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Abstract

This work aims to propose a new damaging beam-lattice model using the Dis-

crete Element Method paradigm dedicated to the simulation of quasi-brittle

fracture under complex loadings. Enrichment of the elastic Euler-Bernoulli

beam link, inspired by the cohesive zone models, is proposed to provide a dam-

ageable behavior in mixed mode and contribution of frictional behavior is not

considered in this first version of the damage model. The tensile contribution on

the beam link is taken into account from the first order elongation of the beam

while all other contributions, i. e. bending, shear, and torsion are considered

from the second-order elongation of the beam. These orders of elongation refer

to beam theory, where the first elongation is induced by a force normal to the

cross-section and the second is the elongation of the curvilinear length of the

beam resulting from shear, bending and torsion loads. As these two kinematics

do not correspond to the conventional modes I, II, and III, a deep checking

step of the model is undertaken. First, mixed-mode testing on a single beam

is performed to monitor the energy components dissipated in each mode and

to ensure that energy dissipated in mixed mode exhibits a monotonic evolution

between boundary values related to pure modes. Based on this first verification,

a tensile test and a compression one are simulated on a cylinder specimen to
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evaluate the model capabilities to qualitatively describe the well-known charac-

teristics of quasi-brittle fracture such as failure facies, unilateral effect, and the

ratio between the compression and tensile strength. Finally, the model is used to

simulate a complex crack propagation test coming from the recent international

Carpiuc benchmark.

Keywords: Quasi-brittle, Discrete Element Method, Damage, mixed

mode, energetic criterion

1. Introduction

The modeling of quasi-brittle fracture has been widely studied. Of the many

approaches considered, the finite element method is the most extensively used.

The most popular finite element-based approaches are eXtended-Finite Element

Method (X-FEM), damage models, cohesive zone models, and more recently5

the phase-field model. Extended finite element method, developed in [1], [2],[3],

simulates cracks within the finite element mesh using functions that enrich the

degrees of freedom of the mesh nodes. This model performs well when simulat-

ing crack propagation for complex cracking paths. However, it struggles when

modeling processes such as fragmentation or multi-cracking, due to a large num-10

ber of cracks present.

Another approach lies in damage models [4], [5], [6], [7]. They allow the stiffness

of the material to be degraded locally in the meshes where cracks are present.

Initially, faced with mesh dependency problems, work introducing regularisation

methods, such as non-local damage models [8] and gradient damage methods15

[9], made it possible to get rid of mesh dependency and snapback problems. Co-

hesive zone models are another approach that aims to model crack development

zones ahead of cracks or defects [10], [11],[12]. This model is applied with the

element method by adding cohesive elements between the meshes. Within these

elements placed ahead of the crack understudy, an adhesion force is defined20

that accounts for lower stresses ahead of cracks than those predicted by linear

fracture mechanics. Different laws are used to define the forces of the cohesive
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element. This model is particularly effective when studying a system with a

crack that will propagate in a known direction. However, when the direction of

crack propagation is not known, a large number of cohesive elements must be25

used, with the result that the stiffness of the structure depends on the initial

stiffness within the cohesive elements. More recently, work on the phase-field

model [13], [14], [15], [16] has been carried out. This technique is based on the

definition of a phase-field in the system. The presence of a crack is introduced

as the interaction between 2 phases. The separation of the material is allowed30

through the definition of the continuous phase field function which takes the

values +1 and -1 on both sides of the crack. This model appears to be par-

ticularly effective in modeling phenomena such as branching and coalescence of

cracks.

Although efficient in some cases, these models are confronted with the dis-35

advantages of the finite element method, such as the mesh dependency and the

high computational costs in the presence of a large number of cracks. The dis-

advantage of mesh dependence has been partially solved for the damage and

phase-field models by introducing an internal length, the physical meaning of

which remains to be established. These difficulties in modeling fracture phenom-40

ena with the finite element method lead us to look at other numerical methods

such as the discrete element method.

In general, a discrete disordered media is well known for its numerical abil-

ity to easily describe fracture mechanisms, and especially for elastic-brittle be-

haviors [17, 18]. The beam lattice approach in the Discrete Element Method45

paradigm is one of the various examples to simulate complex crack patterns [19].

The mainly used criterion for beam links consists in a cut-off method [20],[21],[22]

in which the fracture of the beam is considered when a given threshold is reached.

Among cut-off criteria, some are based on threshold stresses [19], strain thresh-

old defined from axial and rotational deformations [23] or using a cohesive model50

only in the longitudinal direction [24]. Improved cut-off criteria can also be used

as in [25] where fracture only occurs if a stress threshold is maintained for a

while to reach the fracture energy of the material. Similarly, many works, such
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as [26], [27] or [28],[29] based on the rigid body spring model, use a cut-off cri-

terion on springs instead of beams to model the different phases composing the55

concrete i.e. matrix, aggregate and matrix/aggregate interface. These numer-

ical studies are mostly recent and emphasize the difficulty at the macroscopic

scale to restore accurately fracture phenomenon under complex loadings where

the fracture mechanisms need to be taken into account in mixed modes [30].

Moreover, a cut-off criterion takes place at the microscopic or mesoscopic60

scale and leads generally to very time-consuming simulations due to the need to

describe the material (e.g. beam links) at the considered scale. In the goal to

reduce simulation time, one solution consists of considering progressive damage

of links instead of a simple cut-off criterion which leads implicitly to increase

the scale associated with the links and consequently to reduce simulation time.65

Among the damaging link models, the one consisting of replacing a beam link

by damaging springs (in normal and tangential directions) when the threshold

is reached leads to various studies in the literature [31]. However, the analysis in

[32] shows that beam links possess a better accuracy on fracture patterns than

spring links. An improvement such as the development of a new criterion for70

beam links built on the spring link work would merely enhance the modeling of

fracture behavior.

Indeed, most of the papers in the literature, such as detailed thereafter,

define damage variable on the normal spring and the differences between the

models come from the damage definition.75

In [33], an equivalent deformation and principal stresses are evaluated. These

quantities are deduced from mean strains and stresses in the normal and tangen-

tial directions expressed with normal and tangential forces and displacements.

On the other side of this mathematical approach, a simpler physical approach

[34] is based on cohesive zone models where the linear slope damage law is set by80

cohesive energy in mode I, energy dissipated by the normal spring, and mixed

maximum displacement. The normal and tangential stiffnesses are degraded

by this damage. To take into account mixed-mode failure, a Mohr-Coulomb

fracture criterion is defined from the mode I and mode II fracture energies.
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Another work inspired by cohesive zone models suggests giving an exponen-85

tial evolution to the damage variable described thanks to displacement in the

normal and shear directions [35]. A Mohr-Coulomb breakage criterion is also

established.

The major drawbacks of this type of model are that they are only applied

to normal and tangential forces respectively associated with the normal and90

tangential spring. The damage does not influence the moments. Moreover, these

models are only satisfied when one of the failure modes (I or II) is predominant.

When a mixed-mode is present, i. e. no mode of rupture is predominant,

the energy required for fracture exceeds those related to pure modes that is

physically inconsistent.95

Nevertheless, the results obtained with the different cohesive zone models

applied on spring links lead us to focus on this approach of fracture.

