm. Herein, only essential information
necessary to understand how it is implemented into CNN is pre-
sented, while details of the finite-volume homogenization theory
can be found in Refs. 15 and 16.

The finite-volume micromechanics is based on the micro-
structural discretization of a repeating unit cell into hexahedral (or
quadrilateral) subvolumes designated by the index q. The central
problem of the finite-volume-based micromechanical analysis of
composite materials becomes the determination of strain concen-
tration tensors A(q) relating the average strains �ε(q) in the qth phase
to the applied strains �ε. In the presence of thermal effects repre-
sented by the vector D(q), the localization relation takes the form

�ε(q) ¼ A(q)�εþD(q), (1)

where A(q) is elastic strain concentration matrix. Application of one
non-zero macroscopic strain component in the absence of tempera-
ture variation determines one column vector of A(q), which is done
just once. In addition, D(q) ¼ �ε(q) � A(q)�ε can be interpreted as the
thermal influence function. The use of localization relations in the
average composite stress definition, in conjunction with the volume-
averaged stress–strain relations for each phase, yields the homoge-
nized constitutive equation for a multiphase composite,

�σ ¼ 1
V

ð
V
σ(x)dV ¼

XNq

q¼1

v(q)�σ
(q) ¼ C*(�ε� �εth), (2)

where v(q) ¼ V (q)/V is the volume fraction of the qth phase.
The homogenized stiffness matrix C* and the thermal strains �εth are
given in terms of the subvolume geometry, material properties,
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elastic concentration matrices, and their thermal counterparts,

C*¼PNq

q¼1
v(q)C(q)A(q),

�εth ¼ �[C*]
�1 PNq

q¼1
v(q)C(q)[D(q) � α(q)4T],

(3)

where α(q) is the thermal expansion vector, C(q) denotes the elastic
stiffness matrix of the qth subvolume, and 4T represents the tem-
perature variation, which is assumed to be uniform throughout the
repeating unit cell. The homogenized thermal expansion coefficients
can be readily obtained according to

α*¼�εth/ΔT ¼ [C*]
�1XNq

q¼1

v(q)C
(q)[α(q) �D(q)/4T]: (4)

In the present work, we limit our analysis to unidirectional
composites with continuous reinforcements whose response may
be characterized by repeating material microstructures with two-
dimensional periodicity. Following the zeroth-order homogeniza-
tion theory,8,26 the displacement field in the qth subvolume is
expressed in terms of two-scale expansion involving macroscopic
displacement �εijxj and microstructure-induced fluctuating displace-
ment u0(q)i (y) as follows:

u(q)i (x, y) ¼ �εijxj þ u0(q)i (y), (5)

where x ¼ (x1, x2, x3) and y ¼ (y2, y3) are the global and local
coordinates, respectively, and �εij are the macroscopic (or applied)
strains. u0(q)i (y) that are periodic functions in the RUC coordinates
are the fluctuating displacements,

u0(q)i (y(η, ξ)) ¼ W(q)
i(00) þ ηW(q)

i(10) þ ξW(q)
i(01) þ

1
2
(3η2 � 1)W(q)

i(20)

þ 1
2
(3ξ2 � 1)W(q)

i(02), (6)

which produce local strains in the form:

ε(q)ij ¼ �εij þ ε0(q)ij ¼ �εij þ 1
2

@u0(q)i

@yj
þ @u0(q)j

@yi

!
, (7)

where ε0(q)ij are the strain fluctuations induced by microstructures.
W(q)

i(::) are the unknown coefficients in the displacement field represen-
tation. Those coefficients are expressed in terms of surface-averaged
interfacial displacements û0( p,q)i upon the use of the definition of
the surface-averaged interfacial displacements, Eq. (8), together
with the application of equilibrium equation within each subvo-
lume in the large, Eq. (9),

û0(1,3)i ¼ 1
2

ðþ1

�1
u0 i(η, + 1)dη û0(2,4)i ¼ 1

2

ðþ1

�1
u0i(+1, ξ)dξ, (8)

ð
Sq

σ(q) �n(q)dS¼
ð
Sq

t(q)dS¼
X4
p¼1

ð
l(q)p

t(p,q)dl(q)p ¼
X4
p¼1

l(q)p t̂
(p,q) ¼ 0, (9)

where l(q)p is the length of the pth face in the qth subvolume, n(q) is
unit vector that defines the orientation of each of the four subvolume
faces, and t(p,q) ¼ σ(p,q) �n(p,q) from Cauchy’s relation. Evaluating the
surface-averaged tractions in terms of the surface-averaged displace-
ments yields the following system of equations:

t̂(q) ¼ k(q)û0(q) þN(q)C(q)(�ε�α(q)ΔT), (10)

where t̂(q) ¼ [̂t
(1)
t̂
(2)
t̂
(3)
t̂
(4)
]
(q)T

with t̂(p) ¼ [t1 t2 t3]
(p)T,

û0(q) ¼ [û0(1) û0(2) û0(3) û0(4)](q)T with û0(p) ¼ [û01 û02 û03]
(p)T

, and

N(q) ¼ [n(1)n(2)n(3) n(4)]
(q)T

. The local stiffness matrix k(q) is com-
prised of 16 submatrices k(q)ij with the element of each 3 × 3 submatrix
derived in closed form in terms of subvolume geometry and material
properties, the expressions of which can be found in the Ref. 15.

