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Abstract

Buckling and wrinkling of thin structures often lead to very complex re-

sponse curves that are hard to follow by standard path-following techniques,

especially for very thin membranes in a slack or nearly slack state. Many

recent papers mention numerical difficulties encountered in the treatment

of wrinkling problems, especially with path-following procedures and often

these authors switch to pseudo-dynamic algorithms. Moreover, the numer-

ical modeling of many wrinkles leads to very large size problems. In this

paper, a new numerical procedure based on a double Taylor series is pre-

sented, that combines path-following techniques and discretization by a Tr-

efftz method: Taylor series with respect to a load parameter (Asymptotic

Numerical Method) and with respect to space variables (Taylor Meshless

Method). The procedure is assessed on buckling benchmarks and on the

difficult problem of a sheared rectangular membrane.
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1. Introduction

There was recently a very strong interest within the scientific community

in thin membrane structures and their instabilities. The numerical simu-

lation of such elastic sheets is not an easy task when they are very thin.

Generally, path-following algorithms are appropriate tools to solve the as-

sociated nonlinear boundary value problems, especially with an arc-length

control [1] [2][3], which is often referred to Riks method. If these procedures

are very efficient for standard buckling problems (e.g.[4]), they may fail in

cases of very thin structures, say when the aspect ratio is larger than 1000,

which is mainly due to a vanishing bending stiffness and to the coexistence

of too many equilibrium solutions. Moreover the size of the numerical model

may be very large if one simulates many wrinkles with a shell finite element

code, for instance to capture the appearance of complex patterns as those

obtained experimentally for film-substrate systems [5].

There are alternative procedures to circumvent the lack of reliability of

path-following techniques and the excessive size of the numerical models,

which extends the arsenal of available numerical techniques, but each one

has generally a few shortcomings. One of the earliest is the tension-field the-

ory [6][7][8] that allows distinguishing three coexisting states of a membrane
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(slack, wrinkled, taut), but disregards the features of the wrinkles. On the

contrary, with the Fourier Fast Transform [9][10], many wrinkles can be de-

scribed in details but only with periodicity conditions and this does not allow

accounting for any wrinkling appearing near the boundary. A quite different

Fourier-related approach [11] is able to solve various boundary problems with

a low computational cost, but there are few restrictive assumptions, the main

one being a prescribed and uniform wavevector. Thus it remains important

to improve the numerical techniques for solving accurately nonlinear bound-

ary value problems discretized by generic techniques like the finite element

method. In this respect, there exist well established procedures to detect

bifurcation points, for instance by solving the extended system characteriz-

ing these bifurcations [12], or by computing a bifurcation indicator [13][14]

or by post-processing a Taylor series [15][16], but such bifurcation analyses

have to come after and before a standard path-following technique. Dynamic

relaxation [7][17][18][19][20] is one of the most reliable procedures to provide

a solution for these difficult nonlinear static systems: one has to define an

artificial dynamical system whose large time response provides the searched

equilibria. Here, the drawback is the difficulty to characterize the numerous

hysteresis loops that may give an overview of the whole set of equilibrium

solutions.

The recent literature reports several typical benchmarks illustrating the

numerical difficulties encountered in the treatment of these intricate bound-

ary value problems. A very representative case is the problem of a rectangular
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thin sheet under shear loading that was discussed by Wong and Pellegrino,

experimentally [21], theoretically [22] and numerically [23]. Roughly, a path-

following technique would generally permit to compute the wrinkled states

that are characterized by a tensile stress much larger than the compressive

one, but these two principal stresses are nearly identical in the case of the

sheared membrane: so it is difficult to capture these patterns corresponding

to nearly slack states. Initially, this problem was considered too difficult to

be solved by a path following method and the dynamic relaxation was applied

to solve a modified version that was stabilized by a rather large transverse

tension [23]. In another paper [7], very large shears were applied, which is an

alternative manner to stabilize the membrane. More recently, other authors

[24][25][26] were able to solve this shear problem with commercial computer

codes by using classical Newton-like procedures, but always with the help

of large transverse tension. In the present paper, this iconic benchmark is

revisited with the help of an efficient path-following algorithm and by trying

to disregard the additional tensile load. Another benchmark was recently re-

visited: a spherical film-substrate system that was studied both by dynamic

relaxation and Riks method [27]. In this reference [27], the pseudo-dynamic

technique proves to be robust, while the Riks method generally diverges dur-

ing the post-bifurcation regime. Note that there are other interesting results

about this wrinkling problem of spherical system in [28][29], with assessment

concerning shell finite element, reduced modeling and comparison between

path-following and dynamic procedures. Despite of these failures, one may
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wonder if continuation techniques are necessarily unable to solve nearly slack

membrane problems.

The purpose of this paper is to establish a numerical method based on a

path-following technique and able, first to solve the difficult problems posed

by the wrinkling of very thin membranes, second to reduce significantly the

number of degrees of freedom with respect to classical discretization tech-

niques, as finite element or finite difference methods. The nonlinear solver

will be the Asymptotic Numerical Method (ANM). ANM relies on Taylor

series with respect to a path parameter [30] [31] [32][33], each step-length

is related to the radius of convergence of the series and therefore it can be

defined after the computation of the series, which leads to naturally adap-

tive step-lengths and makes easier the control of strongly nonlinear solution

curves. It has been applied to a lot of models, including non-smooth mechan-

ics [34] and large scale problems [35] [16]. Thus ANM seems well adapted to

membrane wrinkling analyses because of this step length adaptivity, ensuring

the reliability of continuation of calculations.

ANM has to be associated with a classical discretization technique that

was most often the finite element method, but also sometimes meshless meth-

ods, such as Moving Least-Squares [36], Method of Fundamental Solution [37]

or spectral method [38]. In order to reduce the size of the discrete model,

the Taylor Meshless Method (TMM) has been chosen, the reduction of the

number of degrees of freedom (DOFs) being obtained by analytical solving

of the Partial Differential Equations (PDEs) in the form of Taylor series. In
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this respect, TMM belongs to the family of Trefftz methods [39][40] that are

characterized by the use of exact or quasi-exact solutions of the PDEs. So,

there are many variants of Trefftz methods that are mainly distinguished by

the chosen shape functions: harmonic polynomials [41][42], wave-based func-

tions [43], fundamental solutions [44][45] and many others [46], several papers

being devoted to plate bending [41][47]. TMM was introduced in [48] and

various techniques for boundary and transmission conditions are available

with a Taylor series per subdomain [49][50][40]. The computation of Tay-

lor series to solve quasi-exactly the PDEs is the heart of these Taylor-based

methods. This relies on well-established differentiation techniques [51][52]

that permit to carry out the computation of the series for almost all sys-

tems of equations [53][54]. Moreover, the procedure involves only boundary

variables, which is much more difficult to be obtained with other variants of

Trefftz methods. Note that it was tacitly admitted that Trefftz methods were

not able to solve large scale problems because of matrix ill-conditioning [55],

but carefully chosen splittings in subdomains have permitted to efficiently

solve numerical problems requiring several millions of DOFs in an equivalent

finite element model, at least in the cases of wave-based functions [43] and

of Taylor series [56][54].

