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Abstract: Over the past 50 years or so the representation of spatial information within com-
puterized systems has been widely addressed and developed in order to provide suitable
data manipulation, analysis, and visualisation mechanisms. The range of applications is
unlimited and nowadays impacts almost all sciences and practices. However, current con-
ceptualisations and numerical representations of geospatial information still require the
development of richer abstract models that match the complexity of spatial and temporal
information. Geospatial ontologies are promising modelling alternatives that might favour
the implementation and sharing of geographical information. The objective of this vision
paper is to provide a short introduction to the principles behind semantic ontologies and
how they can be applied to complex geospatial information, by evaluating their potential
and limitations.
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1 Introduction

While geographical information systems (GIS) have successfully developed over the past
50 years, it is nowadays recognized that this has been the case without a so far complete for-
mal theoretical support that might encompass the full complexity of many space and time
phenomena. In particular, the old cartographical paradigm had a strong influence on the
development of computational GIS frameworks, as illustrated by the ‘layer’ concept often
implemented in GIS software solutions. This led to the development of software-oriented
GIS solutions oriented towards either raster or object-based representations. The success
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2 CLARAMUNT

of the relational database approach in the 1970s led to the development of geo-relational
models where layers were closely associated with relational tables, offering many practical,
but nonetheless limited solutions to the integration of additional entity attribute properties.
Therefore, most GIS applications were, and still are, dependent on raster or object-based
models, despite the limitations of such approaches in capturing the complexity of scientific
studies and many real-world phenomena [7].

The big issue that arises is how can we design a conceptual bridge between current GIS technolo-
gies and models on the one hand, and the necessary theoretical GIS foundations on the other hand,
and how to do so?

This question should lead to a preliminary investigation on how humans conceptualize
space and time? What are the roles of language and cognition when doing so? This also
stresses the close link between what reality is and how interpretations should materialize
it as much as possible in computerized frameworks. In order to understand how people
perceive the world, cognitive conceptualizations of geographic features and appropriate
abstraction paradigms should be developed to support computerized representations [5].

With many in the GIScience community searching for novel theoretical pathways to
re-engineer GIS data models, the concept of ontology re-appeared and offered canonical
descriptions of knowledge domains as defined as “a neutral and computationally tractable
description or theory of a given domain which can be accepted and reused by all informa-
tion gatherers in that domain” [14]. An ontology is usually defined as “a formal, explicit
specification of a shared conceptualization” [8] providing a non-ambiguous and formal
representation of a domain.

While early GIS data models were not really successful in establishing a close link be-
tween reality and data representations, ontologies should abstract the world as it is, using
formal and primitive entities, and with much more attention to the underlying properties
of geographical phenomenon. A sound geospatial ontology should first define in formal
terms the constituents of a reality within a given domain and should be soundly defined
and logically possible, extensible and implementable [8]. A geospatial ontology should
encompass all the categories and modelling abstractions necessary for a meaningful rep-
resentation of a given real-world domain: from fields to objects, from events to processes
as well as causal to qualitative spatial and temporal relations. A geographic ontology will
then be specifically oriented to the “necessary and sufficient conditions for something to be
a particular kind of entity within a given—geographic—domain and not an abstraction of
the formal features that characterize all scientific areas” [12]. In fact, a geospatial ontology
should provide a taxonomy, a formal vocabulary that can be computerized at the software
engineering level.

2 Ontologies

An ontology should also include axioms to explicitly define the abstractions to represent
and reasoning mechanisms [14]. As there will be some approximations in this process, the
objective is to minimize the distance between reality and a final domain-based representa-
tion [19]. Ontologies should not only explicitly represent concepts and relations abstracted
from reality formally, allowing numerical notation using symbolic grammars, they should
also favour interoperability and knowledge sharing between different applications [9]. An
ontology can be formalized by description logics through definition of classes, relations,
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functions, and axioms. In description logic data is represented using a hierarchy of classes,
relations and instances. Under the umbrella of the semantic web, ontologies can be im-
plemented according to standard formalisms such as the Web Ontology Language (OWL).
OWL offers a formal logic-based semantics and complemented by the Resource Descrip-
tion Framework (RDF) and query standards such as SPARQL whose objective is to provide
schema and query mechanisms and reasoning rules to manipulate the represented data. An
important property of RDF triples made of subject-predicate-object is that they are easily
understandable by machines (though perhaps not so well by humans. . . ). Several formats
nowadays support RDF implementations including RDF/XML, N-Triples, JSON-LD, Tur-
tle, and Notation [6].

One of the main advantages of such approaches is that the software level can use and
reuse the represented semantic data and rules without rewriting code, thus reducing main-
tenance and evolution costs. RDF can be thought of as a grammar in which facts about
the world are expressed in RDF as triplets of <subject, predicate, object>. RDF, usually in
the form of XML, can be embedded in HTML so that browsers, search engines, and other
programs can manipulate the represented data and infer additional knowledge. Alterna-
tive models to RDF and XML have been suggested, for example the JSON JavaScript Object
Notation which is both more compact and easier for humans to read and interpret.

3 Towards geospatial ontologies

The benefits of a sound ontology for geographic information include not only a concep-
tual, logical and computational bridge between reality and machines, but also a basis for
exchange of information and cross-disciplinary collaboration between different domains of
science.

When discussing geospatial ontologies, we can differentiate between a unified frame-
work whose objective is to identify high levels geographical concepts [4] and domain-based
ontologies. Domain ontologies have been developed for many domains including cadas-
tral applications [17], urban studies [2], or as mediators for knowledge sharing [16,18] and
to the companion domain of remote sensing [1]. Geospatial ontologies share many struc-
tural similarities, regardless of the language in which they are expressed. Most ontologies
describe individuals, categories, attributes, relations, rules, actions, and events.