A cohesive zone model is used to represent phenomena happening in the

process zone. This consists in the simulation of a fictitious crack along with a100

cohesive interface for which a particular stress-displacement law is considered.

This stress-displacement law consists generally of a first elastic regime up to

the strength of the interface followed by a softening behavior describing the

progressive damage of the stress and the stiffness leading to dissipated energy.

The complete separation of the interface is obtained when the cohesive energy105

Gf is dissipated (area under the stress-displacement law). The initial works

on cohesive zone were defined for pure mode fracture with the fictitious crack

concept [36]. Moreover, different damage evolution laws can be used depending

on the modeled material [37]. In the literature, four main types of laws seem to

emerge: a linear softening part [12], [38],a bi-linear softening slope [39], [11], [40],110

a tri-linear softening slope [41],[42] and an exponential softening [43],[44],[10]

(This last softening is illustrated in the figure 1).
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Figure 1: Stress-Displacement curve for a typical exponential damage law

It can be noticed that only three parameters are required to describe an

exponential softening, the initial stiffness K0, the maximum elastic displacement

δe, and the cohesive energy Gf .115

For mixed loading such as tensile and shear loading, the use of a cohesive

zone model for one of the three pure modes can be suitable only in the case

of a preferential direction of crack propagation. In other cases, the need for a

coupling between pure mode models is essential, in line with the wide range of

mixed-mode works carried out for example in [45],[46] [47]. Indeed, an uncoupled120

model would lead to dissipated energy peak for mixed-mode rupture, i.e. more

energy would be necessary for rupture happening than in pure modes, which is

non-physical. In terms of energy, a coupled model ensures that energy dissipated

for fracture in mixed mode is bounded by energies corresponding to pure modes

and that energy tends to mode I energy (respectively mode II energy) when125

mixed-mode fracture tends to pure mode I fracture (resp. mode II). Such a

model is usually defined from pure modes. A parameter β monitoring mixed-

mode rate is expressed from displacements related to mode I and mode II such

as β = δII
δI

.

From this parameter and the ones provided by pure mode laws, the mixed-130

mode damage evolution law is updated at every step of the simulation.
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This cohesive zone model provides a useful approximation of fracture pro-

cesses of materials and its installation at a mesoscopic scale allows reducing

simulation time. Moreover, its ability to taking into account mixed mode at

fracture appears as a powerful model applicable to the Discrete Element Method135

(DEM). However, if the use of damaging link model through degraded spring is

the subject of many works today, the solution consisting in using damage model

in beam link is much less studied whereas DEM based on beam links is known

to describe crack paths with better accuracy compared to those obtained from

spring links [32].140

The present work is inspired by the ones in [48, 49] which propose damage-

able beam-lattice domain in 2D.

Here, an original damage model acting on tridimensional beam-lattice do-

main is proposed. Its capabilities to describe the general aspects of the quasi-145

brittle fracture and in particular the cracking paths are shown and discussed.

Nevertheless, in this first version of the model, the frictional aspects of the quasi-

brittle failure are not taken into account. Hence, the model will fail to describe

the values of the residual displacements observed from an unloading following

a damage in traction for example, [50], [51]. Nevertheless, if the capacities of a150

discrete element model to naturally describe the friction between particles are

not exploited in this first version of the model(usually, a classical Hertz-Mindlin

model is implemented for the broken particles that are in contact like in [52]),

the contact between discrete elements is used in order to describe the unilat-

eral effect of quasi-brittle materials and the capacities of the model to describe155

quasi-brittle mixed mode I+II cracking is studied. In addition, the definition of

a cohesive zone model at the virtual Voronoi interface shared by two neighbor-

ing discrete elements makes it possible to get rid of the problems of initializing

the stiffness of the cohesive element observed with the finite element method.

Indeed, the stiffness of the beams connecting the discrete elements is naturally160

used for this purpose. Moreover, the introduction of this cohesive behavior, via

a damage variable within the Euler-Bernoulli beams of the lattice, provides an
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energetic control of the softening phase of the failure. The damage model is

implemented within an Euler-Bernoulli beam-lattice rather than a Timoshenko

one because if Timoshenko beams provide a more accurate description of the165

contribution of shear, they would lead to new parameters to be calibrated. Their

use would then require the development of a new calibration process. The re-

liability of the elastic calibration process for Euler-Bernoulli beams led us to

choose these beams for our model.

The model of the damaging beam and the closure management method are170

detailed in the first part of this paper. Then, three main classical mechanical

tests are carried out. As the last section of the paper is related to experimental

comparisons, the authors analyze the results of these preliminary simulation

tests to evaluate only the qualitative response to the model related to the cali-

bration of the damage parameters. Typical failure mechanisms for quasi-brittle175

materials are observed such as the unilateral effect or the ratio between com-

pressing and tensile strengths. Tensile and compressive tests under monotonic

and cycling loading are performed in this sense. Finally, to compare the model

with experimental results, two tests from the recent Carpiuc benchmark pro-

posed in the two previous ECCOMAS International Conferences on Computa-180

tional Modeling of Fracture and Failure of Materials and Structure (CFRAC)

[53] are simulated. They consist of a mixed loading including tensile and shear

forces as well as a bending moment applied to pre-cut specimens (single- and

double-notched).

2. The Damaging Beam Model (DBM)185

2.1. Beam lattice domain

Contrary to the finite element method, the continuum mechanics are not

applicable for the discrete element method. Indeed, the principle of the discrete

element method consists of discretizing a continuous media with particles. The

discrete element method, created for granular materials, is based on the inter-190

actions between the particles. These interactions consist of forces and moments
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applied on the discrete elements. In the case of cohesive media, the interactions

between discrete elements are represented thanks to beam links. The forces and

moments induced by the beam on the elements are defined from the theory of

beams. Thus, for each beam, three forces, one normal and two tangential forces195

are calculated. Likewise, three moments, one torsion, and two bending moments

are determined. These forces and moments and the induced kinematics for an

Euler-Bernoulli beam can be found in the work of André et al. in [19].

These forces and torques are applied on each discrete element attached to200

the beam. These elements can be of different shapes, such as spherical or polyg-

onal shapes and may or may not be in contact with each other. Thereafter,

two examples of discretization are shown in figure 2. The first one consists in

spherical discrete elements which are not in contact while in the second one,

polygonal discrete elements in contact are represented. In both cases, each205

discrete element is connected to its neighbors thanks to links as beams.

(a) Discretization with Spherical discrete elements

linked by beams

(b) Discretization with Voronöı discrete elements

linked by beams

Figure 2: Examples of discretization

However, note that the use of discrete element of polygonal shape makes

difficult the contact detection between discrete elements compared to the case

of spherical discrete elements. Neither the discrete elements are spherical or

polygonal and in contact or not, the volume of material associated with each210

discrete element can be obtained from a Voronoi tessellation as shown in figure

9
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3. From this point of view, the common material area between two neighboring

discrete elements, AV oronoi as shown in figure 3, can be associated with the beam

linking both discrete elements. Note that the surface AV oronoi is perpendicular

to the axis of the beam link and that the classical kinematic fracture modes215

between two neighboring Voronoi volume of material can be considered from

the surface AV oronoi.