In this paper, one applies both Asymptotic Numerical Method, because

of a very robust path-following technique, and Taylor Meshless Method, be-

cause of strong reductions of the number of DOFs. The considered model

was the well-known Föppl-von Karman plate equation. It is limited to small
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membrane strains and this is not too restrictive in cases of very thin mem-

branes. Thus, multivariate Taylor expansions were used: a power series

with respect to a scalar parameter representing the load (ANM) and another

power series with respect to the space variables in each subdomain (TMM).

It is worth noting that a preliminary report of this research was published

in a short paper [57]. The in-plane displacement was disregarded in that

previous paper, what limited its possible applications. Moreover, the study

of the buckling problem in section 3.2 and the wrinkling problem in section

4 are new.

The paper is organized as follows. All the numerical procedures are pre-

sented in section 2. Next, two basic plate buckling problems will be discussed

in order to assess the numerical method, especially in the neighborhood of

bifurcation points (section 3). Last, in section 4, one rediscusses the wrin-

kling of a very thin rectangular plate submitted to shear loading that is

a typical example of the difficulties encountered in solving thin membrane

problems by a path-following algorithm. Moreover, one tries to carry out

this computation without the regularization effect of a transverse tension.

2. A numerical method based on double Taylor series

The aim is to solve the Föppl-von Karman (FvK) plate equations [58][59]

that are here expressed in terms of the deflection w(x, y) and of the stress

function f(x, y), the latter being related to the membrane forces (or stress re-

sultants) by Nxx = ∂2f
∂y2

, Nyy =
∂2f
∂x2 , Nxy = − ∂2f

∂x∂y
. The applied loads are only
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transversal and written as λp(x, y), where the function p(x, y) is given and

the scalar λ is the load parameter. The load parameter λ can also be defined

from the boundary conditions. When expressed in terms of stress function,

FvK equations can be written in a simple form involving two bilaplacian

operators:















D∆2w − [w, f ] = λp

1
Eh

∆2f + 1
2
[w,w] = 0,

(1)

where the bracket operator involves the second derivatives of its arguments:

[A,B] =
∂2A

∂x2

∂2B

∂y2
+

∂2A

∂y2
∂2B

∂x2
− 2

∂2A

∂x∂y

∂2B

∂x∂y
. (2)

The material and geometrical data are Young’s modulus E, Poisson’s ratio

ν, plate thickness h and flexural rigidity D = Eh3/12(1 − ν2). If the FvK

equations (1) are beautyful, they are not convenient to apply various bound-

ary conditions and it is interesting to re-introduce the in-plane components

of the displacement u and v, which can be done via the following relations:































γxx = ∂u
∂x

+ 1
2

(

∂w
∂x

)2
= 1

Eh

(

∂2f
∂y2

− ν ∂2f
∂x2

)

γyy =
∂v
∂y

+ 1
2

(

∂w
∂y

)2

= 1
Eh

(

∂2f
∂x2 − ν ∂2f

∂y2

)

2γxy =
∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y

= − 1
Gh

∂2f
∂x∂y

,

(3)

the latter equations (3) representing, first the displacement-strain relation
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within FvK approximation, second the linear isotropic constitutive law. The

shear modulus is classically given by G = E/2(1+ν). It will be interesting to

use notations of Voigt type by representing the linearized strain by a column

vector {ǫ(u)} where u stands for (u, v), the plane compliance tensor by a

matrix [M ], the gradient of the deflection w by a vector t{g} =
{

∂w
∂x
, ∂w
∂y

}

,

the tensorial product ∇w⊗∇w by a product matrix×vector [A(g)] {g} and

the tensor of the second derivatives by a vector {D2f}:

{ǫ} =























ǫxx

ǫyy

2ǫxy























, [M ] =













− ν
Eh

1
Eh

0

1
Eh

− ν
Eh

0

0 0 − 1
Gh













(4)

[A (g)] =













gx 0

0 gy

gy gx













,
{

D2f
}

=























∂2f
∂x2

∂2f
∂y2

∂2f
∂x∂y























. (5)

With the latter notations, the membrane constitutive law (3) can be written

in a vectorial form with g = ∇w:

{ǫ(u)}+
1

2
[A (g)] {g} = [M ]

{

D2f
}

(6)

It will be convenient to re-write also the bracket operator in a vectorial
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form:

[A,B] = t
{

D2A
}













0 1 0

1 0 0

0 0 −2













{

D2B
}

(7)

The FvK model is based on restrictive assumptions: linearity of the

stress-strain law, linearity of the bending term D∆2w and linearization of

the membrane strain (3) with respect to the in-plane displacement, the only

remaining nonlinearity coming from the geometric effect due to transverse

displacement w(x, y). Thus, it is unable to account for the evolution of wrin-

kles for strains beyond 5 − 10% as, for instance, in the tensile rectangular

plate problem discussed in [60]. Nevertheless, it remains relevant to describe

losses of flatness occuring for plates undergoing rather small strains.

2.1. Taylor series with respect to the load (ANM)

The Asymptotic Numerical Method (ANM) computes solution branches

of PDEs in the form of Taylor series with respect to a real number “a” called

path parameter. The most popular path parameter is a sort of linearized

arc-length, for instance as:

a = 〈w − w0, w1〉+ 〈f − f0, f1〉+ (λ− λ0)λ1. (8)

This parameter is quite similar to the one of the Riks method, it is not

necessarily the optimal choice and other possibilities are discussed in [61],

but it is quite secure and permits, for instance, to bypass easily limit points.
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The effectiveness of the method does not seem sensitive to the choice of the

bilinear form 〈., .〉 that is defined here as a L2-product based on the set of

collocation points introduced in section 2.3.

ANM seeks a family of solutions depending on the scalar parameter “a”.

The parameter λ is also expressed as a function of “a”. First, the variables

w(x, y), f(x, y), u(x, y), v(x, y) and the load parameter λ are expanded in

the form of truncated power series with respect to the parameter “a” from a

known starting solution denoted as w0(x, y), f0(x, y), u0(x, y), v0(x, y), λ0:















































w(x, y, a)

f(x, y, a)

u(x, y, a)

v(x, y, a)

λ(a)















































−















































w0(x, y)

f0(x, y)

u0(x, y)

v0(x, y)

λ0















































=

NA
∑

K=1

aK















































wK(x, y)

fK(x, y)

uK(x, y)

vK(x, y)

λK















































. (9)

Next, one substitutes the series (9) into the FvK system (1) and the defi-

nition of the path parameter (8). So, each equation appears as a power series

and vanishing this power series is equivalent to vanishing the coefficients of

aK , 1 ≤ K ≤ NA. This leads to a family of equations satisfied by the new un-

knowns that are the coefficients (wK(x, y), fK(x, y), λK) of the power series.

Let us begin by the first term (K = 1), which leads to a linearized system

satisfied by the first term of the series: :
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





























D∆2w1 − [w0, f1]− [w1, f0] = λ1p

1
Eh

∆2f1 + [w0, w1] = 0

1 = 〈w1, w1〉+ 〈f1, f1〉+ λ2
1.