The application of interfacial traction and displacement conti-
nuity conditions at common subvolume face, in conjunction with
the periodic conditions at the mirror faces of the RUC, produces
a global system of equations for the determination of interfacial
displacements Û0, which can be symbolically expressed in the fol-
lowing form:

KÛ
0 ¼ F(�ε, ΔT), (11)

where K denotes the assembled global stiffness matrix given explic-
itly in terms of subvolume geometry and material properties and
F(�ε, ΔT) is the macroscopic loading vector. Once the interfacial
surface-averaged displacements Û0 are obtained, the subvolume
strains and hence strain concentration matrices A(q) and effective
stiffness C* will be readily determined.

B. Deep convolution neural network

Among the deep learning architectures, convolution neural
networks are developed based on the idea of local connectivity of
convolutional operation between two layers.27 The convolution
operation is achieved by passing a kernel through an input volume,
which can be two or three dimensions. In this process, the matrix
multiplication between the kernel and the corresponding part of
the input that matches the same size is conducted and then the
sum over the matrix is provided as the value of one cell of convolu-
tional result, as shown in Fig. 1. The first orange shaded cell in the
output volume is the convolution of upper left cells in the input
volume with the kernel. Then the kernel will slide according to the
input until it comes to the last point. The kernel (also called the
filter) is convolved with the input to create a feature map, which
shares the same weights for the convolution, reducing the total
number of learnable parameters.28 For a convolutional layer, the
convolution is performed on the feature map of the previous layer
with learnable kernels. Then the current feature map is obtained by
using the activation function at the activation layer. In general, for
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an input x, this process can be formulated as

xl ¼ f
X

xl�1*wl þ bl
� �

, (12)

where b and w are the bias and filter, respectively, and l denotes the
layer number.

After computing the convolutional layer, a max-pooling layer
is used to reduce the variability. Specifically, the max-pooling oper-
ation will receive activations from the previous convolutional layer
and then output a maximum of a selected band, which indicates
that the max-pooling layer is a sub-sampling process. The max-
pooling process is given by

xl ¼ f (βl down(xl�1)þ bl), (13)

where xl�1 means the previous layer of convolution, down (�)
denotes down sampling, and β is the scale.

When the network is used for prediction, a fully connected
layer is needed. The output layer is the predicted value we expect,
which can be formulated as

ŷ ¼ f (W � x þ b), (14)

where W is the weight that needs to be optimized.
Given the true values, if the L2 norm loss function is consid-

ered,29 the error between the predicted values and true values can
be expressed as

E ¼ 1
2

X
kyi � ŷik22, (15)

where yi means the true value of the ith sample and ŷi is the corre-
sponding deep CNN-generated value.

In the optimization process, the backpropagation algorithm is
used to calculate the derivatives and then stochastic gradient
descent is used for the optimization of the parameters,

W ¼ W � η
@E
@W

,
@E
@W

¼ f 0(�)� (ŷ � y), (16)

where f 0(�) is the derivative of the activation function and ⊙
denotes the element-wise multiplication.

In the present application, a seven-layered convolution neural
network is used to directly map the image pixels of the repeating

unit cells onto their corresponding thermo-mechanical moduli.
The first representational layer x abstracts image pixels of a repeating
unit cell at a given fiber content and distribution while the output
layer identifies the homogenized thermo-mechanical moduli ŷ of the
considered RUC. A deep convolution network describes potentially
causal connections between input and output properties through a
nonlinear relationship.

III. RESULTS AND DISCUSSIONS

The construction of the CNN-driven homogenization tech-
nique is carried out in three steps. First, we consider graphite/
epoxy and glass/epoxy composite material systems with continuous
reinforcements whose response may be characterized by periodi-
cally repeating material microstructure with two-dimensional peri-
odicity. The elastic moduli and thermal expansion coefficients of
fiber and resin phases are listed in Table I. While the graphite fiber
is transversely isotropic, glass fibers are isotropic with a greater
in-plane elastic modulus contrast relative to the epoxy resin than in
the case of graphite fibers, providing a vigorous and demanding
test of the proposed surrogate model. For each material system,
40 000 RUC images containing an arbitrary number of locally
irregular inclusions are generated in MATLAB using the “rand”
function, hence covering a wide range of fiber volume fractions
ranging from 0% to 100%. It should be noted that we limit our
analysis to composites reinforced by continuous fibers with square
cross-sectional shapes, Fig. 2(a). Modeling a large number of
locally irregular circular fibers, which is beyond this paper’s scope,
may require a more sophisticated mesh discretization algorithm,
and hence was not conducted. It is also important to note that the
in-plane and out-of-plane homogenized properties of unidirec-
tional graphite/epoxy and glass/epoxy composites with random
fiber distributions are uncoupled with the effective stiffness matrix

FIG. 1. Convolutional operation.