Figure 3: Scheme of material volumes associated to spherical discrete elements

This three-dimensional beam model is implemented in the discrete element

workbench GranOO [54]. As for any discrete element method code, the al-

gorithm assesses first forces and torques on each discrete element. With the220

Newton law, accelerations are deduced. Thanks to an integration scheme, ve-

locities and displacements are calculated from accelerations. In GranOO, an

explicit scheme is used, the Verlet Velocity scheme [19]. To ensure stability and

convergence, a critical time step ∆tcrit is determined and the calculation time

step ∆t is taken with a ratio of ten percent i. e. ∆t = 0.1∆tcrit.225

The Damaging Beam Model (DBM) detailed thereafter consists in an im-

provement of this beam model inspired by cohesive zone models.

10
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2.2. Mixed mode cohesive model

The damaging beam model consists of the definition of a damage variable D

for each beam. The beam Young modulus is thus degraded inducing a decrease230

in forces and torques :

E = (1 −D)E0, (1)

where E0 and E correspond to the initial and current Young modulus. The

evolution law of D is inspired from the mixed-mode cohesive zone model found

in [47], and in this work, all the three classical crack opening modes, I, II, and

III are used to explicit the evolution of the damage.235

The activation of the damage evolution is governed by a mixed initiation

criterion expressed as :

∑

k=I,II,III

(
δk
δe,k

)2

= 1, (2)

where δk is the current displacement for the mode k and δe,k is the elastic limit

also for each mode.

Assuming an exponential shape of the softening as shown in figure 1 for all240

modes, the evolution of the damage variable can then be written as:

D = 1 − δ̃e

δ̃
exp




2K̃

2
G̃f

δ̃e
− K̃δ̃e

(δ̃e − δ̃)


 , (3)

where K̃, δ̃e and G̃f are the cohesive law parameters in the mixed space (i.e. a

combination of cohesive parameters for each crack opening modes I, II, III. δ̃ is

the current displacement also projected in the mixed space. The projection in

the mixed space will be described in the section 2.3.2.245

Finally, a cut-off criterion is used to make the fracture of the beam effective

when D tends to 1. It is assumed that total fracture, i.e. the beam is deleted,

happens when the mixed stress in the beam reaches one percent of the mixed

11
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peak stress after the damage activation. In the DBM, the criterion is translated

into an ultimate displacement δ̃u :250

δ̃u = δ̃e −




2
G̃f

δ̃e
− K̃δ̃e

2K̃


 ln

(
1

100

)
. (4)

2.3. Definition of the pseudo modes

2.3.1. Kinematic equivalences

The damage evolution law and the damage initiation criterion depend on four

variables δ̃, δ̃e, K̃ and G̃f that need to be evaluated at each iterations. These

mixed law variables are defined from the variables of the three cohesive laws for255

each pure mode. As these modes are connected to a specific opening kinematic

that is not similar to a Bernoulli beam one, it is then required to propose an

equivalence. The representation of the pure mode fractures is displayed in the

table 1 as well as their assumed equivalences for the beam with respect to the

surface AV oronoi (Figure 3). From these beam kinematics, a cohesive law is260

defined for each of the pure modes. To determine a cohesive law, only three

parameters are needed: a stiffness K, a maximum elastic displacement δe and

a cohesive energy Gf . Note that cohesive laws relate stress to displacement,

therefore the stiffness K must be in [N/m] and the displacement δ in [m].

Tension. First, the equivalence of mode I of failure appears obviously as a result265

of the tensile effect. Thus, the displacement describing this mode of failure is

the elongation of the beam. The stiffness defined for this mode corresponds to

the tensile stiffness of the beam. Their respective expressions are given by:





δtension = L− L0

Ktension = E0

L0

(5)

12



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Shear and bending. The definition of mode II becomes less straightforward be-

cause of the two contributions, shear, and bending. Indeed, defining a displace-

ment and a stiffness providing monitoring of shear contributions Fy and Fz as

well as bending contributions Ty and Tz is more complicated. Nevertheless,

it can be highlighted that both shear and bending loads induce an increase in

beam length. Hence, the difference between the curvilinear length of the beam

and the beam length obtained only by tensile loading could be a displacement

monitoring shear and bending effects. The mode II stiffness is then determined

by averaging these two stiffnesses. For Mode II stiffness, the shear and bending

stiffnesses can be written as:





δshear/bending = Lcurve − L

Kshear =
E0Ig

L2
0Rbeam

Kbending =
E0

L0

(6)

Torsion. For mode III failure, the parameters of the cohesive law are derived

from torsional effects. Thus, the displacement is naturally expressed as that

induced by the torsion angle. The mode III stiffness is also assigned the torsional

stiffness. These displacement and stiffness are expressed as:





δtorsion = Rbeamθtorsion

Ktorsion =
E0

(1 + ν)L0

(7)
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I, Opening Tension

II, In-plane shear Shear and Bending

III, Out-of-plane shear Torsion

Standard modes

Bernoulli beam

Table 1: Conventional modes of fractures and the equivalent modes for a beam with respect

to the surface AV oronoi

2.3.2. Pseudo modes definition

Three pseudo pure modes of fracture applied to the beam equivalent to the270

conventional modes of fracture are defined. However, a mixed-mode combining

14
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three pure modes would be unnecessarily complicated. Indeed, as explained in

the paper [55], when the beam is deformed, the energy is principally composed

of tension energy. In this way, tension effects can be considered as the major

mode of fracture of the mixed-mode model and will be named as pseudo mode275

I noted as mode I∗ . On the other hand, contributions from torsion loads are

low and torsion and bending fractures appear on the same surface as shown on

kinematic schemes in the table 1. Thus, a single pseudo mode II can be defined

from both torsion and bending effects. More generally, all loading on the beam

different from tension loading is considered belonging to pseudo mode II noted280

as mode II∗.

Moreover, the low contributions of bending and torsion loads ensure that

the mode II∗ will not be predominant and thus, that the assumption of combin-

ing torsion and bending effects is suitable. By an energy analysis, the pseudo285

mode II (mode II∗) can be considered as an energy EII∗ , the sum of energies

of mode II EII and mode III EIII of fracture which will be dissipated when the

surface shared by Modes II and III is fractured. This new energy can be as well

expressed as a function of a stiffness KII∗ and a displacement δII∗ .

290

Consequently, two pseudo pure modes, mode I∗ and mode II∗ are defined

from the equivalences of the 3 conventional pure modes detailed in the previous

paragraph. Mode I∗ is similar to mode I, and corresponds to first order elonga-

tion of the beam. Thus, fracture parameters of the pseudo mode I (mode I∗)

15
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can be expressed as :





δI∗ = L− L0

KI∗ =
E0

L0

δe,I∗ = εe,IL0

Gf,I∗ =
Abeam
Avoronöı

Gf,I

(8)

Concerning the cohesive energy for mode I∗, the choice is made to intro-

duce directly the energy extracted from experimental tests in mode I failure.