(10)

The two first equations in (10) correspond exactly to the tangent system used

in classical iterative algorithms. The third equation is scalar and it will be

discussed later. At order two, the coefficients of a2 lead to:































D∆2w2 − [w0, f2]− [w2, f0] = λ2p+ [w1, f1]

1
Eh

∆2f2 + [w0, w2] = −1
2
[w1, w1]

0 = 〈w2, w1〉+ 〈f2, f1〉+ λ2λ1.

(11)

These equations are linear in w2, f2, with the same differential operator as

for the first equations (10). The nonlinearity is accounted by the items w1,f1

appearing in the bracket operators and the latter will be known after the

resolution of a boundary value problem based on Eq.(10). The generic form

of the linear problems at order K (K ≥ 2) is:































D∆2wK − [w0, fK ]− [wK , f0] = λKp+ gnlK

1
Eh

∆2fK + [w0, wK ] = hnl
K

0 = 〈wK , w1〉+ 〈fK , f1〉+ λKλ1,

(12)

where gnlK =
∑K−1

R=1 [wR, fK−R], h
nl
K = −(

∑K−1
R=1 [wR, wK−R])/2. Note that the
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problems (11),(12), and the definitions of the right-hand-sides gnlK and hnl
K

follow from the well known Leibniz rule defining the high order derivatives

of a product. This formula is written in terms of coefficients of power series:

(fg)K =
K
∑

R=0

fRgK−R. (13)

This rule is not limited to products of real numbers, it holds also for scalar

products of two vectors, for products of matrices, ..., and here for the bracket

operator (2).

Because of linearity, the solution of (10) is in the form w1(x, y) = λ1ŵ(x, y),

f1(x, y) = λ1f̂(x, y), where ŵ(x, y), f̂(x, y) solve the following system:















D∆2ŵ − [w0, f̂ ]− [ŵ, f0] = p

1
Eh

∆2f̂ + [w0, ŵ] = 0

(14)

The resolution of boundary value problems based on (14) will be discussed

in Section 2.2 by the technique of Taylor series. The third equation in (10)

yields the load parameter at order one:

λ2
1 =

1

〈ŵ, ŵ〉+ 〈f̂ , f̂〉+ 1
(15)

Eq.(15) has two solutions because one can move in two directions along the

branch of solutions. In the first ANM-step, the user has to define the orienta-

tion. In the next ones, the orientation is chosen with respect to the tangent
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direction at the end of the previous step, see [31].

For the generic case at order K, K ≥ 2, (Eq. (12)), there are three right

hand sides, λKp(x, y) that is similar to the order one, and two new functions

gnlK (x, y) and hnl
K(x, y) that depend only on the unknowns at previous orders

(orders ≤ K − 1): so the power series can be computed recurrently. Hence

the solution at order K can be split in two parts:















wK = λKŵ + wnl
K

fK = λK f̂ + fnl
K ,

(16)

where (ŵ, f̂) has been defined at the first order and (wnl
K , fnl

K ) is the solution

of














D∆2wnl
K − [w0, f

nl
K ]− [wnl

K , f0] = gnlK

1
Eh

∆2fnl
K + [w0, w

nl
K ] = hnl

K .

(17)

Thus, one has defined a family of linear PDEs (14)(17) that can be solved

recurrently. To complete the boundary value problems, one generally needs

to include the in-plane displacement at order K. First, the Taylor expansion

of the constitutive law (6) provides a sequence of linearized equations:

{ǫ(u)}K +
1

2

K
∑

R=0

[A (gR)] {g}K−R = [M ]
{

D2f
}

K
(18)

where g = ∇w. Solving the latter equation (18) will provide uK , the in-plane

displacement at order K.
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2.2. Taylor series with respect to space variables (TMM)

Next the linear equations (14) and (17) with variable coefficients are

solved by Taylor meshless method (TMM). Within TMM, the boundary value

problems are treated in two steps: first one computes the general solutions

of the PDEs by the technique of Taylor series, which leads to a rather small

number of shape functions, second the boundary and interface conditions are

discretized by one of the techniques discussed in [49][56][50]. In this part,

one begins with the solving procedure by Taylor series that is presented in

the case of a system in the form:















D∆2w − [w0, f ]− [w, f0] = g

1
Eh

∆2f + [w0, w] = h,

(19)

which corresponds to (14) or (17). The functions w0(x, y), f0(x, y), g(x, y)

and h(x, y) in (19) are given in the form of Taylor series. In each subdomain,

the two unknowns w(x, y) and f(x, y) are approximated by Taylor series

truncated at degree N :











w(x, y)

f(x, y)











=
N
∑

m=0

N−m
∑

n=0

(x− x0)
m(y − y0)

n











wm,n

fm,n











(20)

Note that (20) is a discretization of the unknown fields w(x, y) and f(x, y),

the discrete variables being the (N + 1)(N + 2) Taylor coefficients wm,n and

fm,n. Next one seeks approximated solutions of the equations (19) in the
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sense of Taylor series by setting to zero the power series of the residual:















D(∆2w)m,n − [w0, f ]m,n − [w, f0]m,n = gm,n

1
Eh

(∆2f)m,n + [w0, w]m,n = hm,n

(21)

for integers m and n such that 0 ≤ m + n ≤ N − 4. So the PDEs (19) lead

to the algebraic equations (21) satisfied by the Taylor coefficients wm,n and

fm,n. It is the latter algebraic equations that are to be solved in order to

reduce the number of discrete unknowns wm,n and fm,n.

The key points of the present procedure are to establish these discrete

relations (21) and to solve them for reducing the number of unknowns. In

order to establish these discrete equations, one relies on obvious properties of

derivatives on one hand, and, on the other hand, on the 2D Leibniz formula

that is given by:

(fg)m,n =
m
∑

m1=0

n
∑

n1=0

fm1,n1
gm−m1,n−n1

(22)

First let us detail the computation of the Taylor coefficients of the bilaplacian

(∆2w)m,n = (m+ 4)(m+ 3)(m+ 2)(m+ 1)wm+4,n

+ 2(m+ 2)(m+ 1)(n+ 2)(n+ 1)wm+2,n+2

+ (n+ 4)(n+ 3)(n+ 2)(n+ 1)wm,n+4

(23)
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as well as the tensor of the second derivatives

{

D2w
}

m,n
=



























∂2w/∂x2

∂2w/∂y2

∂2w/∂x∂y



























m,n

=



























(m+ 2)(m+ 1)wm+2,n

(n+ 2)(n+ 1)wm,n+2

(m+ 1)(n+ 1)wm+1,n+1



























. (24)

Next one has to calculate the terms like [f, w0]m,n in the equation (21). In this

respect, one applies the 2D Leibniz formula (22) to the matricial equation

(7), which gives:

[A,B]m,n =
m
∑

m1=0

m−m1
∑

n1=0

t
{

D2A
}

m1,n1













0 1 0

1 0 0

0 0 −2













{

D2B
}

m−m1,n−n1

.

(25)

By combining (24) and (25), one is able to compute all the Taylor coefficients

[f0, w]m,n, [w, f0]m,n, [w0, w]m,n. They are written as functions of the deriva-

tives of the two unknowns w and f such that the order of the first index is

lower than or equal to m+ 2 (as compared with the bilaplacian term whose

largest degree is m+4). Because the right hand sides gm,n and hm,n are also

built from bracket nonlinearities, they can be computed in the same way.