TABLE I. Elastic moduli and thermal expansion coefficients of fiber and resin phases.

EA
(GPa)

ET
(GPa)

GA

(GPa) vA vT αA (μ/K) αT (μ/K)

Glass fiber 80 80 33.33 0.2 0.2 4.73 4.73
Graphite
fiber

214 14 28 0.2 0.25 −0.36 18

Resin 4.5 4.5 1.67 0.35 0.35 45 45
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C* expressed in the following form:

C*¼

C*
11 C*

12 C*
13 C*

14 0 0
C*
21 C*

22 C*
23 C*

24 0 0
C*
31 C*

32 C*
33 C*

34 0 0
C*
41 C*

42 C*
43 C*

44 0 0
0 0 0 0 C*

55 C*
56

0 0 0 0 C*
65 C*

66

2
6666664

3
7777775
: (17)

Given that the unit cell as a whole comprises many randomly dis-
tributed fibers, its computed effective mechanical properties can be
considered orthotropic or even transversely isotropic. The effective
engineering moduli are obtained in terms of the effective compli-
ance matrix S*¼[C*]

�1
,

E*
11¼

1
S*11

E*
22¼

1
S*22

E*
33¼

1
S*33

,

v*12¼�E*
11S

*
21 v*13¼�E*

11S
*
31 v*23¼�E*

22S
*
32,

G*
23¼

1
S*44

G*
13¼

1
S*55

G*
12¼

1
S*66

:

(18)

The homogenized properties E11, E22, E33, G23, G13, G12, v12,
v13, v23, α11, α22, and α33 of each RUC (with the superscripts *
omitted for simplification) are evaluated via the finite-volume

homogenization technique.30,31 The RUCs, in conjunction with the
corresponding homogenized properties, are randomly split into
two parts as the training dataset and testing dataset in a ratio of
90%:10%. Next, we construct a deep convolution neural network to
associate the microstructural features of unit cells of periodic com-
posites with their corresponding homogenized moduli. Since one
layer of convolution is limited in feature extraction, it is necessary
to set up a deep model to extract high-level features.32,33 By stack-
ing the layers together, the microstructural features can be extracted
automatically. Figure 2(b) illustrates a seven-layered network
employed in the present work, which includes the convolution
layer, max-pooling layer, and dense layer. Third, the deep CNN
model is trained using the randomly chosen training dataset, and
subsequently, the test dataset is applied to the trained network to
predict the homogenized properties of the remaining 4000 RUCs.
It should be noted that the CNN model is trained just once for
each material system. Once the network for a specified material
system is obtained, the homogenized properties of a new RUC will
be obtained upon securing an image of the material’s microstruc-
tural features.

In the deep CNN model illustrated in Fig. 2, the input layer is
the repeating unit cell of composite materials, which is represented
by a 40 × 40 image matrix. The output layer comprises 12 indepen-
dent homogenized thermo-mechanical properties of the composite
E11, E22, E33, G23, G13, G12, v12, v13, v23, α11, α22, and α33. It is
worth noting that a deep learning process eliminates the need of

FIG. 2. (a) Illustration of three different repeating unit cells with locally irregular fibers containing 25% volume fractions. (b) Deep convolution neural network.
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determining which microstructural features, such as statistical
moments of fiber distributions at a given fiber content, fiber–fiber
short-term and long-term distances, should be correlated with the
homogenized moduli. Instead, the deep CNN disentangles these
abstractions and picks out which features improve performance on
its own. To reduce the dependence and redundancy of the data, the
homogenized moduli generated by the finite-volume microme-
chanics are normalized using the following equation:

yi ¼ xi �min(x)
max(x)�min(x)

, (19)

where x ¼ (x1, x2, . . . , xi, . . . , xn), xi are the homogenized Young’s
and shear moduli as well as the thermal expansion coefficients gener-
ated by the finite-volume micromechanics, n ¼ 40 000 indicates the
number of RUCs, and yi are the corresponding normalized moduli.
To measure the errors generated during the training process, two
metrics, namely, the mean absolute percentage error (MAPE) and
mean percentage error (MPE), are defined as follows:

MAPE ¼ 100%
n

Xn
i¼1

yi � ŷi
yi

����
����, (20)

MPE ¼ 100%
n

Xn
i¼1

yi � ŷi
yi

, (21)

where ŷi are the CNN-generated homogenized moduli.
The training dataset was first used to train the convolution

neural network. Figure 3 illustrates the loss value as a function of
epoch generated during the training process for the graphite/epoxy

FIG. 3. Loss function generated during the training process.

