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This work aims at analyzing the scaling behavior and develop correlations during surface
growing for different germination lengths. The surface growing by random deposition is
simulated using a kinetic Monte Carlo approach, by considering different germination
lengths. Different surface descriptors are extracted, among them the roughness and the
correlation. The former allows extracting the scaling behavior, while the latter proves the
existence of correlations independent of the system size but dependent on the germination
length. Moreover, as in the case of random deposition with a null germination length,
the growing roughness never saturates.
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1. Introduction

Functional coatings are nowadays major players empowering high-technology appli-

cations, as the ones concerning functional surfaces enabling oxidation resistance or



anti-condensation, among many others. These functional surfaces are elaborated by 

using physical vapor deposition (PVD) and chemical vapor deposition (CVD), with 

the surface growing due to the continuous atoms bombardment that the surface 

experiences.
In this context, it is necessary to have a tool able to predict the growth evo-

lution of the film. Traditionally, two main mathematical descriptions were widely 

employed for describing the evolving surface morphology: (i) the kinetic Monte Carlo 

(kMC) simulations [Family and Vicsek, 1991; Halpin-Heraly and Zhang, 1995; 

Duke and Plummer, 2002; Das Sarma and Tamborenea, 1991; Barato et al., 2008; 

Albano et al., 1999; Forgerini and Figueiredo, 2009, 2011; Cansizoglu et al., 2015], 

based on tracking a huge number of particles obeying quite simple microscopic rules 

and (ii) the stochastic differential equations (SDEs) [Haselwandter and Vvedensky, 

2007; Majaniemi et al., 1996].

kMC simulations combine the simplicity of its computational implementation 

with their deep physical content. However, kMC-based approaches do not allow to 

obtain closed forms of the solution, making difficult the implementation of optimiza-

tion or inverse analyses. On the other hand, SDE allows a more rigorous solution 

procedure, enabling its employment in controllers, however, the modeling stage rep-

resents its trickiest issue, where usually a number of hypotheses must be considered 

for deriving a closed model. This paper will focus on the former approach, the kMC.

When using the kMC approach, the behavior of an atom reaching a surface will 

depend on the energy of the atom, the atom–surface interaction (chemical bonding) 

and the temperature of the surface. The mobility on a surface can vary depending 

on the chemistry, crystallography, etc. affecting the surface diffusion.

Atoms condense on a surface by losing energy by creating and breaking chemical 

bonds with the substrate atoms, colliding with other diffusing surface atoms, finding 

preferential nucleation sites and colliding or reacting with adsorbed surface species.

When atoms condense, they form nuclei. According to the nature of interaction 

between the deposited atoms and the substrate material it is possible to identify 

three types of growing mechanisms: (i) layer-by-layer growth; (ii) island growth, 

characterized by a three-dimensional nucleation and growth and (iii) combining 

layer and island growth.

One of the descriptors used to study surface growing and roughening processes 

is scaling. It is well established that some characteristics of the growing surfaces 

present scale-invariant properties, so that quite different growing processes exhibit 

very similar scaling behaviors. The time evolution of a surface induced by the depo-

sition of particles is usually described in terms of some scaling exponents. These 

scaling exponents define the most fundamental characteristics of the surface growth, 

and allows to consider different processes belonging to the same universal class.

In many circumstances, the roughness increases exhibiting saturation after a 

certain time. This time as well as the resulting roughness can depend on the system 

size, proving that the saturation phenomenon involves a finite length effect. These 

effects result from physical correlations.
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During the growth process, correlations develop along the surface, which imply

that the different sites of the surface are not totally independent, but depend on

the heights of neighboring sites, conferring a nonlocality to the growth process.

The correlation length determines the length in which the roughness influences

the growth of a given site. At the beginning of the process, the locations where

particles are deposited remain too far (with respect to the correlation length) and

consequently the growing dynamics seems uncorrelated, fully local and without

length effects. Correlations appear later.

This work aims at analyzing the effect of microscopic deposition physical rules, in

particular the germination length, on the scaling exponents describing the growing

dynamics.

1.1. Surface descriptors and scaling exponents

Scaling theory describes the dynamics of rough surfaces, in particular the standard

deviation of time-dependent height [Family, 1986; Meakin, 1985], describing the

surface roughness W

W (t, L) =

√

√

√

√

1

L

L
∑

i=1

(h(t, i) − h̄(t, L))2, (1)

where L is the size of the system, h(t, i) is the height at the site i on the surface at

instant t and h̄ is the mean value of the height at that instant, given by

h̄(t, L) =
1

L

L
∑

i=1

h(t, i). (2)

Generally, the surface roughness increases as a power of time until a time tx, called

crossover time [Mal et al., 2011], according to

W (t, L) ∼ tβ , t ≪ tx, (3)

where β is the so-called growth exponent.

The crossover time represents the time required to change the growing regime

and that depends on the system size according to the power law

tx ∼ Lz, (4)

where z is the so-called dynamic exponent. After the crossover time tx, the regime

can turn into a saturation regime, due to correlations occurring on the surface,

regime in which the roughness reaches a saturation value that remains constant in

time but increases as L increases, according to

Wsat(L) ∼ Lα, (5)

where α is the so-called roughness exponent.

The relation between the exponents depends on the growth process and has

been widely studied [Coy and Sidik, 1985; Meakin, 1993]. The exponents α, β and
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z characterize the growth of surfaces and their structural properties (self-affine, self-

similarity, fractal dimension, etc.) [Barabasi et al., 1995; Forgerini and Figueiredo, 

2011].
With respect to critical phenomena, only two exponents are needed to charac-

terize the dynamics and consequently to define universal classes of rough surfaces 

[Binder, 1976].