The relations (21) can be considered as recurrence formulas and they

permit to build easily the family of polynomials that are solutions of the

FvK equations within the approximation by Taylor series. Let us re-write
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these equations as:















αDwm+4,n = −βDwm+2,n+2 − γDwm,n+4 + [w0, f ]m,n + [w, f0]m,n + gm,n

α
Eh

fm+4,n = − β
Eh

fm+2,n+2 −
γ
Eh

fm,n+4 − [w0, w]m,n + hm,n.

(26)

where α = (m+4)(m+3)(m+2)(m+1), β = 2(m+2)(m+1)(n+2)(n+1),

γ = (n+4)(n+3)(n+2)(n+1). The latter relations define an affine subspace

of polynomials that are easily computed because the right hand sides of (26)

correspond to a first index lower or equal to m+2, while this index is equal to

m+4 in the left hand side. To generate this subspace of polynomials, let us as-

sume that the following coefficients {w0,n, f0,n, w1,n, f1,n, w2,n, f2,n, w3,n, f3,n}

are given. Clearly, all the other coefficients {wm,n, fm,n} for m ≥ 4 will be

easily deduced from the recurrence formula (26): {w4,n, f4,n} from (26) for

m = 0, {w5,n, f5,n} from (26) for m = 1, etc. Let us introduce a vector c:

{c1, c2, c3, c4, c5, ..., c8N−4} = {w0,0, f0,0, w1,0, f1,0, w0,1, ...} (27)

by collecting all the pairs {wm,n, fm,n} for 0 ≤ m ≤ 3,m + n ≤ N . To get a

particular solution, one chooses c = 0 and one applies the recurrence formula

(26): so one builts a pair of polynomials (P̆w(x, y), P̆ f (x, y)) that solves the

FvK equations in the sense of Taylor series. To get the first solution of the

homogeneous equations, let us choose gm,n = 0, fm,n = 0, c1 = 1, ck = 0

for k 6= 1: then the application of the recurrence (26) yields a first pair of
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polynomials (Nw
1 (x, y), N

f
1 (x, y)). A second pair of polynomial solution is

obtained by choosing gm,n = 0, fm,n = 0, c2 = 1, ck = 0 for k 6= 2 and so on.

Finally, all these applications of the recurrence formula permit to obtain all

the polynomial solutions of the linearized FvK system (19):

w(x, y) = P̆w(x, y) + c.Nw(x, y) (28)

f(x, y) = P̆ f (x, y) + c.Nf (x, y). (29)

As to the discretized in-plane displacement u, it follows from the formula

(18) whose discretization by power series in (x, y) leads to:























(m+ 1)uK
m+1,n

(n+ 1)vKm,n+1

(m+ 1)vKm+1,n + (n+ 1)uK
m,n+1























+

1

2

K
∑

R=0

m
∑

m1=0

n
∑

n1=0

[

A
(

gR
m1,n1

)] {

gK−R
m−m1,n−n1

}

= [M ]
{

D2f
}K

m,n

(30)

If the main unknowns w, f and therefore g = ∇w are given in terms of Taylor

series, the latter formula (30) provides the strain ǫ and thus permits to build

the Taylor coefficients of the in-plane displacement (uK
m,n, v

K
m,n), except the

three first ones uK
0,0, v

K
0,0 and uK

0,1 = −vK1,0, which corresponds to a rigid body

motion: these three quantities have to be added to the unknown vector c in

(27). Note that, with three equations for two unknowns u(x, y) and v(x, y),
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the system (30) seems overdetermined, but the corresponding compatibility

condition is the second FvK equation (1) that was previously solved.

2.3. Boundary and interface conditions

The method of Taylor series has permitted to solve the Föppl-Von Kar-

man equations and such an approximated solution (28)(29) is valid in the

whole domain or, at least, in a part of this domain. So, it remains to apply

the boundary conditions and the transmission condition in cases where sev-

eral Taylor series are needed. In this respect, several procedures are available,

the earliest one being the hybrid-Trefftz method [40][42]. Various meshless

methods have been proposed within TMM [48][49]. In this respect, we shall

use a least-square collocation method that associates efficiency, robustness

and simplicity as compared with alternative approaches [50] and it works

well, even for problems requiring many subdomains [56][54].

For simplicity, the least-square boundary collocation method is described

in the case of a simply supported square plate submitted to a uniaxial com-

pressive stress λ as in Figure 1. The FvK model is coupled with the following

boundary conditions:

x = ±
a

2
: w = 0,

∂2w

∂x2
= 0,

∂2f

∂y2
= −λh,

∂2f

∂x∂y
= 0

y = ±
a

2
: w = 0,

∂2w

∂y2
= 0,

∂2f

∂x2
= 0,

∂2f

∂x∂y
= 0.

(31)

Note that the boundary conditions for the stress function f represent an

20



applied membrane stress around the domain. The same boundary conditions

are valid at each order K of the ANM-expansion with [w(x, y), f(x, y), λ]

replaced by [wK(x, y), fK(x, y), λK ]. In section 3.1, this FvK boundary value

problem will be discretized with a single domain, i.e. by a single Taylor series

in the whole domain.

In order to satisfy the boundary conditions within the meaning of least-

square collocation approach, one introduces a family of M collocation points

(xα, yα) on the boundary (see figure 1), by distinguishing the sets of points

Ix and Iy lying on the sides x = ±a
2
and y = ±a

2
. Next, one minimizes the

following function (let us recall that the vector c contains the free parameters

generating the general solution of the PDEs, cf (28)(29):

JBC(c) =
∑

α∈Ix

[

w2 +

(

∂2w

∂x2

)2

+

(

∂2f

∂y2
+ λKh

)2

+

(

∂2f

∂x∂y

)2
]

(xα, yα)

+
∑

β∈Iy

[

w2 +

(

∂2w

∂y2

)2

+

(

∂2f

∂x2

)2

+

(

∂2f

∂x∂y

)2
]

(xβ, yβ)

.

(32)

Applications of this procedure to other boundary conditions are straightfor-

ward and have been detailed in the literature [56] [53]. For instance, with

a clamped plate, one has to replace the second term in each bracket by the

square of the normal derivative of the deflection w. One can also add weight-

ing parameters in this function JBC(c) to limit the ill-conditioning of the

final problem. This minimization problem (32) leads to a linear system with

a symmetric positive definite matrix. Note that this least-square collocation
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method is used because the pure collocation method does not work [48]. Pre-

vious works [56] [50] have established that it converges and it is very robust

if the number of collocation points is sufficiently large, the choice M ≃ 2N

being quite secure.

The transmission conditions along interfaces between subdomains are

written according to the same principle, some collocation points (xγ, yγ)

being chosen along these interfaces. From a physical point of view, these

transmission conditions concern the continuity of the displacement, of the

rotation ∂w
∂ν

and various components of the stress and moment tensors [62],

but in the case of an isotropic homogeneous material as here, the transmis-

sion conditions are the continuity conditions of the main unknowns w and f ,

as well as of their first, second and third normal derivatives. The function to

be minimized includes a part for the boundary conditions and a part for the

transmission conditions, i.e. J(c) = JBC(c)+JTR(c), where the transmission

part can be written as:

JTR(c) =
∑

γ

{

JwK2 + J
∂w

∂ν
K2 + J

∂2w

∂ν2
K2 + J

∂3w

∂ν3
K2
}

(xγ, yγ)

+
∑

γ

{

JfK2 + J
∂f

∂ν
K2 + J

∂2f

∂2ν
K2 + J

∂3f

∂ν3
K2
}

(xγ, yγ).