Similarly, the maximum elastic displacement in mode I∗ is deduced from exper-

imental maximum elastic strain noted εe,I. However, the lattice character of the

method implies a resetting step of the cohesive energy. In the aim of avoiding295

another calibration step, the beam parameters are directly calculated from the

material ones. However, it should be noted that energy conservation is not valid

here. Indeed, the elastic calibration of the Young modulus induces a rigidity of

the beam which is greater than the rigidity of the material. Thus, in the case of

energy conservation, the beam fracture energy would be lower than the elastic300

energy accumulated in the beam, which is not physically allowed. Hence, to

estimate the fracture energy of the beam, it is assumed that the ratio of the

fracture energy of the beam over the cross-section area of the beam is equal to

the ratio of the fracture energy of the material over the surface area AV oronoi.

The area AV oronoi is the material surface modeled as defined in Section 2.1305

and obtained from voronöı mesh. The energy release rate of each beam is set

as shown in equation (8).

Mode II∗ represents the second-order of elongation of the beam. The pa-

16
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rameters of the pseudo mode II (mode II∗) are written as :310





δII∗ = Lcurve − L+Rbeamθtorsion

KII∗ = fshearKshear + fbendingKbending + ftorsionKtorsion

δe,II∗ = αδe,I∗

Gf,II∗ = αGf,I∗

(9)

The mode II∗ displacement is expressed as the sum of the mode II and

mode III displacements. To express a mode II∗ stiffness, a weighted average is

obtained from the shear, bending, and torsion stiffnesses. The weights used to

calculate the Mode II∗ stiffness are given by :





fshear =
Fy + Fz

Fy + Fz +
Ty
L

+
Tz
L

δshear/bending
δII∗

fbending =

Ty
L

+
Tz
L

Fy + Fz +
Ty
L

+
Tz
L

δshear/bending
δII∗

ftorsion =
δtorsion
δII∗

(10)

where fshear, fbending and ftorsion correspond to the weight of the shear,315

bending, and torsion stiffnesses in the estimation of the related to the pseudo

mode II. Note that these weights are functions of the shear forces Fy and Fz

and the bending torques Ty and Tz from the theory of beams.

Since the mode II∗ energy has no physical equivalent, the choice is made to320

express this energy in proportion to the mode I∗ cohesive energy. For this pur-
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pose, an α parameter is introduced and monitors the mixed-mode contribution

and will need to be calibrated.

In summary, only one parameter needs a calibration step, the other param-

eters are set from experimental data.325

Based on the pseudo pure modes previously defined, the parameters corre-

sponding to a ”pseudo” mixed-mode are expressed according to [56] and [47]

such as:





δ̃ = δI∗δII∗

√
1 + β2

δ2
II∗ + β2δ2

I∗

K̃ =

√
K2

I∗ + β2K2
II∗

1 + β2

δ̃e = δe,I∗δe,II∗

√
1 + β2

δ2
e,II∗ + β2δ2

e,I∗

G̃f =
δ2
e,II∗

δ2
e,II∗ + β2δ2

e,I∗
Gf,I∗ +

β2δ2
e,I∗

δ2
e,II∗ + β2δ2

e,I∗
Gf,II∗

= G̃f,I∗ + G̃f,II∗

, (11)

where β corresponds to the pseudo mixed mode ratio with :

β =
δII∗

δI∗
(12)

The mixed mode stiffness K̃, the maximum elastic displacement of the mixed330

mode δ̃e and the mixed mode cohesive energy G̃f are functions of β. The last

term G̃f can be written as a combination of two contributions of both pseudo

mixed modes G̃f,I∗ and G̃f,II∗ . These decomposition will be used especially in

section 2.6 for validation.
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The four terms in equation 11 are used to feed the initation and evolution335

criterion defined previously in equations (2) and (3). At every step of the

simulation, a different damage law is defined. Indeed, between two incremental

times, displacements δI∗ and δII∗ evolve with the fluctuation of loads applied

to the structure. An update of parameter β value is required, modifying all

parameters from the damage evolution law. In this way, for a zero β value, the340

pure mode I∗ law is restored while for an infinity β value, the mode II∗ law is

found.

2.4. Closure model

A quasi-brittle material submitted to a tension loading exhibits a decrease

of its stiffness in the tension direction due to the development of micro-cracks345

oriented preferentially in the normal direction to one of the tension loadings.

Nevertheless, if this damaged material is then submitted to a compression load-

ing applied in the direction of the preceding tension loading, the material ex-

hibits a restoration of its initial stiffness due to the closure of micro-cracks. To

reproduce this phenomenon called as the unilateral effect, closing forces and350

torques are added. Thus, the sum of the forces and torques in the re-closed link

is equal to the forces and torques of an undamaged beam loaded in compression,

i.e. such that :





~F

~T



 =





~FDamagebeam

~TDamagebeam



+





~Fclosure

~Tclosure



 (13)

In addition, micro-crack reclosure occurs within the entire representative ele-

mentary volume (REV) modeled by the reclosed beam. It is therefore necessary355

to take into account the part of the REV represented by void. Thus, during the

reclosure of two discrete elements, the forces Fclosure are transmitted along a

surface that does not correspond to the surface of the beam but to the Voronoi

surface common to both elements, illustrated in figure 3. The stiffness related
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to the reclosure force Fclosure can be expressed as :360

Kclosure = D
E0Avoronöı

L0
(14)

Note that the natural capacity of DEM to detect contact between discrete

elements is used in order to activate closure forces (see equation 13). Neverthe-

less, if contact detection is activated, the frictional behavior between discrete

elements is not considered in order to evaluate the capacities of the alone damage

beam model to describe quasi-brittle failure.365

2.5. Sequential Algorithm

The process carried out at each time step for each beam is detailed in figure

4 and includes the application of the damage model as well as the closure model.

Calculation of δI∗ and δII∗

Activation of the initiation criterion ?

Calculation of β

Calculation of all mixed terms δ̃, K̃, δ̃e, G̃f

Reach the ultimate displacement δ̃u ?

Deactivate the beam Damage increases ?

Update D

E = E0(1 −D)
Closure?

Add Closure force and torques

Apply forces and torques on the elements

no

yes

yes no

yes
no

yes

no

Figure 4: Sequences for the application of the damage model and closure for each beams.
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2.6. Mixed mode Test on a single beam

Physically, the mixed-mode fracture energy of the beam has to be bounded370

by the pure mode fracture energies. For various materials, the most ener-

getic mode (i.e. the mode exhibiting the larger cohesive energy) corresponds to

pseudo mode II while the least energetic corresponds to pseudo mode I. Thus,

mixed-mode should require cohesive energy ranged between those of pure modes,

and the evolution of this one with respect to the mixed-mode indicator β should375

be monotonic. As our model is based on energy driving, it appears essential to

verify this energy trend.

The non-common mode definition used in the model leads us to take precau-

tions and to achieve a deeper checking phase. For this purpose, a test is carried

out on a single beam loaded with a mixed tensile-torsion boundary condition to380

simulate various mixed-mode cases.