The search for a rich geospatial ontology generalizable across many fields and applica-
tions is still a major challenge. Geospatial objects are complex abstractions, they have parts
and can be constituents of others [15], they have bona fide or fiat boundaries, they are either
well or vaguely defined and encompass a large range of spatial relations and are associated
to categories and additional semantic. While being potentially defined at different levels of
abstraction and granularity they evolve though events and processes and generate multi-
ple relational networks in space and time [3, 20]. Several fundamental challenges have not
been completely resolved with respect to the development of geospatial ontologies:

• to provide complete and appropriate representations of real-world phenomena that
integrate the four spatio-temporal dimensions and the whole complexity of real-
world phenomena;

• to create a formal and computational data model that could provide a sound repre-
sentation of all the concepts identified at the ontological level;
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4 CLARAMUNT

• whether a general ontological-based might support a formal umbrella that includes
all four spatio-temporal dimensions within a unified framework?

A geospatial ontology for the web nowadays offers a series of functionalities towards
the geospatial semantic web where a comprehensive set of geographical properties and ab-
stractions can be both understandable by different communities and implemented. Kuhn,
Raubal, and Gärdenfors [11] underlined that, in order to better match human cognition,
geospatial ontologies should be grounded by establishing meaningful and suitable ge-
ographical and semantic primitives and integrate time as well as different levels of ab-
straction and users’ points of view. A good balance should be also made between generic
geospatial ontologies and domain-based ontologies [10], since the two views are comple-
mentary.

An important recent trend is that the development of geospatial ontologies has been
closely addressed in the dual context of standard recommendations from the ISO and OGC,
in order to represent geospatial concepts and properties for use on the Web. This is a major
trend that of course is also a consequence of the dominance of the Web in the development
of novel software engineering solutions, but one might wonder if alternative software en-
gineering options are not possible? Thus, geospatial ontologies on the Web are largely
based on several formats to implement RDF triples such as XML, RDFa, and JSON-LD.
GeoSPARQL language is a standard RDF SQL-based query that manipulates geospatial
RDF data. It provides a GML-based representation of geometrical literals, topological rela-
tions, a SPARQL query interface and a rule interchange formal for further inferences. So far
several vendor-based software implementations of RDF (e.g., Oracle Spatial) and SPARQL
are currently been implemented as well, and are associated with geometrical extensions
such as (e.g., KML, GeoJSON). But SPARQL has similar limitations as SQL, queries are not
always intuitive to read and understand. GeoNames and LinkedGeoData are examples of
datasets that cover a vast part of the world, for instance by allowing integration of large
data repository such as OpenStreetMap.

Despite the fact that geospatial ontologies provide sound and formal representation
mechanisms, a series of limitations can be still identified and should be considered as major
research challenges to address:

• The difficult formalization of expert knowledge is a key issue. Moreover, transfer-
ring expert knowledge to classes, relations and rules is not always straightforward,
especially as declarative languages are not user friendly. The way triples might rep-
resent the full complexity of relational concepts is not always satisfactory, especially
for some semantically complex relations and the way triples might be interpreted is
another difficult issue. Transferring specialized knowledge from texts or domain ex-
perts to abstract and effective concept representations is far from being an easy task
and can often lead to misinterpretations and ambiguities.

• Are OWL and RDF sufficient enough to represent and manipulate the whole com-
plexity of geographical and temporal abstractions? Although objects are relatively
well represented, image data is not completely represented by RDF triples and
GeoSPARQL and temporal abstractions have still to be integrated. Similarly, 3D mod-
els and Building Information Models should be fully integrated. Last, but not least
the emergence of big geospatial data is likely to bring computational issues as RDF
and GeoSPARQL were not designed to deal with massive geospatial datasets.
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• Are the functionalities of current model and query languages such as GeoSPARQL
rich and understandable enough to provide a high level data manipulation level? Is
GeoSPARQL computationally effective as server loads are likely to be costly oper-
ations? So far GeoSPARQL functions and queries are far from being intuitive and
really far away from what a typical user might expect.

• Geospatial ontologies should be extensible and reusable and possibly cross-domains
and communities. Interoperability implies leveraging existing standards and being
adaptable to existing data-centric infrastructures.

• The large range of ontology language editors, although some are well established
(e.g., Protégé), does not always facilitate interoperability and results in uncoordinated
software engineering efforts.

• One of the advantages of formal and numerical representations of ontologies and
geospatial ontologies lies in the visibility of the notations. However, this leads to
large repositories of data representation and an intermediate level, where users might
manipulate such abstractions at a higher level of representation, is lacking.

• As scientific applications are not of high priority within the GIS industry despite the
availability of many ontology standards, and as re-engineering existing application
will be extremely costly, embedding geospatial ontologies within GIS will be far from
straightforward.

Geospatial ontologies offer fundamental resources to remodel geospatial information.
However, a good balance should be sought between the need of offering sound and inter-
operable geospatial infrastructures and that of not re-inventing the wheel as every effort
should be made to leverage existing GIS data infrastructures wherever possible.

Finally, geospatial ontologies are very likely to be closely integrated within much
broader and large contexts. For instance, the Sustainable Development Goals Interface On-
tology [13] is an important example and demonstration of how geospatial ontologies might
act as a foundation for sustainable development between more specialized domain ontolo-
gies that will offer cross-reference entities of sustainable development knowledge. When
developing such an agenda for a sustainable environment it turns out that intimately con-
necting such efforts to the representation of environmental entities, processes, interconnec-
tions with many ecosystems and urban systems is a key challenge that can be addressed by
geospatial ontologies in order to creating open representations and standards. This effort is
on that should involve many GISscience related communities, researchers and practition-
ers.
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