(33)

where the usual notation J.K denotes a jump across the interface.

In this paper, we shall also study the boundary value problem in a square

plate sketched in the figure 2, where, contrarily to the previous example,

the in-plane displacement (u, v) is prescribed along the boundary (except u
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x

y

a

a

Figure 1: Simply supported square plate with boundary collocation points.

that is free along the horizontal lines). For this case of boundary conditions,

the function (32) has to be modified to account for prescribed values of the

in-plane displacement:

JBC(c) =
∑

α∈Ix

[

(u± λK)
2 + v2 + w2 +

(

∂2w

∂x2

)2
]

(xα, yα)

+
∑

β∈Iy

[

σ2
xy + v2 + w2 +

(

∂2w

∂y2

)2
]

(xβ, yβ)

. (34)

A specific feature of Kirchhoff and FvK plate models is the corner con-

dition that has to be prescribed, for instance in the case of a free boundary

condition [63]. In the absence of concentrated force at the corner, the tan-

gential bending moment mντ must be continuous at the corner, what may

be taken into account by adding a term K (JmντK)
2 to the function JBC(c),

K being a constant. This will be not necessary in the presented numerical

tests, where only supported or clamped boundary conditions are considered.
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Figure 2: Boundary conditions for a square plate under uniaxial compression: simply sup-
ported and prescribed in-plane displacements. The plate is split in few large ”elements”.
Collocation points are located on boundary and interfaces.

2.4. ANM continuation and summary of the procedure

To solve a nonlinear boundary value problem depending on a parameter

λ, a Taylor series expansion (ANM, formula (9)) with respect to a scalar

parameter a has been applied in the section 2.1, which leads to a sequence

of linearized partial differential systems (10)(12). Next, all these systems are

solved by the Taylor meshless method (TMM): first, in each subdomain, the

linearized PDEs are solved under the form of Taylor series with respect to

the space variables (x, y), which provides the unknown field by combining

a particular solution and a number of shape functions, cf section 2.2; then,

these Taylor series are assembled and boundary conditions are accounted

for by using a least-square collocation technique, which solves the linearized

systems (10)(12) and provides the double Taylor series (9)(20).

At this level, the solution path w(x, y, a), f(x, y, a), λ(a) is fully defined,
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but not the range of validity a ∈ [0, amax] of the Taylor series with respect to

the path parameter. So, we have to define the range of validity of the series

(9). In conformity with the basic ANM algorithm, one requires that the last

term of the series is small with respect to the first one:

amax =

{

δ
‖{f1, w1}‖

‖{fNa
, wNa

}‖

}1/(Na−1)

(35)

In this way, the step length is defined a posteriori, i.e. from the computed

Taylor series. Thus this leads to adaptive step lengths and this is very im-

portant when dealing with bifurcation problems. The radius of convergence

is generally governed by the distance to the nearest bifurcation point [64].

That is why one observes an accumulation of small steps close to the bifur-

cation: hence, such an accumulation leads to a simple bifurcation criterion

by sight, see for instance figure 4. Moreover, ANM permits to compute re-

sponse curves with a very small perturbation force: one just has to choose

a sufficiently small accuracy parameter δ. Generally, this parameter δ is the

same for the whole calculation. A large value of δ gives larger steps, but with

a risk of inaccuracy, while a small δ permits a more secure path following.

So the choice of the parameter δ is a key issue in the management of the

calculation.

2.5. About the efficiency of the method

If the two computational techniques ANM and TMM were applied to-

gether only in the recent paper [57], much information about these two meth-
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ods is available in the open literature, especially concerning ANM that was

established 30 years ago and about which many papers were published. In

practice, a sufficiently large order NA ≥ 10 is generally chosen and, after-

wards, the choice of this order is rather free, even if large orders NA ≥ 30, 40

are recommended for large scale problems to optimize the computation time

[35]. The key parameter is the number δ that controls the step length, in par-

ticular when dealing with bifurcation problems, a small value of δ avoiding

unwanted branch switching.

There are much less papers about TMM, nevertheless its numerical ef-

ficiency has been assessed from a lot of numerical tests recently published

in the literature. Many boundary value problems were considered, includ-

ing linear problems (Laplace and Poisson equations, linear elasticity) [56][50]

and nonlinear ones (nonlinear Poisson equations, hyperelastic bodies, Navier-

Stokes equation) [53] [65] [54]. The main property of the TMM-discretization

is the exponential convergence with the degree P up to large values P = 20

or P = 30, as expected for Taylor series, but there is a limit beyond which

the accuracy of the solver decreases. Such a behavior is due to the propaga-

tion of round-off errors and there is a connection with the ill-conditioning of

the matrix, say a condition number larger than 1020, see [56] or [54] for more

information. The same behavior was predicted by Schaback [66] in 1995 for

the discretization by radial functions, in which case the numerical checking

can be found in [55]. In other words, the number of shape functions in a

subdomain (i.e. the degree P ) may be large, but not too large. In section 4,
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a careful choice P = 8 will be done to remain in the exponential convergence

area and to avoid conditioning issues.

3. Numerical study of buckling problems

The numerical method of section 2 will be assessed by two examples con-

cerning the buckling under uniaxial loading of a simply supported square

plate whose side length is denoted by a. These two numerical tests are dis-

tinguished by the in-plane boundary conditions. We are interested in the

convergence with respect to the degree (p-convergence) and to mesh refine-

ment (h-convergence), as well as its ability to compute bifurcating curves

with very small imperfections. Our numerical results will be compared with

analytical and finite element results. The presented response curves will be

expressed in terms of non-dimensional quantities w̄ = w/h, σ̄ = σa2/Eh2

and p̄ = pa4/Eh4. Poisson’s ratio is ν = 0.3. The results will be presented

in non-dimensional terms so that the chosen value of the Young modulus is

ineffective.

3.1. Buckling of a square plate under prescribed membrane forces

This boundary value problem has been presented in section 2.3. The

boundary conditions (31) are expressed in terms of deflection w and stress

function f and they correspond to prescribed in-plane stresses, the load pa-

rameter λ being the applied compressive stress in the x-direction. In this
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case, we study the bifurcation load and the beginning of the post-bifurcation

response up to w̄ ≃ 1. All the boundary conditions are accounted by least-

square collocation with 240 collocation points. We use a single domain,

which means a single Taylor series. The parameters of the algorithm are the

ANM-degree K = 20, the spatial degree P = 20, which corresponds to 156

degrees of freedom, and the accuracy parameter δ = 10−8 whose smallness

is chosen to ensure the path-following for a quasi-perfect bifurcation. The

results obtained by the presented method will be compared with finite el-

ement calculations done with the well-established code ANSYS. These two

calculations need to input a small symmetry breaking. Within ANSYS, this

is a small modal geometric imperfection measured by the initial displacement

w̄imp called ”scaling factor”. Within the present method, a small transverse

pressure p̄ will be introduced. The challenge is to perform a bifurcation anal-

ysis with a very small imperfection to get a response as close as possible to

the perfect bifurcation.