Thus, a displacement in the longitudinal direction is imposed at a beam

end. The other end is subjected to a torsion rotation around the beam axis.

With such a loading, pseudo mode I displacement is provided by longitudinal

displacement while pseudo mode II displacement is induced by torsion angle.385

Hence, the different pseudo mixed mode ratio (β) values are generated in the

beam with the variations of the displacement and rotation imposed at the beam

ends. When β is equal to 0, a pure tension loading is applied, then is increasing

with the rotation value on the beam.

The input parameters for the damage law are given in the table 2.390

Gf,I 60 J.m−2

εe,I 10−4

α 5

Table 2: Damage law parameters for the validation tests on a single beam.

The evolution of the mixed-mode fracture energy as a function of the mixed-

mode indicator β is plotted in the figure 5. The mixed-mode fracture energy

(G̃f ) of the beam corresponds to the sum of the components of mode I∗ (G̃f,I∗)
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and of mode II∗ (G̃f,II∗) of the energy and here can be either tensile energy or

torsion energy. Thus, both mode I∗ and mode II∗ energy components are drawn.395

It can be noted that each component (pseudo mode I energy or pseudo mode

II energy) is lower than the corresponding pure mode energy value. Then, the

mixed-mode fracture energy is bounded by pure mode I∗ fracture energy and

mode II∗ fracture energy. Moreover, it can be observed that when β tends

towards 0, the mixed-mode fracture energy tends to the one expected from400

pure mode I∗ as well as its tensile component. Similarly, for a high value of

β parameter, the mixed-mode fracture energy reaches the one associated with

mode II∗.
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Figure 5: Fracture Energies as function of the pseudo mixed mode ratio β on a single beam.

The analysis of the energy dissipated shows that the proposed damage model

is consistent in terms of energy.405
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3. Calibration and qualitative response of the model

3.1. Material

The model developed here, is built to be suitable for any quasi-brittle mate-

rial simulation. Among quasi-brittle materials, concrete is subject of numerous

studies available in literature [57],[58], [59],[60],[61],[62] and is chosen here in or-410

der to test the model in various fracture modes. Indeed, the main characteristics

of the concrete failure under compressive and tensile loading are well-known and

are here simulated to evaluate the relevance of the damage cohesive beam model.

The simulated responses in tension and compression will be simply qualitatively

compared to the experimental ones while the ratio of compression and tensile415

strengths obtained from simulation will provide a quantitative comparison with

respect to the well-known ratio of 10 expected for quasi-brittle materials.

Prior to simulating tests, according to [55], a calibration step is realized to

determine the model parameters allowing to simulate concrete elastic behavior.

The elastic parameter values for macroscopic and model scales are displayed in420

the table 3.

Macro scale Model scale

EM = 39.4GPa Eµ = 189.5GPa

νM = 0.2 νµ = 0.3

rµ = 0.6

Table 3: Model and macroscopic elastic parameters for concrete, where rµ is the radius ratio i.

e. the ratio between each beam radius and the average radius of its linked discrete elements.

3.2. Tensile Test on a cylindrical specimen

A tensile test is performed on a cylindrical specimen. The dimensions of the

specimen are 70 mm for the length and 35 mm for the radius as indicated in

figure 6.425
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Figure 6: Voronoi mesh of the cylindrical specimen (values in mm)

In order to simulate a concrete-like material, the fracture energy Gf,I is fixed

arbitrarily to the value of Gf,I = 50J/m2. Then, the model fracture energy

of each beam is estimated according to the relationship Gf,I∗ = AbeamGf,I
Avoronöı

as

previously mentioned. The elastic strain εe,I is fixed to the value 8 ×10−5

in order to simulate a tensile strength of the specimen equal to ft = 4MPa.430

Finally, the value for α is given arbitrarily at 8.

To remain in a quasi-static regime, the displacements imposed on the end

cross-sections are such that a speed of 1.6 mm/s is ensured. The response

stress-strain obtained from the simulation is plotted in figure 7.
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Figure 7: Stress-Strain response obtained from the DBM for a tensile test on a cylindrical

specimen

The trend displayed in the figure 7 corresponds to the expected quasi-brittle435

behavior. Indeed, peak stress of 4.1 MPa is obtained which is consistent with

the experimental values observed for this material [63],[64], [65]. Furthermore,

the sharp softening occurring after the peak stress is characteristic of the brittle

character of fracture expected from a non-stabilized tensile loading.
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(a) t=0.018 s (b) t=0.026 s

(c) t=0.034 s (d) t=0.097 s

Figure 8: Evolution of damage fields during a tensile test

The damage fields, corresponding to 4 different times of the simulations440

(represented by the points a,b,c and d in figure 7), are plotted in figure 8. After

a first step in which the damage is diffuse in the specimen, a localization of

damage in a plane approximately horizontal (i. e. a plane perpendicular to the

tensile direction) is observed (b) then the fracture process continues through a

damage percolation process near this plane up to the complete failure of the445

specimen.

The localization of the damage occurs randomly at the height of the cylin-

der. Every beam of the network is allowed to damage, no artifices need to be

added to obtain the localization.
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450

The repeatability of this test on different initial beam networks is shown in

figure 9 and allows to verify that the crack is randomly located in the cylinder

but always around a horizontal plane.
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Figure 9: Stress-strain response for five samples of different initial distribution under a tension

loading.

The stress-strain responses for five different samples composed of 5700 dis-

crete elements are depicted in the figure 9. The variability of the lattices does not455

influence the stress peak. The softening is slightly affected by the initial beam

distribution chosen. The energy release rates of the specimens are calculated

from the area under the stress-displacement curves divided by the cross-section

area of the sample and reported in the table 4. The average energy release rate is

48.8 J/m2. Consequently, the energy release rate obtained with the simulations460

tends to the energy release rate 50 J/m2 input in our model. The method of

calibration of the cohesive energy proposed in this paper is therefore validated.
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Sample n Gf,I (J/m2)

1 43.8

2 57.4

3 46.4

4 44.09

5 52.7

Table 4: Macroscopic Energy dissipated by the different samples

Finally, the influence of the number of discrete elements on the stress-strain

response is studied, to quantify the number of elements ensuring a qualitative

result. This convergence study is undertaken thereafter, from a sample consti-465

tuted by a number of discrete elements ranged between 1 700 and 22 000 as

shown in figure 10.

For any element numbers, the expected stress-strain shape is exhibited and

the brittle tendency is recovered even for a coarser specimen. However, for the

sake of accuracy, a minimum of 5700 elements is suitable to provide a deviation470

under 10 % of finer mesh peak stress and energy. In other words, an elastically

accurate specimen will display precisely the damaging behavior.
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Figure 10: Study of the convergence on a cylinder under tension for an increasing number of

elements.

The convergence of the model has been studied thanks to two indicators,

fracture energy, and peak stress. The convergence for each factor is illustrated

in figure 11. To ensure the validity of the convergence study, the variability of475

the results is taking into account by reproducing the tests on a minimum of 5

specimens for each discrete element number. The stress-strain curves plotted in

figure 10 correspond to the average of the responses obtained from 5 specimens.

On the left side, it can be noted that the fracture energy converges rapidly.