Another usual procedure consists of studying surface correlations [Saoudi et al., 

2017; Mirabella and Aldao, 2016], with the height correlation function calculated 

from

C(x, t) = 〈(h(x0 + x, t) − h(x0, t))
2〉x0

. (6)

2. Growth Model

In the random deposition addressed in this work, taking place on a surface of length

L (corresponding to the number of sites on the surface at which the particles reach-

ing the surface can attach), a number of particles N large enough (e.g., N = 10×L)

are randomly projected on the surface. When one particle reaches the surface at

site i ∈ [1, . . . , N ] (where periodicity is assumed, i.e., N + 1 ≡ 1 and 0 ≡ N), its

final location is given by some microscopic rules. The ones here considered, for a

given germination length lG, are as follows:

• If hi < max{hj , j ∈ [i − lG, i + lG]}, then the particle will move to the site k of

maximum height, hk = max{hj, j ∈ [i − lG, i + lG]} with 80% of probability or

stay at site i with the remaining 20% probability. It they are different sites in

that interval with the same (maximum) height, the 80% probability is equally

distributed between those sites.

• If hi = max{hj, j ∈ [i − lG, i + lG]}, then the particles attach to site i with 80%

probability or move to the site of highest height when excluding one of the sites i,

hi, i.e., to site k, with hk = max{hj, j ∈ [i−lG, i+lG], j �= i} with 20% probability.

Fig. 1. Schematic diagram for some surface growth processes in the random deposition with a 

germination length lG = 1.



It they are in different sites in that interval with the same (maximum) height,

the 20% probability is equally distributed between those sites.

Figure 1 illustrates these microscopic rules for lG = 1.

3. Scaling Behavior

In order to optimize surface properties and performances, it is necessary to sim-

ulate the growth mechanism. The different growth stages are very influenced by

the number of particles and the surface roughness [Petrov et al., 2003]. The ger-

mination effects emulate surface tension in a liquid surface, when addressing PVD

[Jeong and Boo, 2004].

The surface roughness is expected depending on the germination length lG as

the kMC simulations show in Fig. 2, as reported in Elsholz and Schöll [2004] when

addressing the growth of SiO2 and Nb2O5 thin films.

The interface becomes less dense at higher germination lengths lG, with parti-

cles concentrating in the highest surface peaks, such that the larger germination

lengths are possible according to the growth model described in Sec. 2. Thus, the

growth mainly localizes at some locations that attract high probability particles

that reached the surface at neighboring positions (neighbors in the sense of the

Fig. 2. Surface topography obtained for different germination lengths lG in random deposition. Both, 
the system size L and the computational particles N , were kept constant, L = 1000 and N = 10000.



germination length lG). This mechanism seems in agreement with the observations 

reported in Raoufi and Hosseinpanahi [2013].

For different sizes of the system L and the germination length lG, two different  

growth regimes are noticed, as Figs. 3 and 4 evidence. An initial growing regime 

occurs when the number of deposited particles remains smaller than the system size 

(L). In this regime, the germination length has a negligible effect, with the growth 

dynamics approaching a purely random deposition. Then, when the number of the 

particles becomes greater than the system length, the effects of the germination

Fig. 3. Growing dynamics for lG = 2 and different system size L. Dashed lines represent the
exponents β1 and β2 (averages are computed on 100 different configurations).

Fig. 4. Growing dynamics for L = 10000 and different germination length lG. Dashed lines
represent the exponents β1 and β2 (averages are computed on 100 different configurations).



length on the growth dynamics become preponderant, and a change in the slope is

noticed. As expected, the growth strongly depends on the germination length lG in

this terminal regime, with the growing exponent independent of the system size L.

The growth exponents β1 and β2 were calculated from the slope of the roughness

logarithm (ln(W )) as a function of ln(t). As expected, the initial regime approaches

the usual uncorrelated random deposition with null germination length, and its

growth exponent β1 = 0.5055 is in perfect agreement with the expected coeffi-

cient 0.5.

The terminal regime is characterized by a greater growth exponent, β2 = 0.8982

(for lG = 2), and as previously indicated, both β1 and β2 are independent of the

system size L, but exhibit a significant (expected) dependence on the germination

length, with β2 differing from 0.5 when lG increases, as reported in Table 1.

The growing dynamics induced by the microscopic rules discussed previously

avoids reaching a saturation regime.

Figures 5 and 6 show the evolution of the correlation according to expression

(6) when varying the system size (L) and the germination length (lG), respectively.

Table 1. Growth exponents β1 and β2

for random deposition with different ger-
mination length lG (L = 10000).

lG β1 β2

0 0.5000 0.5000
1 0.5019 0.8754
2 0.5055 0.8982
4 0.5135 0.9313

Fig. 5. Correlation in rough surfaces generated by random deposition with germination length 

lG = 2 for different system sizes L (averages are computed over k = 100 different configurations).



Fig. 6. Correlation in rough surfaces generated by random deposition with system size L = 1000
and different germination length lG (averages are computed over k = 100 different configurations).

When x increases, the correlation reaches a constant value that seems independent

of the system size (L) but depends on the germination length (lG).

4. Conclusions

This paper proposes a surface growing mechanism able to generate different surface

morphologies with a roughness that never saturates. It is based on the fact of

introducing a germination length that allows deposited particles to attach to the

highest neighbor sites. Thus, the interface density localizes, never saturates and

shows a space correlation that depends on that germination length.
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