The obtained bifurcation plots are presented in Figure 3 and Figure 4.

Within ANSYS, we use a scaling factor of 10−4 and 10−6 and, within the

present method, a dimensionless transversal pressure p̄ = 10−6. ANSYS was

not able to compute the bifurcating curve with a smaller imperfection, even

if we suspect that some experts in non-linear calculation should be able to

do such a calculation with a commercial package. Clearly, the new technique

permitted us to compute the bifurcation plot with a very small imperfection

simply by choosing a sufficiently large ANM degree and a sufficiently small
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Figure 3: Buckling of a square plate under a prescribed uniaxial compressive force. Effect
of small perturbations. The ANM-TMM algorithm is compared with a commercial finite
element code. On the ANM-TMM curve, each point corresponds to one ANM step.
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Figure 4: A zoom of Figure 3. One sees that the ANM-TMM method permits to compute
easily quasi-perfect bifurcations. On the ANM-TMM curve, each point corresponds to one
ANM step: this illustrates the step length adaptivity, especially its shortening near the
bifurcation point.
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Figure 5: Buckling of a square plate under a prescribed uniaxial compressive force. The
bifurcation stress is computed. One plots the decimal logarithm of the error versus degree
(p-convergence) and number of subdomains (h-convergence).

accuracy parameter δ.

Next, one discusses the convergence with the number of subdomains (h-

convergence) and with the degree P of the polynomials (p-convergence). The

interface and boundary conditions are accounted by the least-square colloca-

tion method in a similar way as in [56] and as described in section 2.3. One

looks for the value of the bifurcation stress σ̄x. The analytic value σ̄analytic
x

is 3.6152. One has applied TMM degrees P = 5, 8, 10 and a number of sub-

domains varying from 1 to 16. The results are reported in Figure 5. Clearly,

the method converges with the degree and/or with the number of subdo-

mains, but very accurate results (i.e. error less than 10−3) are obtained with

9 subdomains and P ≥ 8 or with 4 subdomains and P ≥ 10.
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Figure 6: Compressed square plate, bifurcation plot, degree of TMM 8, order of ANM 10.
Convergence with mesh refinement

3.2. Buckling of a square plate under prescribed in-plane displacements

One studies the second problem of a simply supported square plate de-

scribed in section 2.3 and in figure 2. It differs from the previous case by the

in-plane boundary conditions: normal displacements are prescribed, u = λ

on the side x = −a/2, u = −λ on the side x = a/2 and v = 0 on the sides

y = ±a/2. A tangential displacement v = 0 is also prescribed on the ver-

tical sides x = ±a/2, the other boundary conditions being unchanged with

respect to section 3.1. Contrarily to the previous example, large parts of the

post-buckling range will be investigated, which will require a multi-domain

discretization.

The parameters of the numerical procedure are chosen as follows. The

symmetry breaking perturbation is represented by a very small transverse
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uniform pressure p̄ = 10−6 and this requires a small value of the accuracy

parameter δ = 10−8 to ensure a path following able to capture the bifurcating

curve. The order of the ANM-series is set to K = 10 and the domain

is split into Ne subdomains (that can be called ”elements”) with a Taylor

series in each of them. The degree of the spatial approximation (TMM)

will be generally chosen as P = 8 or P = 10, which leads to Ne(8P − 4)

degrees of freedom. The boundary conditions are accounted by least-square

collocation with 32P points in each ”element”, including the boundaries and

the interfaces. The distribution of these points is shown in Figure 2.

To discuss the convergence of the method with the number of domains,

several meshes 2 × 2, 4 × 4, 6 × 6 and 8 × 8 were used and the results are

presented in figure 6. If the finest mesh 8×8 is considered as a reference, the

coarsest mesh is valid only just after the bifurcation (w̄ ≤ 0.5), the second one

4× 4 up to the point B and the third one 6× 6 a bit further. Four deformed

shapes are presented in Figure 7. The bifurcation mode corresponds to a

mode one (plot A of Figure 7) and the profile changes gradually towards a

mode 3 (plot D of Figure 7), which requires a finer mesh.

Next, one keeps the finest mesh 8×8 and Figure 8 compares the response

curves obtained for the degrees 8 and 10 with the one computed by FEM.

This FEM analysis is performed with the commercial software ANSYS using

four-node element shell181. The plate is discretized with 50 × 50 elements

and LARGE DISPLACEMENT STATIC option is activated to perform a

nonlinear analysis, which needs 15606 degrees of freedom. There are no
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Point A
Point B

Point C Point D

Figure 7: Deformed shapes along the x-axis of the plate at points A, B, C, D of Figure 6:
one sees a transition from mode one to mode three. In this figure and in the following 3D
plots, the colors represent the deflection w.
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Figure 8: Compressed square plate, bifurcation plot, FEM versus TMM.

significant differences between the finite element results and those obtained

with the degree P = 10, even after the secondary bifurcation near the point

E. At this level, the plate has fully switched to mode 3, see figure 9.

Table 1 and Figure 10 present the applied displacement when the deflec-

tion of center point w̄center = 1. A degree P = 6 is not sufficient to converge,

even with 8 × 8 domains. To improve the accuracy, one can increase either

Figure 9: Deformed shape at point E of Figure 8. The plate has switched to mode 3, as
in the point D of Figure 7.
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Table 1: Displacement load values when the displacement of center point is w̄ = 1. Con-
vergence with mesh refinement and with the degree.

Number of Degree of TMM
subdomains 6 8 10 12 15 20

2× 2 3.14120 2.91440 3.00396 2.98004 2.98231 2.98268
3× 3 2.95625 2.98184 2.98279 2.98261 2.98263 2.98263
4× 4 2.96247 2.98271 2.98263 2.98262 2.98262 2.98262
6× 6 2.97156 2.98261 2.98262 2.98262 2.98262 2.98260
8× 8 3.00378 2.98261 2.98262 2.98262 2.98261 2.98260
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Figure 10: Applied shortening λ when the displacement of the center point w̄ is 1.

35



the degree of TMM or the number of domains. From the TMM results, the

load to obtain w̄center = 1 is λ = 2.98261 ± 0.00002. From table 1, this

optimal result can be reached with a degree P = 10 and 16 ”elements” or

P = 12 and only 9 ”elements”. The discrepancy between FEM and TMM is

about 3× 10−5.

4. Wrinkling of a rectangular sheet under shear loading

4.1. Setting the problem

The asymptotic numerical method is a path following technique that

proved to be a very robust continuation method. Thus, it seems natural

to assess its behavior in the case of nearly slack membranes. In this respect,

the very thin plate under shear loading studied by Wong and Pellegrino [23]

is a representative example of nearly slack membrane. Numerical studies

of this problem based on plate bending models can be found in [23][7], the

nonlinear solver being the dynamic relaxation, and in [24][25][26], the solver

being the Newton-Raphson algorithm. In all these papers, the pure shear

loading problem is modified, generally by the introduction of a prescribed

transverse pretensioning displacement, this transverse displacement chang-

ing significantly the wrinkling problem. Indeed in the small strain range,

an applied shear leads to a tensile stress σ+ and to a compressive stress

−σ− that are very close (σ+ ≃ σ−), which generates a nearly slack state of

the membrane, while a wrinkled state requires a much larger tensile stress

(σ− << σ+ ). This applied pretensioning displacement increases significantly
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Figure 11: Rectangular membrane submitted to tension δv and shear load δu.