FIG. 4. Mean absolute prediction error generated during the test process: (a)
graphite/epoxy composites; (b) glass/epoxy composites.

FIG. 5. Histogram of mean prediction error (%).
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FIG. 6. Comparison of homogenized moduli predicted by the finite-volume micromechanics and CNN homogenization. The subscripts “FV” and “DL” represent the homog-
enized quantities generated by the finite-volume micromechanics and deep CNN model, respectively.
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and glass/epoxy material systems. During the training process,
the learning rate is set to be 0.06. After two epochs, the loss func-
tions decrease to a value of 3 for both material systems. After 24
epochs, the loss functions converge to values smaller than 1.1 and
1.7 for the graphite/epoxy and glass/epoxy, respectively, and
remain constant thereafter. It should be noted that only 195 s
were used to execute the training program in an uncompiled
python environment in virtue of the GPU computing on Intel (R)
Xeon(R) Silver 4110 CPU@2.1 GHz, 64.0 GB memory, 64-bit
Operating System.

The effectiveness of the deep CNN homogenization technique
is verified by substituting the RUCs in the test dataset to the
trained deep CNN model to predict their homogenized properties.
Figures 4(a) and 4(b) present the box plot of the mean absolute
percentage errors for the graphite/epoxy and glass/epoxy material
systems, respectively, illustrating the five-number summary
(maximum, minimum, median, first, and third quartile) of the
errors generated for the test dataset. As observed, in all cases, the
CNN-homogenized properties are obtained with an approximately
maximum error of 8% relative to the finite-volume micromechanics-
generated theoretical values, whereas the first and third quartiles fall
within 1% and 4%, respectively, indicating the excellent predictive
capability of the deep CNN model. We note that the mean absolute
percentage errors are different between the 12 independent homoge-
nized properties. For both material systems, smaller mean absolute
percentage errors in the predicted Poisson’s ratios v12, v13, and v23
are observed than those of the remaining composite properties.
This is attributed to the fact that the deep CNN used in the study
is constructed for multi-task learning, which means that the
network is capable of generating 12 estimates of the RUC homog-
enized properties in a single network. Poisson’s ratios have a
smaller dispersion than Young’s and shear moduli and thermal
expansion coefficients, hence they are less demanding. To better
illustrate the distributions of prediction errors generated in the
testing case, the histogram of the mean percentage error is shown
in Fig. 5. Consistent with the previous observations, almost all
CNN prediction errors fall within ±5% for both material systems.

Figure 6 compares the homogenized thermo-mechanical prop-
erties for both graphite/epoxy and glass/epoxy systems generated
by the deep CNN against the targeted theoretical values obtained
using the finite-volume micromechanics. For visualization pur-
poses, the reference line y ¼ x is also enclosed in the figure. The
horizontal coordinates are the finite-volume homogenization
results while the vertical coordinates represent corresponding deep
CNN predictions. All points are distributed in the vicinity of the
reference line almost everywhere in the entire homogenized param-
eter range. This indicates that the CNN prediction coincides with
the finite-volume homogenized properties, further demonstrating
the excellent predictive capability of the proposed deep convolution
neural network. It should be mentioned that the upper and lower
bounds in the above figures correspond to the minimum and
maximum fiber volume fractions only in the case of E11, E22, E33,
G23, G13, and G12. The axial Poisson’s ratios v12 and v13 and axial
thermal expansion coefficient α11 decrease with increasing fiber
content, whereas the in-plane Poisson’s ratio v23 and transverse
thermal expansion coefficients α22 and α33 increase first and then
decrease with increasing fiber content (not shown).

IV. CONCLUSIONS

A microstructural image-homogenized moduli correlation
scheme is proposed for periodic composites with unidirectional rein-
forcement randomly distributed in the plane transverse to the rein-
forcement direction. A seven-layer deep convolution neural network
is developed that is trained to associate the microstructural features
of unit cells of periodic composites with their corresponding homog-
enized moduli, calculated using a finite-volume homogenization
theory. The performances of the proposed network are assessed
extensively by checking the loss value function during the training
process, the five-number summary of the absolute mean prediction
error, and mean percentage error distribution generated by the deep
CNN homogenization. A direct comparison of the full set of homog-
enized properties by the deep CNN homogenization and finite-
volume micromechanics theoretical values demonstrates excellent
correlations between the data analysis and physical models. The full
utility of the present approach may be realized upon incorporating
the nonlinear analysis capabilities to generate the elastoplastic
response, which will be reported elsewhere in our future work.
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