Indeed, even for a coarse specimen, the average error on the fracture energy480

obtained is close to zero. The case of a large error on the fracture energy is

induced by the various initial beam networks available. For the finer specimens,

this effect is noticeable. In addition, the impact of the variability of initial

networks seems to become constant for specimens composed of more than 13000

discrete elements. This minimum influence of the variability can be quantified485

as approximately 10%.

If the convergence of the energy is reached from 13 000 discrete elements,

the convergence of the peak stress seems to require the use of 20 000 discrete
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elements to be reached, as shown in figure 11b. Nevertheless, the shape of the

stress-strain responses becomes acceptable from 5 700 discrete elements in so far490

as all responses exhibit a post-peak consistent with the one expected in tension

for a quasi-brittle material, i. e. marked from a first sudden decrease of the

stress followed by a softening tail. As a consequence, for the peak stress as well

as the fracture energy, the values obtained for the 5700 discrete elements remain

fairly accurate with an error of 7.3% and 3% respectively. In such a case, the495

tests on a 5700 sample are privileged.
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Figure 11: Study of the convergence on a cylinder under tension

Since many of the benefits of the damaging beam model have been discussed,

it would be relevant to focus on the choice of model parameters and their in-

fluence. Thus, the influence of the mixed parameter α on the tensile behavior

is studied. Figure 12 represents the results for three different values of α. No500

significant variation is detected. The tensile behavior is independent of the α

variable. Thus, as expected, the fracture is purely activated in mode I of fracture

of the beams.
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Figure 12: Stress-stain curve for tensile test with three different α values

This non-influence of alpha on the tensile test highlights the necessity of a

second test to fully calibrate our model. The second testing needs to activate a505

mode of fracture different from a pure mode I. Thus, compressing test, largely

studied experimentally, appears as a natural applicant. Another loading of

interest would be compressing testing but performed after a previous damaging

step induced by tensile test. Indeed, such a loading allows emphasizing the

unilateral behavior of concrete.510

3.3. Compression Tests

First, an interrupted tensile test followed by a compressing test is carried

out on the cylindrical specimen. When no closure model is used for the simula-

tion, the stiffness in the compressing reloading is equal to the stiffness observed

during the unloading phase of the tensile test. Therefore, no unilateral effect515

can be displayed without a closure model. The results for three different meshes

using our closure model are illustrated in the figure 13. As for the convergence

studied for the damaging behavior, a small number of discrete elements seems

to ensure the accuracy of unilateral behavior. Indeed, for a sample composed
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of 5700 elements, unilateral behavior is displayed. Similar results are obtained520

for coarse and finer meshes as long as the number of elements in the sample is

sufficient to model the elastic behavior. Our closure model is convenient and

validated for unilateral behavior. However, due to the fact that frictional be-

havior is not activated in the model, this one fails to describe the value of the

residual displacement at zero stress observed from experimental tests or simu-525

lated from other discrete element models considering frictional phenomena [66],

[67]. Nevertheless, even if the friction phenomenon plays a major role for the

quasi-brittle failure especially under compression loading and it is not taken into

account in the present model, we choose to simulate a compression test in order

to evaluate the capability of the alone damaging beam lattice model under this530

kind of loading and because compression test involves shear failure required to

calibrate the pseudo mode II parameters of the model.
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Figure 13: Stress-Strain curve for tensile-compressing tests

Compression tests are undertaken on the cylindrical specimen applying dif-

ferent boundary conditions, illustrated in the figure 14. The interest in sim-

ulating these two compression tests lies in obtaining two cracking profiles due535
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to the influence of the boundary conditions on them. Indeed, for a test with

frictionless plates, multiple cracks parallel to the loading direction through the

specimen are expected. For the test with embedded plates, shear bands should

appear within the specimen.

Figure 14: Boundary conditions applied during the friction-less compression test (on the left)

and the clamped compression test (on the right)

First, a compressing test is carried out in applying a y-displacement at ex-540

tremities cross-section while x and z displacements are left free. The parameters

of damage evolution remain identical for compressing and tensile tests.

For such boundary conditions, a fracture of the plans parallel to the loading

is expected. Figure 15 shows the evolution of the damage field with a top

view of the cylinder. Numerous damaged beams are distinguishable through545

the cylinder. Finally, multiple through-breaks of the cylinder appear in the

cylinder, as expected. Nevertheless, damage does not localize in planes parallel

to the compressive loading direction. Such a localization undoubtedly requires

introducing some noise into the system as internal stresses which will be the

object of a future study.550
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(a) t=0.0798 s (b) t=0.1236 s

(c) t=0.1699 s (d) t=0.2317 s

Figure 15: Evolution of damage fields during a compressing test with free extremities

Concerning the stress-strain curve presented in figure 16, the behavior of the

specimen displays a smoother softening than in tension. In addition, the peak

stress is 43 MPa. The compressing and tensile strength ratio is then approxi-

mately 10, as observed experimentally [38],[61],[68]. This first compressing test-

ing is accurately simulated in terms of global mechanical behavior but leads to555

diffuse damage compared to the experimental one observed for concrete. To test

our model, particularly the crack path prediction, second compressing testing

is carried out where a y-displacement is still applied but x and z displacements

are blocked to simulate the frictional effect acting on the area of the boundary

cross-sections frequently observed during experimental tests.560
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Figure 16: Stress-strain response for compression tests with no friction and infinite friction at

the plates.

From a mechanical behavior point of view, a similar stress-strain curve is

obtained. A higher stress peak is displayed which is consistent with the larger

surface of fracture happening in the specimen. In addition, the evolution of the

damage field, illustrated in figure 17, reveals that damaged beams, represented

in black in the figure, are more numerous than for the previous compressing test.565

In order to observe the cracking path, the final damage field where the beams

are fully damaged, i.e. for which D=1, is presented in Figure 18. For the sake of

clarity, a slice of the specimen is made in order to analyse the cracking profile in

one slice of the specimen. Damage is activated in many beams, including those

located in cones, due to the embedded end conditions inducing high loading570

in the specimen, especially in the material volume of the cones. However, a

location of the heavily damaged beams as well as the cracking zone is noticeable

along the conical surface, as experimentally. This type of break is provided

by experimental testing due to the frictional effects between the sample and

the plates of the device [69],[70]. Consequently, our model is predictive for the575

perfect compressive tests, with no frictional effect, and for endless frictional
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effects.