Table 2: Data, membrane under shear loading.

Width(mm) a 380
Height(mm) b 128
Thickness(mm) h 0.025
Young’s modulus(MPa) E 3500
Poisson’s ratio ν 0.3

the stiffness, which permits an easier start of the calculations. In this paper,

the appearance of instability patterns will be simulated by the continuation

method of Section 2, including for small shear strains and for very small

prescribed pretensioning displacements.

The geometrical and material data are presented in figure 11 and table

2. They are exactly the same as in [23], with an aspect ratio a/b ≃ 3 and

a thickness ratio b/h = 5120. Similar data were used in other papers, but

with a higher thickness ratio b/h = 8000 in [25][26]. The membrane is simply

supported along the short sides and clamped along the long sides. A vertical

displacement δv is prescribed along the top side: this is the pretension load

that was used to stabilize the membrane and to make easier the calculation.
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The main loading is the shear that is applied via the prescribed horizontal

displacement δu. These boundary conditions are summarized as:

w = 0 ∂w/∂y = 0 u = 0 v = 0 (0 ≤ x ≤ a, y = 0)

w = 0 ∂w/∂y = 0 u = δu v = δv (0 ≤ x ≤ a, y = b)

w = 0 Mxx = 0 σxx = 0 τxy = 0 (x = 0, x = a, 0 ≤ y ≤ b)

(36)

A small imperfection has to be added to detect bifurcation points and to

follow bifurcating branches. We have seen in section 3 that this perturbation

can be chosen very small when using the present numerical method. It is

often defined as a geometrical imperfection in the procedures proposed by

commercial codes. Here, for convenience, a small transversal pressure p(x, y)

is introduced to create the wished initial loss of flatness, for instance in the

wavy form in figure 12.

As in the previous studies about this shear problem, a multi-step strategy

is necessary, as sketched in figure 13. The first step is the pretensioning of

the membrane by applying the vertical displacement δv, which increases a

little the very low initial stiffness. This step is followed by the application

of the small transverse pressure p(x, y). In this discussion, this imperfection

will be represented by the deflection generated by this small pressure. The

numerical process is closed by the main loading that is the shear generated

by the horizontal displacement δu.

Contrarily to the previous authors, we investigate cases of nearly slack

membranes, with a pretensioning load up to δv = 0.5µm, while the previous
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Figure 12: An example of pressure field p(x) to create an out-of-plane displacement.
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Figure 13: The three steps of the algorithm.

studies considered this pretensioning load in the range 30µm − 100µm. In

the same spirit, we focus on the initiation of the shear load in the range

0 ≤ δu ≤ 0.15mm, while the other papers calculated directly the response

to much larger loads.

4.2. Adjusting the numerical model

Now we have to specify the parameters related to the numerical tech-

niques. The asymptotic numerical method (ANM) needs two parameters:

the degree of the Taylor series with respect to the load that is chosen as

NA = 10 and the accuracy parameter δ defined in (35) that is a crucial

parameter to ensure the path-following in cases of sudden changes in the

traveling direction. In the present case, a very small value is necessary and

the same value δ = 10−8 as in the buckling problems is chosen.

Next, the spatial discretization has to be defined. As in the p-version

of the finite element method, this discretization involves a degree P and a
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geometrical mesh. The degree P must be rather large to take advantage

of the exponential convergence of Taylor series, but not too large because

the matrix ill-conditioning leads to a loss of accuracy beyond some value of

the degree: this behavior, known as ”Schaback uncertainty principle”, was

discovered for radial basis functions [66][55] and established for discretization

by Taylor series [56][54]. Thus, we limit ourselves to a spatial degree P = 8.

The geometrical splitting conforms to almost the same rules as within finite

element method, but with larger elements and a great freedom concerning

their shapes. Simple splittings in rectangles as in figure 11 are used.

Various meshes have been tested in the case of a tension load δv =

0.02mm, of a shear load δu = 0.15mm and a small pressure able to gen-

erate a deflection of 1µm: 15×5, 17×6, 21×7, 33×11, 45×15 and 63×21.

We were not able to get a consistent solution with the two coarsest meshes.

With the mesh 21× 7, the pattern of figure 14 is obtained where 8 wrinkles

were observed. With the finer meshes 33 × 11, 45× 15 and 63× 21, the re-

sponse of the membrane is stabilized at 11 wrinkles. Thus, we consider that

the numerical process has converged and we shall use the mesh 33×11 in the

following calculations. This final pattern is plotted in figure 15. One remarks

that the wrinkles are not uniformly distributed, their amplitude being larger

near the edges. This amplifying effect of the boundary conditions has been

observed in all the previous studies, except, of course, in the case of periodic

boundary conditions [26].

Last, we have to fix the pressure p(x, y) to generate the initial imper-
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Figure 14: Test of the mesh 21× 7. Tension load 0.02 mm, imperfection 0.001 mm, shear
load 0.15 mm.

Figure 15: Wrinkled membrane with mesh 33 × 11, tension load 0.02 mm, imperfection
0.001 mm, shear load 0.15 mm.
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Figure 16: Geometric imperfection created by the pressure of figure 12.

fection permitting to follow the bifurcating branch. Periodic pressures as in

figure 12 were applied with a pretension 0.02mm and a mesh 33 × 11. A

typical displacement after the second step is presented in figure 16. At this

level, the deflection is small and one observes 16 vertical wrinkles, while the

final shape in figure 15 involves 11 tilted wrinkles. This behavior is expected:

the role of the imperfection is to trigger the bifurcation but the shape of the

response is mainly governed by the instability mode and therefore it depends

little on the imperfection. Several levels of imperfections were applied, from

0.004h (0.1µm) to 0.32h (8µm). With all these tests, 11 wrinkles were ob-

tained, except with the largest imperfections 0.2h (10 wrinkles) and 0.32h (9

wrinkles). In what follows, an imperfection of 1µm = 0.04h will be chosen.

4.3. Effect of the prescribed transverse displacement

Response curves have been computed for a wide sample of prescribed

transverse displacement δ, from very small values δv = 0.5µm, 1µm up to
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large values δv = 50µm, 80µm, the latter being in the range considered in the

literature. Let us recall the main characteristics of our calculations: shear

load δu ∈ [0, 150µm], which is relatively small but covers a range ignored so

far, imperfection 1µm, degree of the spatial series P = 8 and mesh 33× 11.

Bifurcation plots are presented in figure 17 for six values of pretensioning

load and the corresponding instability patterns in figure 18 for the maximal

shear load δu = 150µm. Several rather surprising features have to be men-

tioned. If all the responses look like classical pitchfork bifurcation curves,

the bifurcation load is very small for the lowest values of the pretension

δv = 0.5µm, 1µm. The patterns associated with these small pretensions

do not look like the one in figure 15 and those presented in the literature.

There are only three and four wrinkles in the first cases δv = 0.5µm, 1µm,

respectively, as compared with the 10 and 11 wrinkles occuring with the

other values of the pretensioning, see figures 18c, 18d, 18e, 18f. So, the pre-

tensioning load has a strong influence on the behavior of the membrane, at

least for the smallest values of δv. For larger δv, the pattern seems stabi-

lized and there are 11 wrinkles. Of course, a greater stiffness and therefore a

smaller instability wavelength are found for larger values of the pretension,

as expected. The existence of snap through is mentioned in the literature

[23], which was associated with the appearance of new wrinkles [24], but we

did not see such a phenomenon in the range of considered shear loads, the

load-displacement relation being monotone after the bifurcation.
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Figure 17: Bifurcation plots for various tension loads from 0.0005 mm to 0.08 mm. Shear
load vs maximum displacement, imperfection 0.001 mm.

a. 0.0005 mm b. 0.001 mm

c. 0.01 mm d. 0.02 mm

e. 0.05 mm f. 0.08 mm

Figure 18: Wrinkle patterns with different tension loads.
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Figure 19: A zoom of the buckling curve, tension load 0.05 mm.

4.4. Wrinkling initiation according to pretensioning load

Now we take a closer look near the bifurcation point to describe the

generation of wrinkles. First, we begin by a case with a rather large tension

of 0.05 mm. A zoom of the buckling curve with 0.05 mm tension load in

figure 17 is shown in figure 19, the corresponding patterns being given in

figure 20. For small shear load, the membrane remains flat, see points a and

b and figures 20a and 20b. Next, the wrinkling patterns develop, first in a

localized way, the membrane remaining quasi-flat in the center as in figures

20d and 20e. The appearance of wrinkles in the center begins in figure 20f

and these central wrinkles develop and spread over the membrane up to a

state as in figure 15.

This response of a membrane under large tension is now compared with

two cases of nearly slack membranes, first with a membrane submitted to a
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a. 0.0341 mm b. 0.0527 mm

c. 0.0592 mm d. 0.0740 mm

e. 0.0837 mm f. 0.1028 mm

Figure 20: A large tension load 0.05 mm. Pattern evolution with increasing shear load.
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very small tension δv = 1µm, i.e. 50 times smaller than for the previous case.

The global response (cf figure 21) looks like a beautiful pitchfork bifurcation,

even if the pre-bifurcation curve is less straight than in the large tension

case. The bifurcation load δu = 0.0019mm is much smaller than for the

large tension case δu ≃ 0.05mm. The wrinkling patterns are not localized

near the edges as in the large tension case, but are more or less uniformly

distributed in the membrane, from the bifurcation (figure 22b) up to fully

developed wrinkles, see figures 22f and 18b.

Last, we have been able to compute the response curve for a very small

tension δv = 0.5µm. We did not succeed for smaller values of the tension or

without tension. Even in the present case δv = 0.5µm, we missed sometimes

the bifurcation and several attempts were necessary to capture the bifurcat-

ing curve. The algorithm was tuned via the accuracy parameter δ and the

choice of the imperfection p̄, the same adjustments (accuracy, imperfection)

permitting also this control within classical incremental-iterative procedures.

In the zoom of figure 23, there are several forward and backward motions

before the main bifurcation (point b). The computation of this piece of

curve required a lot of ANM steps, which confirms the difficulty of traveling

through this region with very low tensile stress. The evolution of instability

pattern is also erratic, even after the bifurcation at point b, with many shape

changes. This shape seems finally stabilized with three wrinkles, for a shear

displacement δu = 0.15mm, see figure 18a. This test illustrates the difficulty

to follow the response curve when the membrane stress is very small. One
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Figure 21: A zoom of the buckling curve, tension load 0.001 mm.

understands that an easier computational strategy would be to pass over this

slack region and to go directly towards states where at least one principal

stress is tensile and sufficiently large.

5. Conclusion

A new numerical procedure based on a technique of double Taylor se-

ries has been discussed in this paper: Taylor series with respect to a path

parameter and Taylor series with respect to the space variables. The first

Taylor series corresponds to the asymptotic numerical method (ANM) [30]

and it transforms the nonlinear problem into a sequence of linearized equa-

tions satisfied by the Taylor coefficients. Next, these linear equations are

solved in the form of a packet of spatial Taylor series, which corresponds to

the Taylor meshless method (TMM) [54]. This procedure has been applied
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a. 0.0004 mm b. 0.0019 mm

c. 0.0020 mm d. 0.0025 mm

e. 0.0071 mm f. 0.0135 mm

Figure 22: A very small tension load 0.001 mm. Pattern evolution with increasing shear
load.
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Figure 23: A zoom of the buckling curve, tension load 0.0005 mm.

to the Föppl-von Karman plate equations.

The advantage of TMM is a strong reduction of the number of degrees

of freedom, as compared with the finite element or finite difference method.

The main numerical test was the wrinkling of a rectangular thin membrane

submitted to shear loading [23]: it was solved with 363 ”elements”, i.e. 363

spatial Taylor series, which is much less than previous similar computations.

The advantage of ANM is to provide quite secure path-following proce-

dures. That is why it has been assessed by numerical benchmarks known

to be difficult to manage from this point of view: buckling problems with

very small imperfections and the aforementioned wrinkling problem. In the

literature, the latter problem is generally stabilized by a transverse preten-

sioning load and we have established that the tension modifies significantly

the problem, the number of wrinkles decreasing strongly for a vanishing pre-
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a. 0.0002 mm b. 0.0015 mm

c. 0.0017 mm d. 0.0024 mm

e. 0.0078 mm f. 0.0276 mm

Figure 24: The smallest tension load 0.0005 mm. Pattern evolution with increasing shear
load.
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tension. These numerical tests prove that the response of difficult nonlinear

problems can be computed by a path-following technique, in place of dynamic

relaxation or in combination with it.

The proposed method is versatile and can be applied to a lot of non-

linear systems. For instance, there are applications to fluid mechanics of

the asymptotic numerical method, e.g. [35] [16], and of the Taylor meshless

method [65]. The automatic differention method [52] can be a help in case

of more intricate equations, see for instance [53]. In this paper, we did not

use the latter method, the Leibniz formula having permitted to compute all

the power series we needed.

Consider, for example, hyperelastic models that have nowadays a lot of

applications. A general procedure has yet to be established, but the basic

rules are known. In this respect, the first idea is the quadratic recast [34][67],

i.e. a transformation of the system of equations into a quadratic system, for

instance y = x3 replaced by z = x2 and y = x × z. Such a quadratic

recast may be applied to any usual function, for instance y = ex replaced

by y′ = y × x′. A general account about this recast technique can be found

in [68] and applications of ANM to hyperelastic problems are presented in

[69][70][37] [38]. Once this transformation carried out, the recasted system

can be solved by coupling ANM and TMM with the help of the Leibniz

formula as in the present paper. The implementation can also be simplified

by using an Automatic Differentiation toolbox, as done for ANM in [70] and

for TMM in [53].
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and Padé approximants for non-linear elastic structures, International

journal for numerical methods in engineering (1994) 1187–1213.

[33] B. Cochelin, N. Damil, M. Potier-Ferry, Méthode asymptotique
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