(a) t=0.19 s (b) t=0.39 s

Figure 17: Evolution of damage fields during a compressing test with clamped extremities

(a) Damage field at the end of a compressing

test with clamped extremities where the fully

damaged beam (D = 1) are removed

(b) View of the final damage field in a slice

of the specimen

Figure 18: Final damage field for a specimen under a compressing test with clamped extrem-

ities and its view in a slice of the specimen

In the aim of highlighting the mixed-mode impact during compressing test-

ing, the influence of the α parameter is investigated. In comparison with the

tensile test, the fluctuations due to α value are highly apparent. For small val-580

ues, the contributions of mode I∗ and mode II∗ will be of the same amount and

the fracture would happen sharply. On the other hand, for a higher α value,

larger displacement of mode II∗ will be needed to fracture. Thus, the use of a

high value of α allows to retain a predominant mode I∗ fracture while dissipating
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energy in a mode II∗. Indeed, without this dissipating in mode II∗, i. e. pure585

mode I∗, compressing behavior is not restored. As shown in the figure 19, pure

mode I∗ is not able to display a softening, a higher amount of energy would be

necessary for fracture. For a α = 8, the curve stress-strain is similar to those

obtained from experimental works in the literature, and this in terms of peak

stress as well as of the softening part of the stress-strain response.590
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Figure 19: Influence of α value on frictionless compressing stress-strain curve

Let us remember that friction between discrete elements is not activated in

the mode while frictional dissipation is well known to be a dominant character of

the quasi-brittle failure [50], [51]. As a consequence, taking friction into account

in a future version of the model should lead to consider a decrease of the value of

the pseudo mode II fracture energy GfII∗ and/or of the parameter α because a595

large amount of energy should be dissipated through friction under compression

loading. Thus, even if the fracture parameters of pseudo mode II are certainly

overestimated due to the absence of friction, the three parameters of our model

are determined from compression and tensile tests and the model can be used

for simulation of experimental tests in which most of the cracking is induced in600
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mixed-mode I+II.

4. Confrontation to experimental mixed-mode cracking : Benchmark

Carpiuc

In this section, the model is confronted with experimental work. For this

purpose, particular attention is directed to two trials carried out in the frame-605

work of the Carpiuc benchmark [71] where data are available in the Zenodo

website [72]. This benchmark is an ideal candidate for testing our model due to

its focus on the complex mixed-mode loading of mortar specimens. For these

tests, a hexapod machine is used to apply complex loading. Indeed, the 6-axis

testing machine, illustrated in figure 20 allows to apply up to 3 forces and 3 mo-610

ments simultaneously. The specimen is inserted between two plates subjected

to these loads to better control the boundary conditions.

Figure 20: Experimental set-up developped for the Carpiuc benchmark [71]

For both tests simulated here, the applied loading can be split into three

components: tension, shear, and bending, as shown in Figure 21.
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Figure 21: The three elementary loading applied during the tests: tension, shear and torsion

[71]

A digital image correlation (DIC) is performed to measure the displacements615

of the ends of the loaded specimens. As a result, the displacements along Y and

Z on the upper and lower faces of the specimen are obtained.

The first test is performed on a single notch specimen. The second test is

carried out on a double-notch specimen.

Both samples made with 7800 discrete elements are presented in figure 22.620

Note that the machine setup is such as the specimens are located between two

plates on which the displacements are applied. Consequently, the problem is

modeled in 2 dimensions.

(a) simple notch specimen (b) Double notch specimen

Figure 22: 2D Voronoi Specimens used for the simulation of the benchmark tests

To simulate these tests, the first step is to determine the Y and Z displace-

ments for each discrete element on the top and bottom sides of the specimen.625

39



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Indeed, the positions of the randomly generated discrete elements do not coin-

cide with those of the DIC measurements. Thus, an interpolation from exper-

imental data is then performed. In a second stage, a calibration of the elastic

and damage parameters is undertaken based on the experimental values of the

mortar. The input parameters of the simulations are given in table 5.630

EM 17.25 GPa

Eµ 82.97 GPa

Gf,I 114.6 J.m−2

εe,I 2.2 ×10−4

α 8

Table 5: Elastic and Damaging law parameters for the benchmark mortar

To avoid specimen damage near the lower and upper zones of loading ap-

plication, a correction factor is applied to the damage variables. In fact, the

corrective factor FD follows a top hat law. As shown in figure 23 for a single

notched specimen, the corrective factor varies between 0 at the edges of the

specimen and 1 in the core of the specimen and thus allows the damage on the635

edges of the specimen to be canceled out without modifying the damage values

on the central part of the specimen.

Figure 23: Evolution of the corrective factor FD value within a single notched specimen
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In addition, due to the geometry of the notch and to prevent any influence

of the position of the initiation zone along with the notch, the characteristics

of the beams located at the upper corner of the notch were degraded for the640

single notch specimen. Indeed, the value of the parameter εeI∗ was decreased

to 1.32 ×10−4 allowing early damage in this area. Thus, the crack initiation

occurs as experimentally and the abilities of the model to reproduce the crack

propagation path can be observed. Similarly, for the double notch specimen,

the beams in the lower corner of the left notch and the upper corner of the right645

notch had their maximum elastic deformation reduced.

For each test, the simulation is performed on five different samples.

The tensile and shear forces obtained at the ends of the specimen during the

simulation of the five specimens are compared with the forces measured by the

experimental setup in Figure 24.650
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(a) Evolution of the tensile force Fz during the

single notch test
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(b) Evolution of the shear force Fy during the sin-

gle notch test

Figure 24: Comparison of the tensile and shear forces obtained from the simulation of five

single-notch specimens with those from experiments
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. Firstly, during the simulation, the forces are measured at the extremities of

the digital specimen corresponding to the area where the image correlation is

performed. However, the experimental force values are measured at the hexapod

level. Thus, due to these differences in the force measurement areas, and the

use of image correlation data, noise in the numerical results are noticeable. At655

the beginning of the test, for a time of less than 0.1 s, the experimentally and

numerically measured forces are similar. The only difference lies in the peak

force in tension. Indeed, due to the use of specimens composed of 8,000 discrete

elements, it has been shown previously that convergence at the peak stress level

was not achieved. As a result, an underestimation of the peak force at crack660

initiation is observed numerically. Concerning the shear force, the experimental

and numerical results are confounded for times lower than 0.1 s, i.e. during the

crack initiation phase. During the crack bifurcation and branching phases, i. e.

for times greater than 0.1 s, differences are observed in the experimentally and

numerically measured shear forces. These differences can be explained, on the665

one hand, by the dependence of the experimental results on the mesostructure

of the specimen tested and, on the other hand, by the dependence of the value

of the shear force measured on the beam network. Indeed, for two specimens

such as specimen 1 and specimen 5, the observed shear force varies by a factor

of 2. Due to these variations in forces between the different beam arrays, the670

forces obtained by the test simulation are considered to be representative of the

experimental forces.

. With regard to cracking paths, the experimental and numerical results ob-

tained for a single notch specimen are overlapped in the figure 25. The ex-

perimental results are shown in the figure with the vertical displacement field675

changing from yellow to red. In particular, the presence of cracks is experi-

mentally noticed at discontinuities in this displacement field. The damage field

obtained with the simulation is presented through the damaged beams, in black.

The undamaged beams are transparent so as not to interfere with the analysis

of the results.680
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(a) t= 0.0769 s (b) t= 0.1286 s

(c) t= 0.1763s (d) t= 0.1997s

Figure 25: Evolution of damage fields during the mixed-mode test on a single notched specimen

(only damage beams are represented in black)

During the first phase, a crack is initiated at the notch, illustrated in figure

25a. Then a change in shear loading induces a reorientation of the crack propa-

gation both experimentally and numerically, displayed in figure 25b. Afterward,

a second bifurcation is triggered by a further change in shear loads. Finally, as

expected, the imposed loading leads to the successive formation of two distinct685

cracks, called branches, shown in figures 25c and 25d. These different stages are

observed for each of the five simulated specimens. This test highlights the abil-

ity of the model to predict crack bifurcation as well as its robustness to sudden

changes in loading. The mechanisms of crack closure and crack coalescence are

studied thanks to the simulation of the second test. Firstly, the evolution of the690

tensile and shear forces at the ends is studied and presented in figure 26.
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(b) Evolution of the shear force Fy during the dou-

ble notch test

Figure 26: Comparison of the tensile and shear forces obtained from the simulation of five

double-notch specimens with those from experiments

. As with the single notch test, the crack initiation and propagation phases

are not dependent on the initial beam network. Indeed, the simulated tensile

and shear forces are representative of the experimental forces. The peak tensile

force is underestimated due to the use of 8,000 element specimens. This test695

highlights the sensitivity of the crack coalescence phase to the beam network.

Indeed, for times greater than 0.1 s, a difference between the five numerical re-

sults and the experimental result is notable. The observation of the tensile and

shear forces shows that the double notch test is faithfully reproduced, although

the crack coalescence at the end of the simulation is dependent on the initial700

beam network. However, the experimental result studied here corresponds to

a specimen with a particular mesostructure. For a specimen with a different

mesostructure, the evolution of the tensile and shear forces would not be iden-

tical to that presented here. Thus, due to these experimental and numerical

variations of the tensile and shear forces, it can be assumed that the model705
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provides a reasonable representation of the forces within the specimen. The

damage field obtained for three times of the simulation is shown and compared

to the experimental crack path in figure 27.

(a) t= 0.0627s

(b) t= 0.1142s

(c) t= 0.1359s

Figure 27: Evolution of damage fields during the mixed-mode test on a double notched spec-

imen (only damage beams are represented in black)
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As experimentally, a first crack is initiated at the right notch, observed in

figure 27a. In a second stage, the specimen is unloaded to close the crack. A710

new loading is then applied to the specimen to initiate a second crack without

propagation of the first crack. The initiation of the second crack is displayed

in figure 27b. In the final step, the loading is increased dramatically to reopen

the two cracks and allow them to reorient and coalesce. This coalescence mech-

anism is highly unstable. The simulation results show a coalescence due to the715

propagation of the second crack in contrast to the experimental results where

the first crack propagates, illustrated in figure 27c. There are many reasons for

these differences. First, the initiation part of the test has a great impact on the

crack path. In addition, in this experimental work, a pre-cycle of elastic loading

and unloading is applied to the specimen inducing a locally pre-stressed state,720

different for each specimen tested. In addition, the mortar mesostructure influ-

ences the location of crack initiation. These pre-stress and mesostructure effects

are not taken into account in the model and explain the differences observed

during the unsteady propagation phase.

5. Conclusion and Perspectives725

A new damage beam-lattice model inspired by cohesive zone models has

been presented. If this model is dedicated to discrete element modeling, it is

implemented in this first version without resorting to the friction modeling in

order to study the alone capabilities of the damage beam-lattice to describe

quasi-brittle cracking mostly induced in mixed mode I+II. Only the contact de-730

tection between neighboring discrete elements is activated in order to describe

unilateral behavior. The main advantage of this model is the reduced number

of parameters which can be easily determined from two experimental tests, one

tensile and one compression test. Five qualitative tests have been performed

on concrete-like specimens. Among these tests, only two, monotonic tensile and735

compressive tests are required to calibrate the damaging beam model. A second

compressing test has been used to verify that the set of calibrated parameters
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is suitable and in accordance with the classical shape of mechanical response

of quasi-brittle materials. The peak stresses and cracking paths expected are

displayed. In particular, the compressing and tensile peak stress ratio is es-740

timated at 10 which is the typical value observed for concrete. Nevertheless,

comparisons with data from experimental tests need to be performed to finally

validated either the calibration protocol and the prediction capability of the

proposed approach. In addition, it has been shown that a microscopic dam-

aging behavior induces a macroscopic damaging behavior. The methodology745

of energy calibration which has been presented allows displaying macroscopi-

cally energy dissipated equally to the cohesive energy input. Furthermore, it

has demonstrated that convergence appears for specimens with few elements.

The elasticity convergence, reached for approximately 5 000 discrete elements,

ensures a good accuracy of the damaging behavior. Thus, the damaging beam750

model could be a good candidate for structure simulation.

The mechanism of crack reclosure has also been studied. The interrupted tensile

test with a release followed by a compressing test has shown that the contact

model developed allows taking into account the unilateral behavior of the ma-

terial. However, as expected due to the fact that frictional behavior between755

discrete elements is deactivated, the model fails to describe the value of resid-

ual displacement at zero stress observed from experiments or simulated by other

discrete models in the litterature that already take into account the coulomb law

for friction. Special interest should be focused on these frictional aspects during

further work. Indeed, better modeling of the frictional contribution could result760

in a larger residual displacement and hysteresis effects. The improvement of the

present model is being developed to introduce friction effects as well as internal

stresses within the lattice. This will be tested using a tension-compression test

[61], which is more suitable for studying the dissipative mechanisms involved in

crack reclosure.765

Finally, the model was compared with the experimental results of the Carpiuc

benchmark in which cracking is mostly induced in mixed mode I+II. Tests with

complex mixed-mode loading on single and double notched specimens high-
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lighted the ability of our model to predict bifurcation and crack branching phe-

nomena. Indeed, for each of the tests, the cracking paths predicted by the770

model are consistent with those observed experimentally. An improvement of

the model could be achieved at the level of crack initiation, in particular by

taking into account the pre-stressed states present within the material and the

mesostructure of mortars and concretes.
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a new tool for developing discrete element simulations, and its application

to tribological problems, Advances in Engineering Software 74 (2014) 40–

48. doi:https://doi.org/10.1016/j.advengsoft.2014.04.003.
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6. Appendix : curvilinear lenght computation

Curve length determination is the result of mathematical work. Indeed,

the curve length is calculated from the space parametrization of the beam.1080

Following the figure 28 presenting the framework for the cylindrical beam,

the y and z expressions as functions of x are related to curve length with

the equation:

Lcurve(t) =

∫ L

0

√
1 + y′(x)2 + z′(x)2dx (15)

~y

~z

~x

Figure 28: Local framework for the beam.

Beam displacements can be defined by a 3rd polynomial function as follow-

ing:1085





y(x) = Ayx
3 +Byx

2 + Cyx+Dy

z(x) = Azx
3 +Bzx

2 + Czx+Dz

(16)
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To determine the constants of these polynomials, it is necessary to write 4

equations for each position variable y and z. However, the only information

known is on discrete element displacements and rotations. In other terms,

the y and z positions of extremities x = 0 and x = L are given and provide

two equations. The two last equations missing are obtained thanks to rota-1090

tions which are derivative values in x = 0 and x = L. Taking into account

these boundary conditions allows system solving. From the resulting y and

z expressions and as well their derivatives, curve length is obtained through

numerical integration.
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